
Acta Math. Univ. Comenianae
Vol. LXXVI, 2(2007), pp. 193–200

193

ON GENERALIZED EXTENDING MODULES

M. A. KAMAL and A. SAYED

Abstract. H. Hanada, J. Kado, and K. Oshiro have introduced, in a diagram

of modules and homomorphisms, the concept of generalized M -injective modules.
S. Mohamed, and B. Mueller have given a different characterization, based on an

exchange property, of the generalized M-injective modules. Here we introduce the

concept of M -jective modules, which is a generalization of Mohamed and Mueller
concept for the generalized M-injectivity. The concept of M -jective modules is used

here to solve the problem of finding a necessary and sufficient condition for a direct

sum of extending modules to be extending. In fact, we show that relative jectivity is
necessary and sufficient for a direct sum of two extending modules to be extending.

We also introduced the concept of generalized extending modules, and give some

properties of such modules in analougy with the known properties for extending
modules.

1. Introduction.

In [2], H. Hanada, J. Kado, and K. Oshiro have introduced the concept of general-
ized M -injective modules, which is a generalization to the concept of M -injective
modules. It was given and described in a diagram of modules and homomor-
phisms in the following sense, N is a generalized M -injective module if for any
submodule X of M and any homomorphism ϕ : X → N,there exist decompositions
M = M1⊕M2 and N = N1⊕N2 together with homomorphisms ϕ1 : M1 → N1 and
ϕ2 : N2 →M2, such that ϕ2 is one-to-one, and for x = m1+m2 and ϕ(x) = n1+n2

one has n1 = ϕ1(m1) and m2 = ϕ2(n2). In the honor of Oshiro, S. Mohamed and
B. Mueller in [12] have used the name “M -ojective modules” for the “general-
ized M -injective modules”. They have given an equivalent characterization for
M -ojective modules, which is analogous to the observation in [3, Proposition 1.13]
by Burgess and Raphael. In fact Mohamed and Mueller proved that if a module
A = M ⊕ N , then N is M -ojective if and only if for any complement C of N in
A, A decomposes as A = C⊕M1⊕N1, with M1and N1 are submodules of M and
N respectively [12, Theorem 7]. This equivalent characterization for M -ojective
modules is visible, and is easly checked in applications. It requires that every
complement of N in A is a summand and has a complementary summand consists
of a part of M and a part of N .
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Here we introduce the concept of M -jectivity, which is a generalization of
M -ojectivity . In this new concept, we require that every complement of N in
M ⊕ N is a summand and need not have a specific complementary summand in
M ⊕N . In fact, A module N is M -jective if every complement of N in M ⊕N is
a direct summand. If N is M -jective and M is N -jective, we say that N and M
are relatively jective.

The problem of finding a satisfactory necessary and sufficient condition for a
direct sum of extending modules to be extending is still open and is annoying
problem, as it mentioned in [12]. It has been investigated in a number of papers.
In [1], and in [11], independently, it was shown that relative injectivity is sufficient
but not necessary (as Cp⊕Cp2 is extending [6, Corollary 23]. In [4], it was shown
that a direct sum of extending modules M1 and M2 is extending if and only if
every closed submodule with zero intersection with M1 or with M2 is a summand
(Lemma 7.9). In [2], H. Hanada, J. Kado, and K. Oshiro investigated a finite direct
sum of modules which is exchangable for closed submodules. They claimed that
relative ojectivity is necessary and sufficient for such a direct sum to be extending.
In [12], they have given a proof of such a claim for a direct sum of two modules.
The general case remains open.

Here we show that relative jectivity is necessary and sufficient for a direct sum
of two extending modules to be extending. We also introduce the concept of
generalized extending modules, and give some properties of such modules which
are analogous to the properties which are known for extending modules.

By a module M we mean a unitary right module over a (not necessary comu-
tative) ring with unity. A submodule A of a module M is essential in M , or M
is an essential extension of A, if A ∩ B 6= 0 for each nonzero submodule B of M .
A is closed in M if it has no proper essential extensions in M . If A and B are
submodules of M respectively, then A is a complement of B in M if A is a max-
imal in M with the property that A ∩ B = 0. It is clear that every complement
in M is a closed submodule of M . We use the notions A ≤e M , and A ≤⊕ M to
indicate that A is an essential submodule of M and A is a direct summand of M .
A module B is said to be A-injective if every homomorphism from a submodule
of A into B can be extended to A. It was observed in [3] that B is A-injective if
and only if M = C ⊕B holds for every complement C of B in M = A⊕B.

A module M is extending (or a CS-module, or a module with (C1)) if every
submodule is essential in a direct summand (or equivalently, if A ≤ M , then
there is a decomposition M = M1 ⊕M2 such that A ≤ M1 and A ⊕M2 ≤e M).
Extending modules generalize quasi-continuous modules, which, in turn, generalize
quasi-injective modules. Many authors have studied them extensively.

The between brackets equivalent defining condition for extending modules can
be generalized to the following condition:

If A ≤M, then there is a decomposition M = M1 ⊕M2(C∗
1 )

such that A ∩M2 = 0, and A⊕M2 ≤e M.

It is clear that every extending module must satisfies condition (C∗
1 ).
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2. M-jective Modules

Lemma 2.1. [12, Theorem 7] Let M = A ⊕ B. Then B is A-ojective if and
only if for any complement C of B, M decomposes as M = C ⊕ A1 ⊕ B1 , with
A1 ≤ A and B1 ≤ B.

As a generalization of Lemma 2.1, we introduce the following definition:

Definition 2.1. Let M = A⊕ B. Then B is called A-jective if every comple-
ment C of B in M is a direct summand.

Lemma 2.2. [12, Lemma 1] Let A and B be submodules of a module M with
A ∩ B = 0. Then A is a complement of B in M if and only if A is a closed
submodule of M and A⊕B is essential in M .

Lemma 2.3. Let M = N ⊕K. Let C be a complement in N of a submodule
A of N . Then:

(1) C ⊕K is a complement of A in M .
(2) C is a complement for A⊕K in M .

Proof. (1): Let C ⊕K ≤ L ≤ M such that L ∩ A = 0. Since (L ∩N) ∩ A = 0,
and C is a complement of A in N , it is follows that L ∩ N = C; and hence
L = K ⊕ (L ∩N) = K ⊕ C.

(2): The fact the C is a complement of A in N implies that C ⊕A⊕K ≤e M .
It is clear that if C is closed in N and N ≤⊕ M (N is closed in M), then C is
closed in M . Then, by Lemma 2.2, and since C is closed in N (hence in M), C is
a complement of A⊕K in M . �

Proposition 2.4. Let M = A ⊕ B, where B is A-jective. Let A = A1 ⊕ A2,
and B = B1 ⊕B2. Then (for i, j = 1, 2):

(1) Bi is A-jective;
(2) B is Aj-jective;
(3) Bi is Aj-jective.

Proof. For (1), write M = A ⊕ B1 ⊕ B2. Let C be a complement of B1 in
A ⊕ B1. Then by (2) of Lemma 2.3, C is a complement of B in M . Since B is
A-jective, then C is a summand.

For (2), write M = A1⊕A2⊕B. Let C be a complement of B in A1⊕B. Then
by (1) of Lemma 2.3, C ⊕ A2 is a complement of B in M . Since B is A-jective,
C ⊕A2 is a summand; and hence C is a summand of A1 ⊕B.

(3): Follows from (1), and (2). �

Lemma 2.5. Let M = A ⊕ B, where B is A-jective. If A is extending, then
every closed submodule C of M , with C ∩B = 0, is a summand of M .

Proof. Since A is an extending module, we have (C ⊕ B) ∩ A ≤e A1 ≤⊕ A,
and hence ((C ⊕ B) ∩ A) ⊕ B ≤e A1 ⊕ B. Since C ⊕ B = ((C ⊕ B) ∩ A) ⊕ B,
we have C ⊕ B ≤e A1 ⊕ B. By Lemma 2.2, C is a complement of B in A1 ⊕ B.
Proposition 2.4 tells us that B is A1-jective. Therefore C ≤⊕ A1 ⊕B ≤⊕ M . �
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Lemma 2.6. [4, Lemma 7.9] Let M = M1 ⊕M2, where M1 and M2 are both
extending modules. Then M is extending if and only if every closed submodule C
of M such that C ∩M1 = 0, or C ∩M2 = 0, is a summand of M .

The following is a necessary and sufficient condition of a direct sum of two
extending modules to be extending.

Theorem 2.7. Let M = M1⊕M2. Then M is extending if and only if the Mi

is extending, and is Mj-jective, i 6= j(= 1, 2).

Proof. Follows from Lemma 2.5, and Lemma 2.6. �

Corollary 2.1. A module M with the condition (C∗
1 ) is extending if and only

if M has the property that A is B-jective for every decomposition of M = A⊕B.

Proof. By the condition (C∗
1 ), every closed submodule of M is a complement of

a summand of M . Hence, by assumption, every closed submodule is a summand.
Therefore M is extending. The converse is obvious. �

Remark. 1. If M is a module with the property that A is B-jective for every
decomposition of M = A⊕ B; then M need not have the condition (C∗

1 ). In fact
indecomposable modules need not satisfy the condition (C∗

1 ).
2. The fact that essential extensions have the same complements in any module

M , allows us to replace submodules in the condition (C∗
1 ) by closed submodules.

3. Generalized Extending Modules

Definition 3.1. A module M is called a generalized extending module (for
short a GE-module) if the following condition is satisfied: If M = M1 ⊕M2, and
A ≤ M , then there exist Ci ≤⊕ Mi (i = 1, 2) such that C1 ⊕ C2 is a complement
of A in M .

Observe that in The condition (C∗
1 ), according to Lemma 2.2, the M2 is a

complement of A in M . Hence The condition (C∗
1 ) is equavalent to the following:

every submodule has a complement in M which is a summand. Observe also that,
from the definition of GE-modules, the equivanlent condition to (C∗

1 ) holds in
every GE-module.

In the following, we are going to show that every extending module is a GE-
module, and also give the relation between modules with (C∗

1 ) and GE-modules.

Lemma 3.1. The following are equivalent for a module M = A⊕B:
(1) A has (C∗

1 );
(2) For every closed submodule C of M , with C ∩B = 0, there exists A1 ≤⊕ A

such that A1 ⊕B is a complement of C in M .

Proof. (1) ⇒ (2): Let C be a closed submodule of M , with C ∩ B = 0.
By the condition (C∗

1 ) for A, there exists A1 ≤⊕ A such that A1 is a com-
plement of (C ⊕ B) ∩ A in A. As [(C ⊕ B) ∩ A] ⊕ A1 ≤e A, we have that
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[(C ⊕B) ∩A]⊕A1 ⊕B ≤e M . Since C ⊕ B = [(C ⊕ B) ∩ A] ⊕ B, it follows
that C ⊕B ⊕A1 ≤e M . Thus, by Lemma 2.2, A1⊕B is a complement of C in M .

(2) ⇒ (1): Let C be a closed submodule of A. Since a closed submodule in a
summand of M is closed in M , it follows that C is closed in M . By (2), there
exists A1 ≤⊕ A such that A1 ⊕ B is a complement of C in M . It follows that
C ⊕ A1 ⊕ B ≤e M = A ⊕ B, and hence C ⊕ A1 ≤e A. By Lemma 2.2, A1 is a
complement of C in A, and therefore A has (C∗

1 ). �

It is known that direct sums of two extending modules need not be extending.
In the following theorem we show that direct sums of two modules with (C∗

1 ) are
modules with (C∗

1 ).

Theorem 3.2. If M = M1⊕M2, where M1 and M2 are both have the condition
(C∗

1 ), then M has (C∗
1 ).

Proof. Let C be a closed submodule of M , and let C1 be a maximal essential
extension of C∩M1 in C. It is clear that C1 is closed in M with C1∩M2 = 0. Hence
by Lemma 3.1, there exists a complement of C1 in M of the form N1⊕M2 such that
N1 ≤⊕ M1. As C1⊕N1⊕M2 ≤e M , we have that C1⊕ [C∩(N1⊕M2)] ≤e C. Let
C2 be a maximal essential extension of C ∩ (N1⊕M2) in C. It is clear that C2 is a
closed submodule of M with C2∩M1 = 0 (due to C ∩ (N1⊕M2)∩M1 = C ∩N1 ≤
C1). Hence, again by Lemma 3.1, there exists a complement of C2 in M of the form
M1 ⊕N2 such that N2 ≤⊕ M2. It is easy to see that the sum C1 + C2 + N1 + N2

is a direct sum. Since(C ∩M1)⊕N1⊕C2⊕N2 ≤e M1⊕C2⊕N2 ≤e M , it follows
that C ⊕N1⊕N2 ≤e M , and thus, by Lemma 2.2, N1⊕N2 is a complement of C
in M . Therefore C has a complement in M which is a summand of M . �

Observe that in the proof of Theorem 3.2 we obtained a complement of the
form N1 ⊕ N2, where Ni ≤⊕ Mi(i = 1, 2), for an arbitrary closed submodule C
of M = M1 ⊕M2. An immediate consequence of this observation is the following
corollary.

Corollary 3.3. The following are equivalent for a module M :
(1) M is a GE-module.
(2) Every direct summand of M has (C∗

1 ).

Corollary 3.4. Direct summands of a GE-module are GE-modules.

Proof. Is an immediate consequence of Corollary 3.3. �

Corollary 3.5. Every extending module is a GE-module.

Proof. Since every direct summand of an extending module is extending, hence
has (C∗

1 ). �

Corollary 3.6. Every finite uniform dimensional module M with (C∗
1 ) is a

GE-module.
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Proof. By induction on the uniform dimension of M . It is clear that every
uniform module is a GE-module. Now let M be a module of uniform dimension
n. Since every nonzero proper summand submodule of M has uniform dimension
less than n, by induction it is a GE-module; and hence has (C∗

1 ). Therefore by
Corollary 3.3 M is a GE-module. �

The following implications are now clear for a module M :

M is an extending module =⇒ M is a GE-module

=⇒ M has the condition (C∗
1 ).

Corollary 3.7. The following are equivalent for a module M = ⊕n
i=1Mi :

(1) The Mi (i = 1, 2, . . . , n) has the condition (C∗
1 );

(2) Each closed submodule of M has a complement in M of the form ⊕n
i=1Ni,

where Ni ≤⊕ Mi (i = 1, 2, . . . . , n).

Proof. (1) ⇒ (2): By induction on the number n of the summands Mi, s of M ,
and by using the observation followed after Theorem 3.2.

(2) ⇒ (1): follows from the fact that each closed submodule of Mi is closed in
M , hence apply the modular law. �

Definition 3.2. A module M is called an absolute relative jective module
(for short ARJ-module) if Mi is Mj-jective (i 6= j); whenever M = M1 ⊕M2.

Clearly every extending module is an ARJ-module (Theorem 2.7), and any
indecomposable module is obviously an ARJ-module, which is not extending. The
following proposition gives the relation between Extending modules and ARJ-
-modules.

Proposition 3.8. The following are equivalent for a module M :
(1) M is an extending module;
(2) M is an ARJ-module and satisfies the condition (C∗

1 ).

Proof. (1) ⇒ (2): From Theorem 2.7, and since extending modules satisfy the
condition (C∗

1 ).
(2) ⇒ (1): Let C be a closed submodule of M . By the condition (C∗

1 ), we have
that C has a complement in M which is a summand; i.e. M has a decomposition
M = M1⊕M2, where M2⊕C ≤e M. Since M is an ARJ-module, M2 is M1-jective.
From Lemma 2.2 C is a complement of M2 in M , and hence from the definition
of relative jectivity, C ≤⊕ M. Therefore M is extending. �

Proposition 3.9. Every indecomposable module M with the condition (C∗
1 ) is

uniform.

Proof. Let A be a nonzero submodule of M . By (C∗
1 ), there exists a decompo-

sition of M as M = M1⊕M2 such that A⊕M2 ≤e M. Since M is indecomposable,
we have M2 = 0; and hence A ≤e M. �
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Proposition 3.10. If M has (C∗
1 ), then it has a decomposition M = M1⊕M2,

where Soc(M) ≤e M1.

Proof. By (C∗
1 ), there exists a submodule M2 of M such that M = M1 ⊕M2,

and Soc(M)⊕M2 ≤e M . It is clear that Soc(M2) = 0, and Soc(M) ≤e M1. �

Proposition 3.11. Let M be an R-module. If M has (C∗
1 ), then the second

singular submodule Z2(M) of M splits.

Proof. By (C∗
1 ), there exists a complement K of Z2(M) in M which is a sum-

mand of M . Write M = K ⊕ L. It is clear that K is nonsingular. Hence
Z2(M) ≤ L. Since Z2(M) ⊕K ≤e M , then Z2(M) ≤e L. Since Z2(M) is closed
in M , we have that Z2(M) = L ≤⊕ M . �

In the following Proposition we show that arbitrary direct sums of uniform
modules must have (C∗

1 ).

Proposition 3.12. Direct sums of uniform modules have (C∗
1 ).

Proof. Let M = ⊕
i∈I

Ui, where the Ui are uniforms, and let A be a submodule

of M . By Zorn’s Lemma, there exists J ⊆ I maximal with respect to A∩( ⊕
i∈J

Ui) =

0. Since A⊕ ( ⊕
i∈J

Ui) ≤e M , it follows, by Lemma 2.2, ⊕
i∈J

Ui is a complement of A

in M . �

Remark. There are GE-modules which are not extending. In fact, Corol-
lary 3.6 tells us that the Z-module M = Z/2Z⊕ Z is a GE-module, while M is
not an extending module (see M. Kamal [5]).

Proposition 3.13. If M is a GE-module with finite uniform dimension, then
M is a direct sum of uniform submodules.

Proof. Since M has a finite uniform dimension, then M is a direct sum of
indecomposable submodules. By Corollary 3.4, the indecomposable summand of
M are GE-modules, and hence, by Proposition 3.9, they are uniform modules. �

Remark. Consider a direct sum of uniform submodules, which contains an
indecomposble and not uniform summand submodule. This module has (C∗

1 )
(by Proposition 3.12), which is not a GE-module. This also shows that direct
summands of modules with (C∗

1 ) need not have (C∗
1 ).

Lemma 3.14. [12, Lemma 2] Let A ≤ B ≤ M . If C is a complement of A in
M , then C ∩B is a complement of A in B.

Conside the following condition for a module M :

If A and B are summands of M , with A ∩B closed in M ,

then A ∩B is a summand of M .(∗)

Proposition 3.14. If M has (C∗
1 ), and satisfies the condition (∗), then M is

a GE-module.
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Proof. Let B ≤⊕ M , and A be a closed submodule of B. It follows that A is
closed in M . By (C∗

1 ) for M , there exists a complement K of A in M such that
K ≤⊕ M . By Lemma 3.14, we have K∩B is a complement of A in B; and hence a
closed submodule of B. By the given condition (∗), and since K ≤⊕ M , B ≤⊕ M
with K ∩ B ≤c M ; it follows that K ∩ B ≤ ⊕M . This shows that any summand
B of M has (C∗

1 ). Therefore M is a GE-module. �
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