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ON PREŠIĆ TYPE GENERALIZATION
OF THE BANACH CONTRACTION MAPPING PRINCIPLE

L. B. ĆIRIĆ and S. B. PREŠIĆ

Abstract. Let (X, d) be a metric space, k a positive integer and T a mapping of Xk into X. In this paper we proved
that if T satisfies conditions (2.1) and (2.2) below, then there exists a unique x in X such that T (x, x, . . . , x) = x.
This result generalizes the corresponding theorems of the second author [4], [5] and the theorem of Dhage [3].

1. Introduction

The well known Banach contraction mapping principle states that if (X, d) is a complete metric space and
T : X → X is a self mapping such that

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X, where 0 ≤ λ < 1, then there exists a unique x ∈ X such that T (x) = x. In recent years many
generalizations of this principle have appeared ([1], [2], [6]). A special type generalization was introduced by the
second author [4], [5].

Considering the convergence of ceratin sequences Prešić proved the following result.

Theorem 1. Let (X, d) be a complete metric space, k a positive integer and T : Xk → X a mapping
satisfying the following contractive type condition

d(T (x1, x2, x3, . . . , xk), T (x2, x3, . . . , xk, xk+1)) ≤ q1d(x1, x2) + q2d(x2, x3) + . . . + qkd(xk, xk+1),(1.1)
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for every x1, . . . , xk+1 in X, where q1, q2, . . . , qk are non-negative constants such that q1 + q2 + . . . + qk < 1.
Then there exists a unique point x in X such that T (x, x, . . . , x) = x. Moreover, if x1, x2, x3, . . . , xk are arbitrary
points in X and for n ∈ N,

xn+k = T (xn, xn+1, . . . , xn+k−1),

then the sequence {xn}∞n=1 is convergent and

limxn = T (lim xn, lim xn, . . . , limxn).

Remark that condition (1.1) in the case k = 1 reduces to the well-known Banach contraction mapping principle.
So, Theorem 1 is a generalization of the Banach fixed point theorem.

2. Main theorem

Inspired with the results in Theorem 1 we shall prove the following theorem.

Theorem 2. Let (X, d) be a complete metric space, k a positive integer and T : Xk → X a mapping satisfying
the following contractive type condition

d(T (x1, x2, . . . , xk), T (x2, . . . , xk, xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k},(2.1)

where λ ∈ (0, 1) is constant and x1, . . . , xk+1 are arbitrary elements in X. Then there exists a point x in
X such that T (x, . . . , x) = x. Moreover, if x1, x2, x3, . . . , xk are arbitrary points in X and for n ∈ N,

xn+k = T (xn, xn+1, . . . , xn+k−1),

then the sequence {xn}∞n=1 is convergent and

limxn = T (lim xn, lim xn, . . . , limxn).

If in addition we suppose that on diagonal ∆ ⊂ Xk,

(2.2) d(T (u, . . . , u), T (v, . . . , v)) < d(u, v)
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holds for all u, v ∈ X, with u 6= v, then x is the unique point in X with T (x, x, . . . , x) = x.

Proof. Let x1, . . . , xk be k arbitrary points in X. Using these points define a sequence {xn} as follows:

xn+k = T (xn, xn+1, . . . , xn+k−1) (n = 1, 2, . . .).

For simplicity set αn = d(xn, xn+1). We shall prove by induction that for each n ∈ N:

αn ≤ Kθn (where θ = λ1/k, K = max{α1/θ, α2/θ2, . . . , αk/θk}).(2.3)

According to the definition of K we see that (2.3) is true for n = 1, . . . , k. Now let the following k inequalities:

αn ≤ Kθn, αn+1 ≤ Kθn+1, . . . , αn+k−1 ≤ Kθn+k−1

be the induction hypotheses. Then we have:

αn+k = d(xn+k, xn+k+1)
= d(T (xn, xn+1, . . . , xn+k−1), T (xn+1, xn+2, . . . , xn+k))
≤ λ max{αn, αn+1, . . . , αn+k−1} (by (2.1) and the definition of αi)

≤ λ max{Kθn,Kθn+1, . . . ,Kθn+k−1} (by the induction hypotheses)
= λKθn (as 0 ≤ θ < 1)

= Kθn+k (as θ = λ1/k)

and the inductive proof of (2.3) is complete. Next using (2.3) for any n, p ∈ N we have the following argument:

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+p−1, xn+p)

≤ Kθn + Kθn+1 + . . . + Kθn+p−1

≤ Kθn(1 + θ + θ2 + . . .)
= Kθn/(1− θ)
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by which we conclude that {xn} is a Cauchy sequence. Since X is a complete space, there exists x in X such that

x = lim
n→∞

xn.

Then for any integer n we have

d(x, T (x, . . . , x) ≤ d(x, xn+k) + d(xn+k, T (x. . . . , x))
= d(x, xn+k) + d(T (xn, . . . , xn+k−1), T (x, . . . , x))
≤ d(x, xn+k) + d(T (x, . . . , x, x), T (x, . . . , x, xn)) +

d(T (x, . . . , x, xn), T (x, . . . , xn, xn+1)) + . . .

+ d(T (x, xn, xn+1, xn+k−2), T (xn, xn+1, . . . · xn+k−1))
≤ d(x, xn+k) + λd(x, xn) + λ max{d(x, xn), d(xn, xn+1)}+ . . .

+λ max{d(x, xn), d(xn, xn+1 ), . . . , d(xn+k−2, xn+k−1)}.

Taking the limit when n tends to infinity we obtain d(x, T (x, . . . , x)) ≤ 0, which implies T (x, . . . , x) = x. Thus
we proved that

lim xn = T (lim xn, lim xn, . . . , limxn).

Now suppose that (2.2) holds. To prove the uniqueness of the fixed point, let us assume that for some
y ∈ X, y 6= x, we have T (y, . . . , y) = y. Then by (2.2), d(x, y) = d(T (x, . . . , x), T (y, . . . , y)) < d(x, y), which is a
contradiction. So, x is the unique point in X such that T (x, x, . . . , x) = x. �

Remark 1. Theorem 2 is a generalization of Theorem 1, as the condition (1.1) implies the conditions (2.1)
and (2.2). Indeed, since

q1d(x1, x2) + q2d(x2, x3) + . . . + qkd(xk, xk+1)
≤ (q1 + q2 + . . . + qk) max{d(x1, x2), d(x2, x3), . . . , d(xk, xk+1)}
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and q1 + q2 + . . . + qk < 1, we conclude the implication (1.1) ⇒ (2.2). Next, for any u, v ∈ X with u 6= v, from
(1.1) we have

d(T (u, u, . . . , u), T (v, v, . . . , v))
≤ d(T (u, . . . , u), T (u, . . . , u, v)) + d(T (u, . . . , u, v), T (u, . . . , u, v, v)) + . . .

+ d(T (u, v, . . . , v), T (v, v, . . . , v))
≤ qkd(u, v) + qk−1d(u, v) + . . . + q1d(u, v)
= (qk + qk−1 + . . . + q1)d(u, v) < d(u, v),

and consequently we conclude the implication (1.1) ⇒ (2.2).

The following example shows that the condition (2.2) in Theorem 2 can not be omitted.

Example 1. Let X = [0, 1] ∪ [2, 3] and let T : X2 → X be a mapping defined by

T (x, y) =
x + y

4
, if(x, y) ∈ [0, 1]× [0, 1],

T (x, y) = 1 +
x + y

4
, if(x, y) ∈ [2, 3]× [2, 3],

T (x, y) =
x + y

4
− 1

2
, if (x, y) ∈ [0, 1]× [2, 3], or (x, y) ∈ [2, 3]× [0, 1].

Then for any x, y ∈ [0, 1] we have T (x, y) = z ∈ [0, 1] and for x, y ∈ [2, 3] we have T (x, y) = z ∈ [2, 3]. Thus, for
x, y ∈ [0, 1], or x, y ∈ [2, 3], we have

d(T (x, y), T (y, z)) = |x + y

4
− y + z

4
| = |x− y

4
+

y − z

4
|

≤ |x− y

4
|+ |y − z

4
| ≤ 1

2
max{d(x, y), d(y, z)}.
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For (x, y) ∈ [0, 1]× [2, 3], or (x, y) ∈ [2, 3]× [0, 1] we have T (x, y) = z ∈ [0, 1]. Therefore, if y ∈ [2, 3], then

d(T (x, y), T (y, z)) = |x + y

4
− y + z

4
| ≤ 1

2
max{d(x, y), d(y, z)}.

If y ∈ [0, 1], then

d(T (x, y), T (y, z)) = |x + y

4
− 1

2
− y + z

4
| = |x− y

4
− 1

2
+

y − z

4
|

≤ |x− y

4
− 1

2
|+ |y − z

4
| < |x− y

4
|+ |y − z

4
|

≤ 1
2

max{d(x, y), d(y, z)}.

Thus, T satisfies (2.1) with λ = 1/2, but for x = 0 and y = 2 we have T (0, 0) = 0 and T (2, 2) = 2.

3. Applications

We shall illustrate an application of Theorem 2 to the convergence problem of real sequences.
Let {xn}∞1 be a real sequence, x1, . . . , xk be a given its k members and let xn, for n ≥ k + 1, be defined by a

recursive relation:

xn = ρ(xn−k, xn−k+1, . . . , xn−1).

To investigate the convergence of {xn}∞1 , it suffices to substitute T for ρ in a recursive relation assuming earlier
that T : Rk → R. If we find that T satisfies (2.1), then the convergence of {xn}∞1 will follow from Theorem 2.
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