ON THE VOLUME OF THE TRAJECTORY SURFACES UNDER THE HOMOTHETIC MOTIONS

M. DÜLDÜL and N. KURUOĞLU

Abstract

The volumes of the surfaces of 3-dimensional Euclidean Space which are traced by a fixed point as a trajectory surface during 3-parametric motions are given by H. R. Müller [3], [4], [5] and W. Blaschke [1].

In this paper, the volumes of the trajectory surfaces of fixed points under 3 -parametric homothetic motions are computed. Also, using a certain pseudo-Euclidean metric we generalized the well-known classical Holditch Theorem, [2], to the trajectory surfaces.

1. Introduction

Let R and R^{\prime} be moving and fixed spaces and $\left\{O ; \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ and $\left\{O^{\prime} ; \boldsymbol{e}_{1}{ }^{\prime}, \boldsymbol{e}_{2}{ }^{\prime}, \boldsymbol{e}_{3}{ }^{\prime}\right\}$ be their orthonormal coordinate systems, respectively. If $\boldsymbol{e}_{j}=\boldsymbol{e}_{j}\left(t_{1}, t_{2}, t_{3}\right)$ and $\boldsymbol{u}=\boldsymbol{u}\left(t_{1}, t_{2}, t_{3}\right)$, then a 3 -parameter motion B_{3} of R with respect to R^{\prime} is defined, where $\boldsymbol{u}=\overrightarrow{O^{\prime} O}$ and t_{1}, t_{2}, t_{3} are the real parameters. For the rotation part of B_{3}, we have the anti-symmetric system of differentiation equations (Ableitungsgleichungen)

$$
\mathrm{d} \boldsymbol{e}_{i}=\boldsymbol{e}_{k} \omega_{j}-\boldsymbol{e}_{j} \omega_{k}, \quad i, j, k=1,2,3 \text { (cyclic) }
$$

with the conditions of integration (Integrierbarkeitsbedingungen)

$$
\mathrm{d} \omega_{i}=\omega_{j} \wedge \omega_{k},
$$

where " d " is the exterior derivative and " \wedge " is the wedge product of the differential forms. For the translation part of B_{3}

$$
\mathrm{d} \overrightarrow{O^{\prime} O}=\boldsymbol{\sigma}=\sigma_{1} \boldsymbol{e}_{1}+\sigma_{2} \boldsymbol{e}_{2}+\sigma_{3} \boldsymbol{e}_{3},
$$

where the conditions of integration are

$$
\mathrm{d} \sigma_{i}=\sigma_{j} \wedge \omega_{k}-\sigma_{k} \wedge \omega_{j} .
$$

During B_{3}, ω_{i} and σ_{i} are the linear differential forms with respect to t_{1}, t_{2}, t_{3}. We assume that $\omega_{i}, i=1,2,3$ are linear independent, i.e., $\omega_{1} \wedge \omega_{2} \wedge \omega_{3} \neq 0$.

[^0]
2. The volume of the trajectory surface UNDER THE HOMOTHETIC MOTIONS

I.

Now, let us consider the 3-parametric homothetic motion of the fixed point $X=\left(x_{i}\right)$ with respect to arbitrary moving Euclidean space. We may write

$$
\boldsymbol{x}^{\prime}=\boldsymbol{u}+h \boldsymbol{x}
$$

where \boldsymbol{x} and \boldsymbol{x}^{\prime} are the position vectors of the point X with respect to the moving and fixed coordinate systems, respectively, and $h=h\left(t_{1}, t_{2}, t_{3}\right)$ is the homothetic scale of the motion. Then, we get

$$
\mathrm{d} \boldsymbol{x}^{\prime}=\boldsymbol{\sigma}+\boldsymbol{x} \mathrm{d} h+h \boldsymbol{x} \times \boldsymbol{\omega},
$$

where $\boldsymbol{\omega}=\sum \omega_{i} \boldsymbol{e}_{i}$ is the rotation vector and " \times " denotes the vector product.
If we write $d \boldsymbol{x}^{\prime}=\sum \tau_{i} \boldsymbol{e}_{i}$, we get

$$
\begin{equation*}
\tau_{i}=\sigma_{i}+x_{i} \mathrm{~d} h+h\left(x_{j} \omega_{k}-x_{k} \omega_{j}\right) \tag{1}
\end{equation*}
$$

The volume element of the trajectory surface of X is

$$
\begin{equation*}
\mathrm{d} J_{X}=\tau_{1} \wedge \tau_{2} \wedge \tau_{3} \tag{2}
\end{equation*}
$$

Thus, the integration of the volume element over the region G of the parameter space yields the volume of the trajectory surface, i.e., $J_{X}=\int_{G} \mathrm{~d} J_{X}$. Let Γ be the closed and orientated edge surface of G.

If we replace (1) in (2), for the volume of the trajectory surface of X we get
(3) $J_{X}=J_{O}+\sum_{i=1}^{3} \tilde{A}_{i} x_{i}^{2}+\sum_{i \neq j} A_{i j} x_{i} x_{j}+\sum_{i=1}^{3} B_{i} x_{i}+\left(\sum_{i=1}^{3} x_{i}^{2}\right)\left(\sum_{i=1}^{3} C_{i} x_{i}\right)$,
where

$$
\begin{align*}
\tilde{A}_{i} & =\int_{G}\left(h^{2} \sigma_{i} \wedge \omega_{j} \wedge \omega_{k}+h \mathrm{~d} h \wedge \sigma_{j} \wedge \omega_{j}+h \mathrm{~d} h \wedge \sigma_{k} \wedge \omega_{k}\right) \tag{4}\\
& =\frac{1}{2} \int_{\Gamma}\left(h^{2} \sigma_{j} \wedge \omega_{j}+h^{2} \sigma_{k} \wedge \omega_{k}\right)
\end{align*}
$$

$$
A_{i j}=\int_{G}\left(h \mathrm{~d} h \wedge \omega_{i} \wedge \sigma_{j}+h \mathrm{~d} h \wedge \omega_{j} \wedge \sigma_{i}+h^{2} \sigma_{j} \wedge \omega_{j} \wedge \omega_{k}+h^{2} \sigma_{i} \wedge \omega_{k} \wedge \omega_{i}\right)
$$

$$
=\frac{1}{2} \int_{\Gamma}\left(h^{2} \omega_{i} \wedge \sigma_{j}+h^{2} \omega_{j} \wedge \sigma_{i}\right)
$$

$$
B_{i}=\int_{G}\left(h \sigma_{i} \wedge \sigma_{k} \wedge \omega_{k}+\mathrm{d} h \wedge \sigma_{j} \wedge \sigma_{k}+h \sigma_{i} \wedge \sigma_{j} \wedge \omega_{j}\right)=\int_{\Gamma} h \sigma_{j} \wedge \sigma_{k}
$$

$$
C_{i}=\int_{G} h^{2} \mathrm{~d} h \wedge \omega_{j} \wedge \omega_{k}=\frac{1}{3} \int_{\Gamma} h^{3} \omega_{j} \wedge \omega_{k}
$$

and $J_{O}=\int_{G} \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}$ is the volume of the trajectory surface of the origin point O.

Let us suppose that $\sigma_{i} \wedge \omega_{i}, i=1,2,3$, have the same sign when integrated over any consistently orientated simplex from Γ. Then, using the mean-value theorem for double integrals, we obtain

$$
\begin{equation*}
\int_{\Gamma} h^{2} \sigma_{i} \wedge \omega_{i}=h^{2}\left(u_{i}, v_{i}\right) \int_{\Gamma} \sigma_{i} \wedge \omega_{i}, \quad i=1,2,3, \tag{5}
\end{equation*}
$$

where u_{i} and v_{i} are the parameters. If we assume that

$$
h^{2}\left(u_{1}, v_{1}\right)=h^{2}\left(u_{2}, v_{2}\right)=h^{2}\left(u_{3}, v_{3}\right),
$$

then using (4) and (5) we can find the parameters u_{0} and v_{0} such that

$$
\begin{align*}
J_{X}=J_{O}+h^{2}\left(u_{0}, v_{0}\right) \sum_{i=1}^{3} A_{i} x_{i}^{2}+\sum_{i \neq j} A_{i j} x_{i} x_{j} & +\sum_{i=1}^{3} B_{i} x_{i} \tag{6}\\
& +\left(\sum_{i=1}^{3} x_{i}^{2}\right)\left(\sum_{i=1}^{3} C_{i} x_{i}\right),
\end{align*}
$$

where

$$
A_{i}=\frac{1}{2} \int_{\Gamma}\left(\sigma_{j} \wedge \omega_{j}+\sigma_{k} \wedge \omega_{k}\right) .
$$

Now, let us consider the plane $\boldsymbol{P}: C_{1} x+C_{2} y+C_{3} z=0$. The volumes of the trajectory surfaces of points on \boldsymbol{P} are quadratic polynomial with respect to x_{i}. If we choose the moving coordinate system such that the coefficients of the mixture quadratic terms vanish, i.e. $A_{i j}=0$, then we get for a point $X \in \boldsymbol{P}$

$$
\begin{equation*}
J_{X}=J_{O}+h^{2}\left(u_{0}, v_{0}\right) \sum_{i=1}^{3} A_{i} x_{i}^{2}+\sum_{i=1}^{3} B_{i} x_{i} . \tag{7}
\end{equation*}
$$

Hence, we may give the following theorem:
Theorem 1. All the fixed points of \boldsymbol{P} whose trajectory surfaces have equal volume during the homothetic motion lie on the same quadric.

II.

Let X and Y be two fixed points on \boldsymbol{P} and Z be another point on the line segment $X Y$, that is,

$$
z_{i}=\lambda x_{i}+\mu y_{i}, \quad \lambda+\mu=1 .
$$

Using (7), we get

$$
\begin{equation*}
J_{Z}=\lambda^{2} J_{X}+2 \lambda \mu J_{X Y}+\mu^{2} J_{Y} \tag{8}
\end{equation*}
$$

where

$$
J_{X Y}=J_{Y X}=J_{O}+h^{2}\left(u_{0}, v_{0}\right) \sum_{i=1}^{3} A_{i} x_{i} y_{i}+\frac{1}{2} \sum_{i=1}^{3} B_{i}\left(x_{i}+y_{i}\right)
$$

is called the mixture trajectory surface volume. It is clearly seen that $J_{X X}=J_{X}$. Since

$$
\begin{equation*}
J_{X}-2 J_{X Y}+J_{Y}=h^{2}\left(u_{0}, v_{0}\right) \sum_{i=1}^{3} A_{i}\left(x_{i}-y_{i}\right)^{2} \tag{9}
\end{equation*}
$$

we can rewrite (8) as follows:

$$
\begin{equation*}
J_{Z}=\lambda J_{X}+\mu J_{Y}-h^{2}\left(u_{0}, v_{0}\right) \lambda \mu \sum_{i=1}^{3} A_{i}\left(x_{i}-y_{i}\right)^{2} \tag{10}
\end{equation*}
$$

We will define the distance $D(X, Y)$ between the points X, Y of \boldsymbol{P} by

$$
\begin{equation*}
D^{2}(X, Y)=\varepsilon \sum_{i=1}^{3} A_{i}\left(x_{i}-y_{i}\right)^{2}, \quad \varepsilon= \pm 1, \quad[\mathbf{4}] \tag{11}
\end{equation*}
$$

By the orientation of the line $X Y$ we will distinguish $D(X, Y)=-D(Y, X)$. Therefore, from (10) we have

$$
\begin{equation*}
J_{Z}=\lambda J_{X}+\mu J_{Y}-\varepsilon h^{2}\left(u_{0}, v_{0}\right) \lambda \mu D^{2}(X, Y) \tag{12}
\end{equation*}
$$

Since X, Y and Z are collinear, we may write

$$
D(X, Z)+D(Z, Y)=D(X, Y)
$$

Thus, if we denote

$$
\lambda=\frac{D(Z, Y)}{D(X, Y)}, \quad \mu=\frac{D(X, Z)}{D(X, Y)}
$$

from (12) we get

$$
\begin{align*}
J_{Z}=\frac{1}{D(X, Y)}\left[D(Z, Y) J_{X}\right. & \left.+D(X, Z) J_{Y}\right] \tag{13}\\
& -\varepsilon h^{2}\left(u_{0}, v_{0}\right) D(X, Z) D(Z, Y)
\end{align*}
$$

Now, we consider that the points X and Y trace the same trajectory surface. In this case, we get $J_{X}=J_{Y}$. Then, from (13) we obtain

$$
\begin{equation*}
J_{X}-J_{Z}=\varepsilon h^{2}\left(u_{0}, v_{0}\right) D(X, Z) D(Z, Y) \tag{14}
\end{equation*}
$$

which is the generalization of Holditch's result, [2], for trajectory surfaces during the homothetic motions. (14) is also equivalent to the result given by [6]. We may give the following theorem:

Theorem 2. Let $X Y$ be a line segment with the constant length on \boldsymbol{P} and the endpoints of this line segment have the same trajectory surface. Then, the point Z on this line segment traces another trajectory surface. The volume between these trajectory surfaces depends on the distances (in the sense of (11)) of Z from the endpoints and the homothetic scale h.

Special case: In the case of $h \equiv 1$, we have the result given by H. R. Müller, [3].

III.

Let $X_{1}=\left(x_{i}\right), X_{2}=\left(y_{i}\right)$ and $X_{3}=\left(z_{i}\right), \mathrm{i}=1,2,3$ be noncollinear points on \boldsymbol{P} and $Q=\left(q_{i}\right)$ be another point on \boldsymbol{P} (Fig. 1). Then, we may write

$$
q_{i}=\lambda_{1} x_{i}+\lambda_{2} y_{i}+\lambda_{3} z_{i}, \quad \lambda_{1}+\lambda_{2}+\lambda_{3}=1
$$

Figure 1.
If we use (7), we obtain

$$
J_{Q}=\lambda_{1}^{2} J_{X_{1}}+\lambda_{2}^{2} J_{X_{2}}+\lambda_{3}^{2} J_{X_{3}}+2 \lambda_{1} \lambda_{2} J_{X_{1} X_{2}}+2 \lambda_{1} \lambda_{3} J_{X_{1} X_{3}}+2 \lambda_{2} \lambda_{3} J_{X_{2} X_{3}}
$$

After eliminating the mixture trajectory surface volumes by using (9), we get

$$
\begin{equation*}
J_{Q}=\lambda_{1} J_{X_{1}}+\lambda_{2} J_{X_{2}}+\lambda_{3} J_{X_{3}}-h^{2}\left(u_{0}, v_{0}\right) \tag{15}
\end{equation*}
$$

$$
\cdot\left\{\varepsilon_{12} \lambda_{1} \lambda_{2} D^{2}\left(X_{1}, X_{2}\right)+\varepsilon_{13} \lambda_{1} \lambda_{3} D^{2}\left(X_{1}, X_{3}\right)+\varepsilon_{23} \lambda_{2} \lambda_{3} D^{2}\left(X_{2}, X_{3}\right)\right\} .
$$

On the other hand, if we consider the point $Q_{1}=\left(a_{i}\right)$, we may write

$$
a_{i}=\mu_{1} y_{i}+\mu_{2} z_{i}, \quad q_{i}=\mu_{3} x_{i}+\mu_{4} a_{i}, \quad \mu_{1}+\mu_{2}=\mu_{3}+\mu_{4}=1 .
$$

Thus, we have $\lambda_{1}=\mu_{3}, \lambda_{2}=\mu_{1} \mu_{4}, \lambda_{3}=\mu_{2} \mu_{4}$ i.e.

$$
\lambda_{1}=\frac{D\left(Q, Q_{1}\right)}{D\left(X_{1}, Q_{1}\right)}, \quad \lambda_{2}=\frac{D\left(X_{1}, Q\right) D\left(Q_{1}, X_{3}\right)}{D\left(X_{1}, Q_{1}\right) D\left(X_{2}, X_{3}\right)}, \quad \lambda_{3}=\frac{D\left(X_{1}, Q\right) D\left(X_{2}, Q_{1}\right)}{D\left(X_{1}, Q_{1}\right) D\left(X_{2}, X_{3}\right)} .
$$

Similarly, considering the points Q_{2} and Q_{3}, respectively, we find

$$
\begin{aligned}
\lambda_{i} & =\frac{D\left(Q, Q_{i}\right)}{D\left(X_{i}, Q_{i}\right)}=\frac{D\left(X_{j}, Q\right) D\left(X_{k}, Q_{j}\right)}{D\left(X_{j}, Q_{j}\right) D\left(X_{k}, X_{i}\right)} \\
& =\frac{D\left(X_{k}, Q\right) D\left(Q_{k}, X_{j}\right)}{D\left(X_{k}, Q_{k}\right) D\left(X_{i}, X_{j}\right)}, \quad i, j, k=1,2,3 \text { (cyclic). }
\end{aligned}
$$

Then, from (15) the generalization of (12) is found as

$$
J_{Q}=\sum \frac{D\left(Q, Q_{i}\right)}{D\left(X_{i}, Q_{i}\right)} J_{X_{i}}-h^{2}\left(u_{0}, v_{0}\right) \sum \varepsilon_{i j}\left(\frac{D\left(X_{k}, Q\right)}{D\left(X_{k}, Q_{k}\right)}\right)^{2} D\left(Q_{k}, X_{j}\right) D\left(X_{i}, Q_{k}\right)
$$

If X_{1}, X_{2}, X_{3} trace the same trajectory surface, then the difference between the volumes is

$$
J_{X_{1}}-J_{Q}=h^{2}\left(u_{0}, v_{0}\right) \sum \varepsilon_{i j}\left(\frac{D\left(X_{k}, Q\right)}{D\left(X_{k}, Q_{k}\right)}\right)^{2} D\left(Q_{k}, X_{j}\right) D\left(X_{i}, Q_{k}\right)
$$

Then, we can give the following theorem:
Theorem 3. Let us consider a triangle on the plane \boldsymbol{P}. If the vertices of this triangle trace the same trajectory surface, then a different point on \boldsymbol{P} traces another surface. The volume between these trajectory surfaces depends on the distances (in the sense of (11)) of the moving triangle and the homothetic scale h.

Acknowledgment. The authors are very grateful to the referee for the helpful comments and valuable suggestions.

References

1. Blaschke W., Über Integrale in der Kinematik, Arch. Math. 1 (1948), 18-22.
2. Holditch H., Geometrical Theorem, Q. J. Pure Appl. Math. 2 (1858), 38.
3. Müller H. R., Räumliche Gegenstücke zum Satz von Holditch, Abh. Braunschw. Wiss. Ges. 30 (1979), 54-61.
4. \qquad , Über den Rauminhalt kinematisch erzeugter, geschlossener Flächen, Arch. Math. 38 (1982), 43-49.
5. , Ein Holditch Satz für Flächenstücke im R_{3}, Abh. Braunschw. Wiss. Ges. 39 (1987), 37-42.
6. Tutar A. and Kuruoğlu, N., The Steiner formula and the Holditch theorem for the homothetic motions on the planar kinematics, Mech. Mach. Theory 34 (1999), 1-6.
M. Düldül, Sinop University, Science and Arts Faculty, Department of Mathematics, 57000, Sinop, Turkey, e-mail: mduldul@omu.edu.tr
N. Kuruoğlu, Bahçeşehir University, Science and Arts Faculty, Department of Mathematics and Computer Sciences, Bahçeşehir 34538, Istanbul, Turkey, e-mail: kuruoglu@bahcesehir.edu.tr

[^0]: Received April 05, 2006
 2000 Mathematics Subject Classification. Primary 53A17.
 Key words and phrases. homothetic motion, Holditch theorem, volume of trajectory surface.
 The author thanks TÜBİTAK-BAYG for their financial supports during his doctorate studies.

