ON PREŠIĆ TYPE GENERALIZATION OF THE BANACH CONTRACTION MAPPING PRINCIPLE

L. B. ĆIRIĆ and S. B. PREŠIĆ

Abstract. Let (X, d) be a metric space, k a positive integer and T a mapping of X^{k} into X. In this paper we proved that if T satisfies conditions (2.1) and (2.2) below, then there exists a unique x in X such that $T(x, x, \ldots, x)=x$. This result generalizes the corresponding theorems of the second author [4], [5] and the theorem of Dhage [3].

1. Introduction

The well known Banach contraction mapping principle states that if (X, d) is a complete metric space and $T: X \rightarrow X$ is a self mapping such that

$$
d(T x, T y) \leq \lambda d(x, y)
$$

for all $x, y \in X$, where $0 \leq \lambda<1$, then there exists a unique $x \in X$ such that $T(x)=x$. In recent years many generalizations of this principle have appeared ([1], [2], [6]). A special type generalization was introduced by the second author [4], [5].

Considering the convergence of ceratin sequences Prešić proved the following result.
Theorem 1. Let (X, d) be a complete metric space, k a positive integer and $T: X^{k} \rightarrow X$ a mapping satisfying the following contractive type condition
(1.1) $d\left(T\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right), T\left(x_{2}, x_{3}, \ldots, x_{k}, x_{k+1}\right)\right) \leq q_{1} d\left(x_{1}, x_{2}\right)+q_{2} d\left(x_{2}, x_{3}\right)+\ldots+q_{k} d\left(x_{k}, x_{k+1}\right)$,

Key words and phrases. Fixed point, Cauchy sequence, Complete metric space.
for every x_{1}, \ldots, x_{k+1} in X, where $q_{1}, q_{2}, \ldots, q_{k}$ are non-negative constants such that $q_{1}+q_{2}+\ldots+q_{k}<1$. Then there exists a unique point x in X such that $T(x, x, \ldots, x)=x$. Moreover, if $x_{1}, x_{2}, x_{3}, \ldots, x_{k}$ are arbitrary points in X and for $n \in \mathbb{N}$,

$$
x_{n+k}=T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right),
$$

then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and

$$
\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots, \lim x_{n}\right) .
$$

Remark that condition (1.1) in the case $k=1$ reduces to the well-known Banach contraction mapping principle. So, Theorem 1 is a generalization of the Banach fixed point theorem.

2. Main theorem

Inspired with the results in Theorem 1 we shall prove the following theorem.
Theorem 2. Let (X, d) be a complete metric space, k a positive integer and $T: X^{k} \rightarrow X$ a mapping satisfying the following contractive type condition

$$
\begin{equation*}
d\left(T\left(x_{1}, x_{2}, \ldots, x_{k}\right), T\left(x_{2}, \ldots, x_{k}, x_{k+1}\right)\right) \leq \lambda \max \left\{d\left(x_{i}, x_{i+1}\right): 1 \leq i \leq k\right\} \tag{2.1}
\end{equation*}
$$

where $\lambda \in(0,1)$ is constant and x_{1}, \ldots, x_{k+1} are arbitrary elements in X. Then there exists a point x in X such that $T(x, \ldots, x)=x$. Moreover, if $x_{1}, x_{2}, x_{3}, \ldots, x_{k}$ are arbitrary points in X and for $n \in \mathbb{N}$,

$$
x_{n+k}=T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right),
$$

then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent and

$$
\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots, \lim x_{n}\right) .
$$

If in addition we suppose that on diagonal $\Delta \subset X^{k}$,

$$
\begin{equation*}
d(T(u, \ldots, u), T(v, \ldots, v))<d(u, v) \tag{2.2}
\end{equation*}
$$

holds for all $u, v \in X$, with $u \neq v$, then x is the unique point in X with $T(x, x, \ldots, x)=x$.
Proof. Let x_{1}, \ldots, x_{k} be k arbitrary points in X. Using these points define a sequence $\left\{x_{n}\right\}$ as follows:

$$
x_{n+k}=T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right) \quad(n=1,2, \ldots) .
$$

For simplicity set $\alpha_{n}=d\left(x_{n}, x_{n+1}\right)$. We shall prove by induction that for each $n \in \mathbb{N}$:

$$
\begin{equation*}
\alpha_{n} \leq K \theta^{n} \quad\left(\text { where } \theta=\lambda^{1 / k}, K=\max \left\{\alpha_{1} / \theta, \alpha_{2} / \theta^{2}, \ldots, \alpha_{k} / \theta^{k}\right\}\right) . \tag{2.3}
\end{equation*}
$$

According to the definition of K we see that (2.3) is true for $n=1, \ldots, k$. Now let the following k inequalities:

$$
\alpha_{n} \leq K \theta^{n}, \alpha_{n+1} \leq K \theta^{n+1}, \ldots, \alpha_{n+k-1} \leq K \theta^{n+k-1}
$$

be the induction hypotheses. Then we have:

$$
\begin{aligned}
\alpha_{n+k} & =d\left(x_{n+k}, x_{n+k+1}\right) \\
& =d\left(T\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), T\left(x_{n+1}, x_{n+2}, \ldots, x_{n+k}\right)\right) \\
& \leq \lambda \max \left\{\alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+k-1}\right\} \quad\left(\text { by }(2.1) \text { and the definition of } \alpha_{i}\right) \\
& \leq \lambda \max \left\{K \theta^{n}, K \theta^{n+1}, \ldots, K \theta^{n+k-1}\right\} \quad \text { (by the induction hypotheses) } \\
& =\lambda K \theta^{n} \quad(\text { as } 0 \leq \theta<1) \\
& =K \theta^{n+k} \quad\left(\text { as } \theta=\lambda^{1 / k}\right)
\end{aligned}
$$

and the inductive proof of (2.3) is complete. Next using (2.3) for any $n, p \in \mathbb{N}$ we have the following argument:

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq K \theta^{n}+K \theta^{n+1}+\ldots+K \theta^{n+p-1} \\
& \leq K \theta^{n}\left(1+\theta+\theta^{2}+\ldots\right) \\
& =K \theta^{n} /(1-\theta)
\end{aligned}
$$

by which we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is a complete space, there exists x in X such that

$$
x=\lim _{n \rightarrow \infty} x_{n} .
$$

Then for any integer n we have

$$
\begin{aligned}
d(x, T(x, \ldots, x) \leq & d\left(x, x_{n+k}\right)+d\left(x_{n+k}, T(x \ldots, x)\right) \\
= & d\left(x, x_{n+k}\right)+d\left(T\left(x_{n}, \ldots, x_{n+k-1}\right), T(x, \ldots, x)\right) \\
\leq & d\left(x, x_{n+k}\right)+d\left(T(x, \ldots, x, x), T\left(x, \ldots, x, x_{n}\right)\right)+ \\
& d\left(T\left(x, \ldots, x, x_{n}\right), T\left(x, \ldots, x_{n}, x_{n+1}\right)\right)+\ldots \\
& +d\left(T\left(x, x_{n}, x_{n+1}, x_{n+k-2}\right), T\left(x_{n}, x_{n+1}, \ldots x_{n+k-1}\right)\right) \\
\leq & d\left(x, x_{n+k}\right)+\lambda d\left(x, x_{n}\right)+\lambda \max \left\{d\left(x, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}+\ldots \\
& +\lambda \max \left\{d\left(x, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \ldots, d\left(x_{n+k-2}, x_{n+k-1}\right)\right\} .
\end{aligned}
$$

Taking the limit when n tends to infinity we obtain $d(x, T(x, \ldots, x)) \leq 0$, which implies $T(x, \ldots, x)=x$. Thus we proved that

$$
\lim x_{n}=T\left(\lim x_{n}, \lim x_{n}, \ldots, \lim x_{n}\right) .
$$

Now suppose that (2.2) holds. To prove the uniqueness of the fixed point, let us assume that for some $y \in X, y \neq x$, we have $T(y, \ldots, y)=y$. Then by $(2.2), d(x, y)=d(T(x, \ldots, x), T(y, \ldots, y))<d(x, y)$, which is a contradiction. So, x is the unique point in X such that $T(x, x, \ldots, x)=x$.

Remark 1. Theorem 2 is a generalization of Theorem 1, as the condition (1.1) implies the conditions (2.1) and (2.2). Indeed, since

$$
\begin{aligned}
& q_{1} d\left(x_{1}, x_{2}\right)+q_{2} d\left(x_{2}, x_{3}\right)+\ldots+q_{k} d\left(x_{k}, x_{k+1}\right) \\
\leq & \left(q_{1}+q_{2}+\ldots+q_{k}\right) \max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), \ldots, d\left(x_{k}, x_{k+1}\right)\right\}
\end{aligned}
$$

and $q_{1}+q_{2}+\ldots+q_{k}<1$, we conclude the implication (1.1) $\Rightarrow(2.2)$. Next, for any $u, v \in X$ with $u \neq v$, from (1.1) we have

$$
\begin{aligned}
& d(T(u, u, \ldots, u), T(v, v, \ldots, v)) \\
\leq & d(T(u, \ldots, u), T(u, \ldots, u, v))+d(T(u, \ldots, u, v), T(u, \ldots, u, v, v))+\ldots \\
& +d(T(u, v, \ldots, v), T(v, v, \ldots, v)) \\
\leq & q_{k} d(u, v)+q_{k-1} d(u, v)+\ldots+q_{1} d(u, v) \\
= & \left(q_{k}+q_{k-1}+\ldots+q_{1}\right) d(u, v)<d(u, v)
\end{aligned}
$$

and consequently we conclude the implication $(1.1) \Rightarrow(2.2)$.
The following example shows that the condition (2.2) in Theorem 2 can not be omitted.
Example 1. Let $X=[0,1] \cup[2,3]$ and let $T: X^{2} \rightarrow X$ be a mapping defined by

$$
\begin{array}{ll}
T(x, y)=\frac{x+y}{4}, & \text { if }(x, y) \in[0,1] \times[0,1] \\
T(x, y)=1+\frac{x+y}{4}, & \text { if }(x, y) \in[2,3] \times[2,3] \\
T(x, y)=\frac{x+y}{4}-\frac{1}{2}, & \text { if }(x, y) \in[0,1] \times[2,3], \quad \text { or } \quad(x, y) \in[2,3] \times[0,1]
\end{array}
$$

Then for any $x, y \in[0,1]$ we have $T(x, y)=z \in[0,1]$ and for $x, y \in[2,3]$ we have $T(x, y)=z \in[2,3]$. Thus, for $x, y \in[0,1]$, or $x, y \in[2,3]$, we have

$$
\begin{aligned}
d(T(x, y), T(y, z)) & =\left|\frac{x+y}{4}-\frac{y+z}{4}\right|=\left|\frac{x-y}{4}+\frac{y-z}{4}\right| \\
& \leq\left|\frac{x-y}{4}\right|+\left|\frac{y-z}{4}\right| \leq \frac{1}{2} \max \{d(x, y), d(y, z)\}
\end{aligned}
$$

For $(x, y) \in[0,1] \times[2,3]$, or $(x, y) \in[2,3] \times[0,1]$ we have $T(x, y)=z \in[0,1]$. Therefore, if $y \in[2,3]$, then

$$
d(T(x, y), T(y, z))=\left|\frac{x+y}{4}-\frac{y+z}{4}\right| \leq \frac{1}{2} \max \{d(x, y), d(y, z)\} .
$$

If $y \in[0,1]$, then

$$
\begin{aligned}
d(T(x, y), T(y, z)) & =\left|\frac{x+y}{4}-\frac{1}{2}-\frac{y+z}{4}\right|=\left|\frac{x-y}{4}-\frac{1}{2}+\frac{y-z}{4}\right| \\
& \leq\left|\frac{x-y}{4}-\frac{1}{2}\right|+\left|\frac{y-z}{4}\right|<\left|\frac{x-y}{4}\right|+\left|\frac{y-z}{4}\right| \\
& \leq \frac{1}{2} \max \{d(x, y), d(y, z)\} .
\end{aligned}
$$

Thus, T satisfies (2.1) with $\lambda=1 / 2$, but for $x=0$ and $y=2$ we have $T(0,0)=0$ and $T(2,2)=2$.

3. Applications

We shall illustrate an application of Theorem 2 to the convergence problem of real sequences.
Let $\left\{x_{n}\right\}_{1}^{\infty}$ be a real sequence, x_{1}, \ldots, x_{k} be a given its k members and let x_{n}, for $n \geq k+1$, be defined by a recursive relation:

$$
x_{n}=\rho\left(x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}\right)
$$

To investigate the convergence of $\left\{x_{n}\right\}_{1}^{\infty}$, it suffices to substitute T for ρ in a recursive relation assuming earlier that $T: \mathbb{R}^{k} \rightarrow \mathbb{R}$. If we find that T satisfies (2.1), then the convergence of $\left\{x_{n}\right\}_{1}^{\infty}$ will follow from Theorem 2 .

1. Ćirić Lj. B., A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), $267-273$.
2. Ćirić Lj. B., A generalization of Caristi's fixed point theorem, Math. Pannonica 3/2 (1992), 51-57.
3. Dhage B. C., Generalization of Banach contraction principle, J. Indian Acad. Math. 9 (1987), 75-86.
4. Prešić S. B., Sur la convergence des suites, Comptes Rendus de l'Acad. des Sci. de Paris, 260 (1965), 3828-3830.
5. Prešić S. B., Sur une classe d'inéquations aux différences finite et sur la convergence de certaines suites, Publ. de l'Inst. Math. Belgrade, 5(19) (1965), 75-78.
6. Rhoades B. E., A comparison of various definitions of contractive mappings, an applicationTrans. Amer. Math. Soc. 226 (1977), 257-290.
L. B. Ćirić, Faculty of Mechanical Engineering, Al. Rudara 12-35, 11070 Belgrade, Serbia, e-mail: lciric@afrodita.rcub.bg.ac.yu
S. B. Prešić, Mathematical Faculty, ul. Braće Jugovića 16, 11000 Belgrade, Serbia
