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CONGRUENCE KERNELS OF ORTHOIMPLICATION
ALGEBRAS

I. CHAJDA, R. HALAŠ and H. LÄNGER

Abstract. Abstracting from certain properties of the implication operation in
Boolean algebras leads to so-called orthoimplication algebras. These are in a nat-

ural one-to-one correspondence with families of compatible orthomodular lattices.

It is proved that congruence kernels of orthoimplication algebras are in a natural
one-to-one correspondence with families of compatible p-filters on the corresponding

orthomodular lattices. Finally, it is proved that the lattice of all congruence ker-

nels of an orthoimplication algebra is relatively pseudocomplemented and a simple
description of the relative pseudocomplement is given.

In the literature many attempts were made in order to investigate properties of
the implication operation in generalizations of Boolean algebras. These attempts
led to different types of so-called implication algebras (cf. e. g. [2], [5] and [6]).
It is interesting to note that these types of implication algebras are in a natural
one-to-one correspondence with join-semilattices with 1 the principal filters of
which are certain generalizations of Boolean algebras. Hence the question arises if
there is a natural one-to-one correspondence between congruence kernels of these
implication algebras on the one side and certain families of congruence kernels of
the corresponding generalizations of Boolean algebras on the other side. We solve
this problem for so-called orthoimplication algebras introduced in [2]. Moreover,
we prove that the lattice of congruence kernels of orthoimplication algebras is
relatively pseudocomplemented and we derive a simple description of the relative
pseudocomplement.

In [1] implication algebras were introduced as algebras reflecting properties of
the implication operation in Boolean algebras:

Definition 1. (cf. [2]) An orthoimplication algebra is an algebra (A, ·, 1) of
type (2, 0) satisfying

xx = 1, (xy)x = x,

(xy)y = (yx)x, x((yx)z) = xz.
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Remark 1. In every orthoimplication algebra it holds 1x = x and x1 = 1 since
1x = (xx)x = x and x1 = (1x)1 = 1.

First we want to prove some congruence properties of the variety of orthoim-
plication algebras. For any algebra B let ConB denote the set of all congruences
on B.

Definition 2. Let A be an algebra with 1. A is called weakly regular if
Θ,Φ ∈ ConA and [1]Θ = [1]Φ together imply Θ = Φ. A is called permutable
at 1 if [1](Θ ◦ Φ) = [1](Φ ◦ Θ) for all Θ,Φ ∈ ConA. A is called 3-permutable if
Θ ◦ Φ ◦Θ = Φ ◦Θ ◦ Φ for all Θ,Φ ∈ ConA.

Theorem 1. The variety V of orthoimplication algebras is weakly regular, per-
mutable at 1 and 3-permutable.

Proof. According to [4, Theorem 6.4.3], V is weakly regular if and only if there
exist a positive integer n and binary terms t1, . . . , tn in V such that
t1(x, y) = . . . = tn(x, y) = 1 is equivalent to x = y. Now put n := 2, t1(x, y) := xy
and t2(x, y) := yx. Then t1(x, x) = t2(x, x) = 1. Conversely, if t1(x, y) =
t2(x, y) = 1 then x = 1x = (yx)x = (xy)y = 1y = y. Hence V is weakly reg-
ular. According to [4, Theorem 6.6.11], V is permutable at 1 if and only if there
exists a binary term t with t(x, x) = 1 and t(x, 1) = x. Now put t(x, y) := yx.
Then t(x, x) = 1 and t(x, 1) = x and hence V is permutable at 1. Finally, accord-
ing to [4, Theorem 3.1.18], V is 3-permutable if and only if there exist ternary
terms t1, t2 satisfying t1(x, z, z) = x, t1(x, x, z) = t2(x, z, z) and t2(x, x, z) = z.
Now put t1(x, y, z) := (zy)x and t2(x, y, z) := (xy)z. Then

t1(x, z, z) = (zz)x = 1x = x,

t1(x, x, z) = (zx)x = (xz)z = t2(x, z, z) and
t2(x, x, z) = (xx)z = 1z = z

and hence V is 3-permutable. �

In [2] a natural one-to-one correspondence between orthoimplication algebras
and certain families of compatible orthomodular lattices was established. In order
to be able to define these structures we first need the definition of an orthomod-
ular lattice. (For the theory of orthomodular lattices we refer the reader to the
monographs [8], [3] and [9].)

Definition 3. An orthomodular lattice is an algebra (L,∨,∧,′ , 0, 1) of type
(2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1) is a bounded lattice and

x ∨ x′ = 1, x ∧ x′ = 0,

(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′,

(x′)′ = x, x ≤ y implies y = x ∨ (y ∧ x′).

The third and fourth condition are the well-known De Morgan laws and the last
condition is the so-called orthomodular law.
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Now we are able to define the order-theoretical counterpart of orthoimplication
algebras introduced in [2]:

Definition 4. (cf. [2]) A semi-orthomodular lattice is a partial algebra
(A,∨, (x;x ∈ A), 1) such that (A,∨, 1) is a join-semilattice with 1, for each x ∈ A,
x is a unary operation on [x, 1] such that ([x, 1],∨,∧,x , x, 1) is an orthomodular
lattice and the compatibility condition

zy = zx ∨ y for all x, y, z ∈ A with x ≤ y ≤ z(CC)

is satisfied.

Remark 2. It should be remarked that for a ∈ A the meet-operation ∧a in the
orthomodular lattice ([a, 1],∨,∧a,a , a, 1) does not depend on a in the following
sense:

If a, b, x, y ∈ A and a, b ≤ x, y then x ∧a y = x ∧b y.

This can be seen as follows: First assume a ≤ b. Then x∧b y is a lower bound of x
and y in ([b, 1],≤) and hence also in ([a, 1],≤). If c is an arbitrary lower bound of
x and y in ([a, 1],≤) then x and y are upper bounds of b and c and hence b∨ c ≤ x
and b ∨ c ≤ y. This shows that b ∨ c is a lower bound of x and y in ([b, 1],≤) and
hence b ∨ c ≤ x∧b y which implies c ≤ x∧b y. This proves x∧b y = x∧a y. If now
a, b, x, y ∈ A and a, b ≤ x, y then x ∧a y = x ∧a∨b y = x ∧b y. Obviously, x ∧ y
exists in (A,≤) if and only if x and y have a common lower bound.

Remark 3. According to the De Morgan laws x ∧ y = (xa ∨ ya)a holds for all
a ∈ A and x, y ∈ [a, 1].

The natural one-to-one correspondence between orthoimplication algebras and
semi-orthomodular lattices can be formulated as follows (for other types of impli-
cation algebras and their corresponding order-theoretical counterparts cf. e. g. [1]
and [5]):

Theorem 2 (cf. [2]). For every fixed set A the formulas

x ∨ y = (xy)y, xy = xy,

respectively

xy = (x ∨ y)y

induce mutually inverse bijections between the set of all orthoimplication algebras
over A and the set of all semi-orthomodular lattices over A.

In what follows, let A = (A, ·, 1) be an arbitrary, but fixed orthoimplication
algebra and S = (A,∨, (x;x ∈ A), 1) its corresponding semi-orthomodular lattice.

For semi-orthomodular lattices we need a certain notion corresponding to the
notion of a congruence.

Definition 5. A compatible congruence family on S is a family (Θx;x ∈ A) of
congruences Θx on ([x, 1],∨,∧,x , x, 1) such that Θy = Θx ∩ [y, 1]2 for all x, y ∈ A
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with x ≤ y. Let CCF(S) denote the set of all compatible congruence families on
S. On CCF(S) we define a binary relation ≤ by

(Θx;x ∈ A) ≤ (Φx;x ∈ A) if Θx ⊆ Φx for all x ∈ A.

Remark 4. (CCF(S),≤) is a complete lattice.

Now we can formulate the natural one-to-one correspondence between congru-
ences on A and compatible congruence families on S:

Theorem 3. The formulas

Θx = Θ ∩ [x, 1]2

and
Θ = {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}

induce mutually inverse isomorphisms between (ConA,⊆) and (CCF(S),≤).

Proof. Let a, b, c, d ∈ A. If Θ ∈ ConA and Θx := Θ ∩ [x, 1]2 for all x ∈ A, then
in the case b, c ≥ a the relations

b ∨ c = (bc)c, b ∧ c = (((ba)(ca))(ca))a,

ba = ba

imply that Θa ∈ Con([a, 1],∨,∧,a , a, 1). Clearly, b ≥ a implies also

Θb = Θ ∩ [b, 1]2 = Θ ∩ ([a, 1]2 ∩ [b, 1]2) = (Θ ∩ [a, 1]2) ∩ [b, 1]2 = Θa ∩ [b, 1]2

proving (Θx;x ∈ A) ∈ CCF(S). Moreover, as a ∨ b = (ab)b, the following three
assertions are equivalent:

(a, a ∨ b) ∈ Θa, (a ∨ b, b) ∈ Θb, (a, a ∨ b), (a ∨ b, b) ∈ Θ,

(a, b) ∈ Θ.

Conversely, assume (Θx;x ∈ A) ∈ CCF(S) and define

Θ := {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}.
Then Θ is reflexive and symmetric.

Further, notice that

a, b ≤ c, d and (c, d) ∈ Θa imply (c, d) ∈ Θb.(1)

Indeed, we have

(c, d) ∈ Θa ∩ [a ∨ b, 1]2 = Θa∨b = Θb ∩ [a ∨ b, 1]2 ⊆ Θb.

Now, in order to prove that Θ is transitive, take any (a, b), (b, c) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb (a ∨ b) ∨ b = a ∨ b.

Since b, a ≤ a ∨ b ∨ c, a ∨ b, using (1) we obtain

a ∨ b ∨ c Θa a ∨ b.

This implies

a ∨ c = a ∨ (a ∨ c) Θa (a ∨ b) ∨ (a ∨ c) = a ∨ b ∨ c Θa a ∨ b Θa a,
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i. e. (a, a ∨ c) ∈ Θa. Now

a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb b ∨ (b ∨ c) = b ∨ c.

Since b, c ≤ a ∨ b ∨ c, b ∨ c, using (1) we obtain

a ∨ b ∨ c Θc b ∨ c.

This implies

a ∨ c = (a ∨ c) ∨ c Θc (a ∨ c) ∨ (b ∨ c) = a ∨ b ∨ c Θc b ∨ c Θc c,

i. e. (a ∨ c, c) ∈ Θc. Therefore, we obtain (a, c) ∈ Θ proving that Θ is transitive.
Next we show that Θ is a right congruence on A. Assume (a, b) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (a ∨ c) Θa a ∨ (a ∨ c) = a ∨ c

and hence a ∨ b ∨ c Θc a ∨ c. Moreover,

a ∨ b ∨ c = (a ∨ b) ∨ (b ∨ c) Θb b ∨ (b ∨ c) = b ∨ c

and hence a ∨ b ∨ c Θc b ∨ c. Together we obtain

a ∨ c Θc a ∨ b ∨ c Θc b ∨ c

and therefore
ac = (a ∨ c)c Θc (b ∨ c)c = bc.

Now
ac ∨ bc Θc bc ∨ bc = bc implies ac ∨ bc Θbc bc

and
ac ∨ bc Θc ac ∨ ac = ac implies ac ∨ bc Θac ac.

Together these relations show (ac, bc) ∈ Θ proving that Θ is a right congruence
on A. From this it follows that (a, b) ∈ Θ implies (a∨c, b∨c) ∈ Θ since (ac, bc) ∈ Θ
and hence (a ∨ c, b ∨ c) = ((ac)c, (bc)c) ∈ Θ.
Next we show that Θ is a left congruence on A. Assume (a, b) ∈ Θ. Then

a ∨ b ∨ c = (a ∨ b) ∨ (a ∨ c) Θa a ∨ (a ∨ c) = a ∨ c

and hence
(a ∨ b ∨ c)a Θa (a ∨ c)a

which implies
(a ∨ b ∨ c)a Θ(a∨b∨c)a (a ∨ c)a.

Thus
(a ∨ b ∨ c)a ∨ (a ∨ c)a = (a ∨ c)a Θ(a∨b∨c)a (a ∨ b ∨ c)a

and
(a ∨ b ∨ c)a ∨ (a ∨ c)a = (a ∨ c)a Θ(a∨c)a (a ∨ c)a
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showing ((a∨b∨c)a, (a∨c)a) ∈ Θ. Analogously, we obtain ((a∨b∨c)b, (b∨c)b) ∈ Θ.
Using (CC) we get

ca = (c ∨ a)a = (a ∨ c)a Θ (a ∨ b ∨ c)a = (a ∨ b ∨ c)a ∨ a Θ (a ∨ b ∨ c)a ∨ b

= ((a ∨ b ∨ c)a ∨ a) ∨ b = (a ∨ b ∨ c)a ∨ (a ∨ b) = (a ∨ b ∨ c)a∨b

= (a ∨ b ∨ c)b ∨ (a ∨ b) = (a ∨ b ∨ c)b ∨ (b ∨ a) = ((a ∨ b ∨ c)b ∨ b) ∨ a

= (a ∨ b ∨ c)b ∨ a Θ (a ∨ b ∨ c)b ∨ b = (a ∨ b ∨ c)b Θ (b ∨ c)b = (c ∨ b)b

= cb.

As Θ is transitive, the above relations imply (ca, cb) ∈ Θ, proving that Θ is a left
congruence on A.
Hence Θ ∈ ConA. Moreover, the following are equivalent:

(b, c) ∈ Θ ∩ [a, 1]2, b, c ≥ a, (b, b ∨ c) ∈ Θb, (b ∨ c, c) ∈ Θc,

(b, b ∨ c), (b ∨ c, c) ∈ Θa, (b, c) ∈ Θa.

This fact shows that the mappings induced by the formulas stated in the theorem
are mutually inverse bijections between ConA and CCF(S). It is obvious, that in
fact they are isomorphisms between (ConA,⊆) and (CCF(S),≤). �

Corollary 1. Every congruence on A is uniquely determined by its restrictions
to the intervals [x, 1], x ∈ A.

The following lemma explains how the congruences on an orthoimplication al-
gebra are determined by their kernels.

Lemma 1. Θ = {(x, y) ∈ A2 |xy, yx ∈ [1]Θ} for all Θ ∈ ConA.

Proof. If (a, b) ∈ Θ then ab, ba ∈ [aa]Θ = [1]Θ and if, conversely, a, b ∈ A and
ab, ba ∈ [1]Θ then a = 1a Θ (ba)a = (ab)b Θ 1b = b and hence (a, b) ∈ Θ. �

Now we introduce the notion of a congruence kernel of an orthoimplication
algebra.

Definition 6. A subset F of A is called a congruence kernel of A if there exists
a congruence Θ on A with [1]Θ = F . Let CK(A) denote the set of all congruence
kernels of A.

The natural one-to-one correspondence between congruences on orthoimplica-
tion algebras and their kernels is established by the following

Theorem 4. The formulas
F = [1]Θ

and
Θ = {(x, y) ∈ A2 |xy, yx ∈ F}

induce mutually inverse isomorphisms between (ConA,⊆) and (CK(A),⊆).

Proof. It is an immediate consequence of Lemma 1. �

Remark 5. (CK(A),⊆) is a complete lattice.
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As far as follows let L = (L,∨,∧,′ , 0, 1) be an arbitrary, but fixed orthomodular
lattice.

Congruence kernels of orthomodular lattices are called p-filters. This is the
content of

Definition 7 (cf. [8]). A subset F of L is called a p-filter of L if there exists
a congruence Θ on L with [1]Θ = F . Let F(L) denote the set of all p-filters of L.

Remark 6. (F(L),⊆) is a complete lattice.

The following one-to-one correspondence between congruences and p-filters of
orthomodular lattices (generalizing the corresponding one for Boolean algebras) is
well-known:

Theorem 5 (cf. [8]). The formulas

F = [1]Θ

and
Θ = {(x, y) ∈ L2 | (x ∧ y) ∨ (x′ ∧ y′) ∈ F}

induce mutually inverse isomorphisms between (ConL,⊆) and (F(L),⊆).

For describing congruence kernels of orthoimplication algebras by p-filters of
the corresponding orthomodular lattices we need the following concept:

Definition 8. A compatible filter family on S is a family (Fx;x ∈ A) of p-filters
Fx of ([x, 1],∨,∧,x , x, 1) such that Fy = Fx ∩ [y, 1] for all x, y ∈ A with x ≤ y.
Let CFF(S) denote the set of all compatible filter families on S. On CFF(S) we
define a binary relation ≤ by

(Fx;x ∈ A) ≤ (Gx;x ∈ A) if Fx ⊆ Gx for all x ∈ A.

Remark 7. (CCF(S),≤) is a complete lattice.

In the proof of the next theorem we need the following easy property of con-
gruence kernels of orthoimplication algebras:

Lemma 2. If F ∈ CK(A), a ∈ F , b ∈ A and a ≤ b then b ∈ F .

Proof. If Θ ∈ ConA with [1]Θ = F then b = a ∨ b ∈ [1 ∨ b]Θ = [1]Θ = F . �

We are now able to formulate and prove the natural one-to-one correspondence
between congruence kernels of orthoimplication algebras and compatible filter fam-
ilies on the corresponding semi-orthomodular lattice.

Theorem 6. The formulas

Fx = F ∩ [x, 1]

and
F =

⋃
x∈A

Fx

induce mutually inverse isomorphisms between (CK(A),⊆) and (CFF(S),≤).
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Proof. Let a, b, c, d ∈ A. If F ∈ CK(A) and Fx := F ∩ [x, 1] for all
x ∈ A then there exists a congruence Θ on A with [1]Θ = F , and Θ ∩ [a, 1]2 ∈
Con([a, 1],∨,∧,a , a, 1), according to Theorem 3. Now, since

Fa = F ∩ [a, 1] = [1]Θ ∩ [a, 1] = [1](Θ ∩ [a, 1]2) ∈ F(([a, 1],∨,∧,a , a, 1)),

in the case a ≤ b we obtain

Fb = F ∩ [b, 1] = F ∩ ([a, 1] ∩ [b, 1]) = (F ∩ [a, 1]) ∩ [b, 1] = Fa ∩ [b, 1]

proving (Fx;x ∈ A) ∈ CFF(S). Moreover,⋃
x∈A

Fx =
⋃

x∈A

(F ∩ [x, 1]) = F ∩
⋃

x∈A

[x, 1] = F ∩A = F.

Conversely, assume (Fx;x ∈ A) ∈ CFF(S) and set F :=
⋃

x∈A

Fx. Then for ev-

ery x ∈ A there exists a congruence Θx on ([x, 1],∨,∧,x , x, 1) with [1]Θx = Fx.
Assume a ≤ b. Then Fb = Fa ∩ [b, 1] ⊆ Fa and hence Θb ⊆ Θa according to
Theorem 5 and therefore Θb ⊆ Θa ∩ [b, 1]2. Conversely, (c, d) ∈ Θa ∩ [b, 1]2 implies
c, d ≥ b and (c ∧ d) ∨ (ca ∧ da) ∈ [1]Θa = Fa. Using (CC) we obtain

(c ∧ d) ∨ (cb ∧ db) = (c ∧ d) ∨ ((ca ∨ b) ∧ (da ∨ b)) ∈ Fa ∩ [b, 1] = Fb = [1]Θb

according to Lemma 2 whence (c, d) ∈ Θb. Therefore Θb = Θa ∩ [b, 1]2 and
(Θx;x ∈ A) ∈ CCF(S). Put

Θ := {(x, y) ∈ A2 | (x, x ∨ y) ∈ Θx and (x ∨ y, y) ∈ Θy}.

According to Theorem 3, Θ ∈ ConA and Θ ∩ [x, 1]2 = Θx for all x ∈ A. Now

F =
⋃

x∈A

Fx =
⋃

x∈A

([1]Θx) =
⋃

x∈A

([1](Θ ∩ [x, 1]2)) = [1]Θ ∈ CK(A).

Moreover,

F ∩ [a, 1] = (
⋃

x∈A

Fx) ∩ [a, 1] =
⋃

x∈A

(Fx ∩ [a, 1]) =
⋃

x∈A

((Fx ∩ [x, 1]) ∩ [a, 1])

=
⋃

x∈A

(Fx ∩ ([x, 1] ∩ [a, 1])) =
⋃

x∈A

(Fx ∩ [a ∨ x, 1]) =
⋃

x∈A

Fa∨x

=
⋃

x∈A

(Fa ∩ [a ∨ x, 1]) = Fa ∩
⋃

x∈A

[a ∨ x, 1] = Fa ∩ [a, 1]

= Fa.

The rest of the proof is clear. �

From Theorem 6 we deduce the following nice characterization of congruence
kernels of orthoimplication algebras:

Corollary 2. A subset F of A is a congruence kernel of A if and only if
F ∩ [x, 1] ∈ F(([x, 1],∨,∧,x , x, 1)) for all x ∈ A. If the latter holds then (F ∩
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[x, 1];x ∈ A) ∈ CCF(S) and according to Theorem 6 there exists a G ∈ CK(A)
with G ∩ [x, 1] = F ∩ [x, 1] for all x ∈ A and hence

F = F ∩A = F ∩
⋃

x∈A

[x, 1] =
⋃

x∈A

(F ∩ [x, 1]) =
⋃

x∈A

(G ∩ [x, 1])

= G ∩
⋃

x∈A

[x, 1] = G ∩A = G ∈ CK(A).

Finally, we want to show that the lattice of congruence kernels of an orthoim-
plication algebra is relatively pseudocomplemented. First we recall the notion of
a relative pseudicomplement in a meet-semilattice:

Definition 9. Let (S,∧) be a meet-semilattice and a, b ∈ S. An element c of
S is called the relative pseudocomplement of a with respect to b if c is the greatest
element x of S satisfying a ∧ x ≤ b.

In the lattice of p-filters of an orthomodular lattice there exists a nice description
of relative pseudocomplements:

Theorem 7. (cf. [3] and [8]) (F(L),⊆) is relatively pseudocomplemented. If
F,G ∈ F(L) then 〈F,G〉 := {x ∈ L |x ∨ y ∈ G for all y ∈ F} is the relative
pseudocomplement of F with respect to G in (F(L),⊆).

Using this description and the connection between congruence kernels of or-
thoimplication algebras and p-filters of the corresponding orthomodular lattices
we obtain a nice and simple description of the relative pseudocomplement in the
lattice of all congruence kernels of an orthoimplication algebra:

Theorem 8. (CK(A),⊆) is relatively pseudocomplemented. If F,G ∈ CK(A)
then 〈F,G〉 := {x ∈ A | (xy)y ∈ G for all y ∈ F} is the relative pseudocomplement
of F with respect to G in (CK(A),⊆).

Proof. Let a, b ∈ A. If b ∈ 〈F,G〉 ∩ [a, 1] then for every y ∈ F ∩ [a, 1] we get
b ∨ y = (by)y ∈ G ∩ [a, 1], and hence b ∈ 〈F ∩ [a, 1], G ∩ [a, 1]〉. If, conversely,
b ∈ 〈F ∩ [a, 1], G∩ [a, 1]〉 then b ∈ [a, 1] and b∨y ∈ F ∩ [a, 1] for all y ∈ F according
to Lemma 2 and hence

(by)y = b ∨ y = b ∨ (b ∨ y) ∈ G ∩ [a, 1] ⊆ G

showing b ∈ 〈F,G〉 ∩ [a, 1]. Hence

〈F,G〉 ∩ [a, 1] = 〈F ∩ [a, 1], G ∩ [a, 1]〉 ∈ F(([a, 1],∨,∧,a , a, 1)).

According to Corollary 2, 〈F,G〉 ∈ CK(A). If a ∈ F ∩ 〈F,G〉 then a ∈ F and
(ay)y ∈ G for all y ∈ F and hence a = (aa)a ∈ G proving F ∩ 〈F,G〉 ⊆ G.
Conversely, if a ∈ H ∈ CK(A) and F ∩ H ⊆ G then (ay)y = a ∨ y ∈ F ∩ H ⊆ G
for all y ∈ F according to Lemma 2 and hence a ∈ 〈F,G〉 showing H ⊆ 〈F,G〉.
This completes the proof of the theorem. �
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