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ANALYSIS TOOLS FOR FINITE VOLUME SCHEMES

R. EYMARD, T. GALLOUËT, R. HERBIN and J.-C. LATCHÉ

Abstract. This paper is devoted to a review of the analysis tools which have been developed for the the mathematical

study of cell centred finite volume schemes in the past years. We first recall the general principle of the method and
give some simple examples. We then explain how the analysis is performed for elliptic equations and relate it to the

analysis of the continuous problem; the lack of regularity of the approximate solutions is overcome by an estimate on the
translates, which allows the use of the Kolmogorov theorem in order to get compactness. The parabolic case is treated
with the same technique. Next we introduce a co-located scheme for the incompressible Navier–Stokes equations, which
requires the definition of some discrete derivatives. Here again, we explain how the continuous estimates can guide us for
the discrete estimates. We then give the basic ideas of the convergence analysis for non linear hyperbolic conservation
laws, and conclude with an overview of the recent domains of application.

1. Introduction

Finite volume methods (FVM) are known to be well suited for the discretisation of conservation laws; these
conservation laws may yield partial differential equations (PDE’s) of different nature (elliptic, parabolic or hyper-
bolic) and also to coupled systems of equations of different nature. Consequently, the functional spaces in which
the solutions of the continuous problems are sought may be quite different: H1

0 , L2(0, T,H1), L∞. . . , so that it
might seem rash to think of approximating them all equally with piecewise constant functions, as with the cell
centred FVM considered here; indeed, even though it seems natural that the space L∞ should be approximated
by the discrete space consisting of piecewise constant functions on the control volumes, this is no longer the case
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when the continuous functional space is H1
0 . Surprisingly, the cell centred approximation is quite efficient even in

the case of elliptic and parabolic equations, as a number of works have proved in the past fifteen years. Indeed,
analysis tools have been developed for all types of equations, most of them adapted from tools used in the study
of the respective continuous partial differential equations. The unified theory of these discrete analysis tools,
which was initiated in the late 80’s, allows to tackle the numerical analysis of the discretisation of more complex
systems. The aim of the present paper is to give a unified presentation of the cell centred FVM analysis for
different types of PDE’s, and give a review of the main analysis tools which were developed for different model
problems, and relate them to their continuous counterparts.

The first question that is often asked by a layman is: what is the difference between finite volumes and, say,
finite elements or finite differences? The answer truly lies in the concepts of the methods, but indeed, in some
cases, these methods yield similar schemes (this may be seen on the simple example −u′′ = f discretized by the
three above mentioned methods with a constant mesh step). The concepts, however, are quite different. Roughly
speaking, one could say that the finite element method is based on a weak formulation coupled with a convenient
approximation of the functional spaces while the finite difference method relies on an approximation of the original
differential operators by Taylor expansions; and the finite volume method is constructed from a balance equation,
rather than the PDE itself, with a consistent approximation of the fluxes defined on the boundary of the control
volumes.

Confusion between the finite volume method and the finite difference method arises from the fact that the
FVM has often been called finite differences methods when the flux on the boundary of the control volumes are
approximated by finite differences. This is the case, for instance, in oil reservoir simulations, where rectangular
cartesian grids are used, so that the diffusion flux can easily be dicretised by a differential quotient, at least in
the isotropic case. Moreover, numerous schemes which have been designed for hyperbolic equations and systems,
and cast in the finite difference family, are also of the finite volume type, since they are based on a suitable
approximation of the fluxes at the interfaces of the discretisation cells. Links between the FVM and the finite
element method (FEM) can also be mentioned. Indeed, for particular problems, the FVM may be written as a
FEM with some particular integration rule. Conversely, there are cases where the FEM can be seen as a FVM. For
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instance, the piecewise linear finite element method for the discretisation of the Laplace operator on a triangular
mesh satisfying the weak Delaunay condition yields a matrix which is the same as that of the FVM on the dual
Voronöı mesh, see [38] for details. The FVM may also be seen as a discontinuous Galerkin method (DGM) of
lowest order; although the DGM, derived from the finite element ideas, is also based on a weak formulation,
the approximation of the continuous space is no longer conforming, as is also the case in the cell centred FVM.
However, the tools used to analyse the DGM of higher order do not seem to apply to the FVM. Let us also
mention that other families of FVM’s have been developed, such as vertex centered schemes, box or co–volume
schemes, finite volume element methods: see [6, 3, 15, 23, 33, 68, 26, 58, 59] and references therein. Our
interest for cell centred schemes is primarily motivated by the fact that they are probably the most widely used
in industrial codes.

The outline of this paper is as follows. In Section 2, we shall give the principle of the cell centred FVM for
general conservation laws. Section 3 is devoted to the convergence analysis of the FVM approximations for steady
state convection diffusion equations. We show that one of the key ingredients is an estimate on the translates of
the approximate solutions, which allows the use of the Kolmogorov theorem. Time dependent convection diffusion
problems are then tackled in Section 4, where estimates on the time translates are also developed. Sections 5
and 6 are devoted to more recent works on the incompressible Stokes and Navier-Stokes equations. Discrete
derivatives are introduced to handle the gradient and divergence terms. In Section 7, we give the main ideas
which lie behind the (difficult) analysis of cell centred FVM’s for hyperbolic equations. Finally we conclude in
Section 8 by mentioning the different problems which have been studied in the past, along with some of the
ongoing works.

2. Principle of the finite volume method

Let Ω be a polygonal open subset of Rd, T ∈ R, and let us consider a balance law written under the general form:

ut + div(F (u,∇u)) + s(u) = 0 on Ω× (0, T ),(1)
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where F ∈ C1(R × Rd,R) and s ∈ C(R,R). Let T be a finite volume mesh of Ω. For the time being, we shall
only assume that T is a collection of convex polygonal control volumes K, disjoint one to another, and such that:
Ω̄ = ∪K∈T K̄. The balance equation is obtained from the above conservation law by integrating it over a control
volume K and applying the Stokes formula:∫

K

ut dx+
∫

∂K

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0,

where nK stands for the unit normal vector to the boundary ∂K outward to K and γ denotes the integration
with respect to the (d− 1)–dimensional Lebesgue measure. Let us denote by E the set of edges (faces in 3D) of
the mesh, and EK the set of edges which form the boundary ∂K of the control volume K. With these notations,
the above equation reads: ∫

K

ut dx+
∑

σ∈EK

∫
σ

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0.

Let k = T/M , where M ∈ N,M ≥ 1, and let us perform an explicit Euler discretization of the above equation
(an implicit or semi-implicit discretization could also be performed, and is sometimes preferable, depending on
the type of equation). We then get:∫

K

u(m+1) − u(m)

k
dx +

∑
σ∈EK

∫
σ

F (u(m),∇u(m)) · nK dγ(x)+
∫

K

s(u(m)) dx = 0,

where u(m) denotes an approximation of u(·, t(m)), with t(m) = mk. Let us then introduce the discrete unknowns
(one per control volume and time step) (u(m)

K )K∈T , m∈N; assuming the existence of such a set of real values, we
may define a piecewise constant function by:

u
(m)
T ∈ HT (Ω) : u(m)

T =
∑
K∈T

u
(m)
K 1K ,



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

where HT (Ω) denotes the space of functions from Ω to R which are constant on each control volume of the mesh
T , and 1K the characteristic function of K, that is 1K(x) = 1 if x ∈ K, 1K(x) = 0 otherwise. In order to
define the scheme, the fluxes

∫
σ
F (u(m),∇u(m)) ·nK dγ(x) need to be approximated as a function of the discrete

unknowns. We denote by FK,σ(u(m)
T ) the resulting numerical flux, the expression of which depends on the type

of flux to be approximated. Let us now give this expression for various simple examples.

First we consider the case of a linear convection equation, that is equation (1) where the flux F (u,∇u) reduces
to F (u,∇u) = vu, v ∈ Rd, and s(u) = 0:

ut + div(vu) = 0 on Ω.(2)

In order to approximate the flux vu · n on the edges of the mesh, one needs to approximate the value of u on
these edges, as a function of the discrete unknowns uK associated to each control volume K. This may be done
in several ways. A straightforward choice is to approximate the value of u on the edge σ = σKL separating the
control volumes K and L by the mean value 1

2 (uK + uL). This yields the following numerical flux:

F
(cv,c)
K,σ (uT ) = vK,σ

uK + uL

2
where vK,σ =

∫
σ
v · nK,σ, and nK,σ denotes the unit normal vector to the edge σ outward to K. This centred

choice is known to lead to stability problems, and is therefore often replaced by the so–called upstream choice,
which is given by:

F
(cv,u)
K,σ (uT ) = v+

K,σuK − v−K,σuL,(3)

where x+ = max(x, 0) and x− = −min(x, 0).

If we now consider a linear convection diffusion reaction equation, that is equation (1) with F (u,∇u) =
−∇u+ vu,v ∈ Rd, and s(u) = bu, b ∈ R:

ut −∆u+ div(vu) + bu = 0 on Ω,(4)
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the flux through a given edge then reads:∫
σ

F (u) · nK,σ =
∫

σ

−∇u · nK,σ + v · nK,σ u,

so that we now need to discretize the additional term
∫

σ
−∇u · nK,σ; this diffusion flux involves the normal

derivative to the boundary, for which a possible discretization is obtained by considering the differential quotient
between the value of uT in K and in the neighbouring control volume, let say L:

F
(d)
K,σ(uT ) = − |σ|

dKL
(uL − uK).(5)

where |σ| stands for the (d− 1)–dimensional Lebesgue measure of σ and dKL is the distance between some points
of K and L, which will be defined further. Using the above upstream scheme (3) for the convective part of the
scheme, we then obtain the following numerical flux:

F
(cvd)
K,σ (uT ) = − |σ|

dKL
(uL − uK) + v+

K,σuK − v−K,σuL.

However, we are able to prove that this choice for the discretization of the diffusion flux yields accurate results
only if the mesh satisfies the so-called orthogonality condition, that is, there exists a family of points (xK)K∈T ,
such that for a given edge σKL, the line segment xKxL is orthogonal to this edge (see Figure 1). The length dKL

is then defined as the distance between xK and xL. This geometrical feature of the mesh will be exploited to prove
the consistency of the flux, a notion which is detailed in the next section. Of course, this orthogonality condition
is not satisfied for any mesh. Such a family of points exists for instance in the case of triangles, rectangles or
Voronöı meshes. We refer to [38] for more details.
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Figure 1. Notations for a control volume.
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3. Convergence analysis for the steady state146

reaction convection diffusion equation147

3.1. The continuous and discrete problems148

Let Ω be an open bounded polygonal subset of R
d, d = 2 or 3, f ∈ L2(Ω), v ∈ R

d
149

and b ∈ R, and let us consider the following steady–state linear reaction convection150

diffusion equation:151

−∆u+ div(vu) + bu = f on Ω,(6)152

with homogeneous boundary conditions on ∂Ω. A weak formulation of this prob-153

lem is:154 ⎧⎪⎪⎨
⎪⎪⎩

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇φ dx+
∫

Ω

div(vu)φ dx+
∫

Ω

buφ dx =
∫

Ω

fφ dx,

∀φ ∈ H1
0 (Ω).

(7)

155

Figure 1. Notations for a control volume.

3. Convergence analysis for the steady state
reaction convection diffusion equation

3.1. The continuous and discrete problems

Let Ω be an open bounded polygonal subset of Rd, d = 2 or 3, f ∈ L2(Ω), v ∈ Rd and b ∈ R, and let us consider
the following steady–state linear reaction convection diffusion equation:

−∆u+ div(vu) + bu = f on Ω,(6)
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with homogeneous boundary conditions on ∂Ω. A weak formulation of this problem is:
Find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇φ dx+
∫

Ω

div(vu)φ dx+
∫

Ω

buφ dx =
∫

Ω

fφ dx,

∀φ ∈ H1
0 (Ω).

(7)

Let (T , E ,P) be a discretization of Ω: T denotes the set of control volumes, E the set of edges of the mesh, P the
set of points satisfying the above mentioned orthogonality condition. The finite volume scheme may be written
under the following weak form: Find uT ∈ HT (Ω) such that

[uT , φ]T + cT (uT , φ) +
∫

Ω

buT φ dx =
∫

Ω

fφ dx, ∀φ ∈ HT (Ω).(8)

where:

1. HT (Ω) is the space of piecewise constant functions on the control volumes of T ,
2. the inner product [·, ·]T is defined by:

[u, v]T =
∑

σKL∈Eint

|σKL|
dKL

(uL − uK)(vL − vK) +
∑

σ∈Eext

|σ|
dK,σ

uK vK ,

where Eint (resp. Eext, EK) denotes the set of edges included in Ω (resp. ∂Ω, ∂K), |σ| the (d−1)–dimensional
Lebesgue measure of σ, dKL the distance between xK and xL (see Figure 1) and dK,σ the distance between
xK and σ; in the first summation, σKL denotes the edge separating the control volumes K and L, and in
the last summation, the volume K is the unique volume of which σ is an edge.
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3. the bilinear convective form is defined by:

cT (uT , φ) =
∑
K∈T

φK

[ ∑
σKL∈EK

(v+
K,σKL

uK − v−K,σKL
uL) +

∑
σ∈EK∩Eext

v+
K,σuK

]
.

The finite volume scheme may equivalently be written under its more classical flux form:∑
σ∈EK

FK,σ(uT ) + b|K|uK = |K|fK , ∀K ∈ T ,(9)

where |K| denotes the d dimensional Lebesgue measure of K and:

(10) FK,σ(uT ) =


− |σ|
dKL

(uL − uK) + v+
K,σuK − v−K,σuL, if σ = σKL,

− |σ|
dKL

(−uK) + v+
K,σuK , if σ is an edge of K located on ∂Ω.

Indeed, taking φ = 1K in (8), it is easily seen that (8) implies (9). Conversely, let φ ∈ HT (Ω). Multiplying (9)
by φK , summing the resulting equations for all K ∈ T and reordering the summations leads to (8).

One may also define a discrete Laplace operator in HT in the following way. For v ∈ HT , let ∆T v ∈ HT be
defined by:

(∆T v)K = − 1
|K|

∑
σ∈EK

F
(d)
K,σ(v),

where:

F
(d)
K,σ(v) =


− |σ|
dKL

(vL − vK) if σ = σKL,

− |σ|
dKL

(−vK) if σ ⊂ ∂Ω.
(11)
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Then one may remark that, thanks to the property of conservativity of the flux (that is FK,σ = −FL,σ if σ = σKL),
one has:

[u, v]T = −
∫

Ω

∆T u v dx = −
∫

Ω

u ∆T v dx, ∀ u, v ∈ HT (Ω).(12)

The formulation (8) highlights a property of finite volume schemes for elliptic equations, namely the fact that,
as Galerkin methods, they may be derived from a coercive variational formulation. However, because of the
non-conforming nature of finite volumes, going further in the analogy with Galerkin methods does not seem to
be of practical interest: the coercivity of the formulation is not inherited from the coercivity of the continuous
problem but rather stems from the conservativity of the fluxes; even if the convergence of the method is proven
by an analogue of the second Strang lemma, classical in the finite element framework, it relies in fine on the
consistency of the fluxes, at least in the presently available analyses.

Note that, thanks to the following Poincaré inequality which holds for u ∈ HT (see e.g. [38, Lemma 9.1]):

‖u‖L2(Ω) ≤ diam(Ω) ||u||1,T ,(13)

we may define a mesh dependent “discrete H1
0 norm” using the inner product introduced above:

(14) ‖u‖1,T = ([u, u]T )1/2 =

( ∑
σKL∈Eint

|σ|
dKL

(uL − uK)2 +
∑

σ∈Eext

|σ|
dK,σ

u2
K

)1/2

.

3.2. Convergence results

The mathematical analysis of any numerical scheme must address the question of existence of a solution, which
is rather easy here since the problem is linear, and the question of convergence (i. e. “does the approximate
solution converge to the solution of the continuous problem as the mesh size tends to 0?”). A related question is
the obtention of a rate of convergence, through error estimates, usually conditionned to regularity assumptions
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on the continuous solution. The proof of the convergence of the finite volume scheme for a semi-linear equation
generalizing (6) was first proven in [37] (see also [38]). We shall state the result here for the linear case, and
explain the main steps of the proof, since the presented techniques extend to nonlinear problems.

Under the assumptions given at the beginning of this section, it is easily seen that the system (8) (resp. (9)) has
a unique solution uT ∈ HT (resp. (uK)K∈T ). Let (Tn)n∈N be a sequence of finite volume discretizations satisfying
the orthogonality condition, and let hTn

be the size of the mesh Tn, that is the maximum of the diameters of the
control volumes of Tn. We suppose that hTn

→ 0 as n → +∞ and we are going to show that, in this case, the
corresponding sequence (uTn

)n∈N converges in L2(Ω) to the unique solution of (7). The proof of this result may
be decomposed into four steps:

1. We first get some a priori estimates on the approximate solution in the HT norm and the L2 norm
which yield existence (and uniqueness) of uT solution of the scheme. We can then also deduce the weak
convergence of (uTn

)n∈N in L2(Ω), up to a subsequence, to some ū ∈ L2(Ω).
2. Strong convergence and regularity of the limit, that is ū ∈ H1

0 (Ω), are obtained through a kind of discrete
Rellich theorem, which we shall describe hereafter.

3. The fact that the limit ū is a weak solution of the continuous problem is obtained by a passage to the limit
in the scheme (as hT → 0).

4. We then use a classical argument of uniqueness to show that the whole sequence converges.

Note that we do not need to assume the existence of the solution to the continuous problem: we get it as a by-
product of the convergence of the scheme. In the present easy linear case, this is quite useless, since existence is
well-known. For more complicated nonlinear problems, obtaining the existence of the solution via the convergence
of the numerical scheme may come in handy (see e.g. [9]).

These four steps will be detailed in the following paragraphs for the pure diffusion operator, for the sake of
simplicity. We also sketch the proof of order h convergence in L2 and HT norms, under regularity conditions on
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the solution, namely u ∈ H2(Ω). Note that the upstream scheme for the convection flux does not lead to any
additional difficulty, see [37, 53].

Order 2 convergence in the L2 norm may be proven for the pure diffusion operator on uniform grids. However,
the same result on triangular meshes, which is observed in numerical experiments, remains an open problem;
recall that higher convergence rates in weaker norms (including this special case) are known and proven for most
Galerkin methods via duality arguments (the so-called Aubin-Nitsche lemma, [24]).

3.3. A priori estimate

Definition 1 (Discrete H−1 norm). Let ψ be a function of L2(Ω), then

‖ψ‖−1,T = sup
v∈HT (Ω),v 6=0

∫
Ω

ψv dx

‖v‖1,T
.(15)

Note that, by the discrete Poincaré inequality (13), we have:

‖ψ‖−1,T ≤ diam(Ω) ‖ψ‖L2(Ω).

Assuming v = 0 and b = 0 and using the notation (8), the finite volume scheme reads:

[uT , v]T =
∫

Ω

fv dx, ∀v ∈ HT (Ω).

Choosing v = uT , we get by definition (1):

‖uT ‖1,T ≤ ‖f‖−1,T .(16)

Taking f = 0, we thus obtain uniqueness (and therefore existence) of the discrete solution. This estimate also
yields weak convergence of a subsequence of approximate solutions in L2(Ω).
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3.4. Convergence theorem

In order to prove strong convergence of the approximate solutions, we need some control on their oscillations. In
the finite element framework, the family of approximate solutions is bounded in H1(Ω), and one may therefore
use the Rellich theorem to obtain compactness in L2(Ω). This is not the case here, but we note that the Rellich
theorem derives from the Kolmogorov theorem, which gives a necessary and sufficient condition for a bounded
family of Lp(Ω), p < +∞, to be relatively compact. Because of the lack of regularity of our approximate solutions,
the Kolmogorov theorem is an adequate tool. In order to use it, we need some estimates on the translates of
functions of HT (Ω). Indeed, one may show, in a way which is close to that of the continuous case (replacing the
derivatives by differences) that for any function v ∈ HT (Ω), one has:

‖v(·+ η)− v‖2
L2(Ω) ≤ |η| (|η|+ 4hT )) ‖v‖2

1,T , ∀η ∈ Rd.

From this estimate, we may deduce the following result.

Theorem 1 (Discrete Rellich theorem). Let (Tn)n∈N be a sequence of finite volume discretizations satisfying
the orthogonality condition, such that hTn

→ 0, and let (un)n∈N ⊂ L2(Ω) such that un ∈ HTn
and ‖un‖1,Tn

≤ C,
where C ∈ R. Then there exists a subsequence (un)n∈N and u ∈ H1

0 (Ω) such that un → u in L2(Ω) as n→ +∞.

From the discrete H1 estimate (16), we then deduce from the above theorem the strong convergence of a
subsequence of the approximate solutions in L2(Ω), to some function ū ∈ H1

0 (Ω).

3.5. Passage to the limit in the scheme

We now need to show that the limit ū is solution to the continuous variational problem. Let (Tn) be a sequence
of discretizations such that hTn → 0. For each mesh Tn, the finite volume scheme reads:

[uTn
, v]Tn

=
∫

Ω

fv dx, ∀v ∈ HTn
(Ω).(17)
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Lemma 1 (Consistency of the discrete Laplace operator). Let T be a finite volume mesh satisfying the or-
thogonality condition. We denote by PT and ΠT the following interpolation operators:

PT : C(Ω) → HT (Ω), PT ϕ(x) = ϕ(xK), ∀x ∈ K, ∀K ∈ T ,(18)

ΠT : L2(Ω) → HT (Ω), ΠT ϕ(x) =
1
|K|

∫
K

ϕ dx, ∀x ∈ K, ∀K ∈ T .(19)

For ϕ ∈ C∞c (Ω), let us define the consistency error R∆,T (ϕ) ∈ HT (Ω) on the discrete Laplace operator by:

R∆,T (ϕ) = ∆T PT ϕ−ΠT (∆ϕ).

Then there exists Cϕ depending only on ϕ such that:

‖R∆,T (ϕ)‖−1,T ≤ CϕhT .(20)

Proof. For ϕ ∈ C∞c (Ω), one has:

‖R∆,T (ϕ)‖−1,T = sup
v∈HT (Ω),‖v‖1,T =1

X(v),

with:
X(v) =

∑
K∈T

|K| [(∆T PT ϕ)K vK − (ΠT (∆ϕ))K vK ] .

For hT small enough, ϕ vanishes in all the control volumes having an edge on the boundary of the domain so
that, by definition of ∆T , PT and ΠT , one has:

X(v) =
∑
K∈T

vK

[ ∑
σ∈EK

FK,σ(PT ϕ)−
∫

σ

∇ϕ · nK,σ dγ(x)

]
=

∑
σKL∈Eint

|σ| RK,σ(ϕ) (vK − vL),
(21)
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where RK,σ(ϕ) is the consistency error on the fluxes, defined by:

RK,σ(ϕ) =
1
|σ|
(
FK,σ(PT ϕ)−

∫
σ

∇ϕ · nK,σ dγ(x)
)
.

Now we use the property of consistency of the fluxes, namely that for a regular function ϕ, there exists cϕ ∈ R
depending only on ϕ such that:

|RK,σ(ϕ)| ≤ cϕhT .

This result, proven in [38], is a central argument of the proof. It relies on the orthogonality condition for the
mesh, and is obtained by Taylor’s expansions. By the Cauchy–Schwarz inequality, we then obtain from (21) that:

X(v) ≤ CϕhT ‖v‖1,T ,

which concludes the proof. �

An immediate consequence is the following corollary.

Corollary 1. Let (Tn)n∈N be a family of meshes satisfying the orthogonality property and such that hTn
→ 0.

Let (uTn
)n∈N ⊂ L2(Ω) and ū ∈ H1(Ω) such that ‖uTn

‖1,T ≤ C, where C ∈ R+, and uTn
→ ū in L2(Ω) as

n→ +∞, then: ∫
Ω

uTn
∆Tn

(PTn
ϕ) dx→

∫
Ω

ū ∆ϕ dx as n→ +∞, ∀ ϕ ∈ C∞c (Ω).

We now sketch the proof of convergence of the scheme. Let us now take v = PTnϕ in (17). Thanks to (12), we
have:

−
∫

Ω

uTn
∆Tn

(PTn
ϕ) dx =

∫
Ω

fPTn
ϕ dx.
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Let us then pass to the limit as n → +∞. From Corollary 1 and the fact that the right hand side converges to∫
Ω
ϕ dx, we get that:

−
∫

Ω

ū∆ϕ dx =
∫

Ω

fϕ dx.

Since we know from the previous step that ū ∈ H1
0 (Ω), we obtain that ū is indeed the solution to (7).

3.6. Error analysis

An error estimate for convection diffusion equations was first obtained in [60] in the case of continuous data and
triangular meshes. It was extended to L2 data and general admissible meshes and general boundary conditions
in [53]. The key argument for the error analysis is the fact that the consistency Lemma (1) still holds, under
regularity assumptions for the mesh, for φ in H2(Ω). Using the variational form of the scheme (17), we have:

[uTn
− PTn

u, v]Tn
=
∫

Ω

fv dx− [PTn
u, v]Tn

, ∀v ∈ HTn
(Ω),

where u is the solution to the continuous problem. Integrating the continuous equation −∆u = f over each
control volume to replace the first term of the right hand side of the above relation, we get:

[uTn − PTnu, v]Tn =
∫

Ω

R∆,Tn(u)v dx, ∀v ∈ HTn(Ω).

A first order convergence result in the HT norm then follows by the stability estimate (16); first order convergence
is also obtained in the L2 norm, thanks to the discrete Poincaré inequality.
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4. The parabolic case

4.1. The continuous problem

We now consider a transient convection diffusion equation. Let T > 0, u0 ∈ L2(Ω) and v ∈ Rd be given; the
partial derivative equation at hand reads:

u : Ω× [0, T ] → R;

ut + div(vu)−∆u = 0 in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(., 0) = u0 in Ω.

(22)

A weak formulation of this problem is:

(23)


Find u ∈ L2(0, T ; H1

0 (Ω)) such that ut ∈ L2(0, T ; H−1(Ω)) and

< ut, ϕ >H−1,H1
0

+
∫

Ω

∇u(x, ·) ∇ϕ(x, ·) dx = 0, ∀ ϕ ∈ H1
0 (Ω),

u(·, 0) = u0.

As in the steady state case, we shall use some estimates on the translates of u in order to get compactness
properties, despite the lack of regularity of the approximate finite volume solutions. To get some insight into
what kind of estimates we should be aiming at, it is informative to look at the estimates that can be obtained
on the continuous solution. First, we see that since u ∈ L2(0, T ; H1

0 (Ω)), we have the following estimate on the
translates in space:

‖u(·+ η, ·)− u(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|η|, ∀η ∈ Rd.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Then, since u ∈ L2(0, T ; H1
0 (Ω)) and ut ∈ L2(0, T ; H−1(Ω)), the following estimate on the time translates

holds:

‖u(·, ·+ τ)− u(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|τ | 12 , ∀τ ∈ R.

We shall therefore look for the same kind of estimates in the discrete framework.

4.2. The finite volume scheme

Let k = 1/M be the (uniform) time step. The finite volume scheme, using an implicit Euler discretization in
time, reads: 

|K|
un+1

K − un
K

k
+
∑

σ∈EK

FK,σ(un+1
T ) = 0, 0 ≤ n ≤M − 1,

u0
K =

1
|K|

∫
K

u0(x) dx.
(24)

with FK,σ(un+1
T ) = − |σ|

dKL
(un+1

L − un+1
K ) + v+

K,σu
n+1
K − v−K,σu

n+1
L .

The existence and uniqueness of a solution (un
K)n∈N to (24) is easily deduced from the steady state case.

Let us denote by HD(Ω × (0, T )) the set of functions of L2(Ω × (0, T )) which are piecewise constant on the
subsets K × [tn, tn+1). We define the approximate solution uD ∈ HD(Ω × (0, T )) by uD(x, t) = un

K , ∀x ∈ K,
∀t ∈ [tn, tn+1). Using a variational technique similar to the way the estimate (16) is established in the steady
state case, the following a priori estimates on uD may be obtained:

‖uD‖L∞(0,T ; L2(Ω)) ≤ C, k
M∑

n=1

‖uD(·, tn)‖2
1,D ≤ C.(25)
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where C only depends on the initial condition. As in the steady state case, the second relation above yields an
estimate on the space translates:

‖uD(·+ η, ·)− uD(·, ·)‖L2(0,T ; L2(Ω)) ≤ C
(
|η|(|η|+ hD)

) 1
2 , ∀η ∈ Rd.

Using equation (24), we are then able to derive an estimate on the time translates:

‖uD(·, ·+ τ)− uD(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|τ | 12 , ∀τ ∈ R.

By a discrete Rellich theorem, we deduce as in the steady state case the convergence in L2(0, T ; L2(Ω)) of uD to
some function ū ∈ L2(0, T ; H1

0 (Ω)). As in the elliptic case, a passage to the limit in the scheme yields that ū = u,
weak solution of (23). This analysis may be generalized to the case of non-homogeneous Dirichlet boundary
conditions, see [9].

5. The Stokes problem

A huge amount of literature is devoted to the numerical solution of the Stokes and Navier–Stokes equations.
Among the proposed methods is the wellknown finite element method [54, 55, 58] and finite volume method
[73, 74]; finite difference schemes on staggered grids were also studied [70, 71]. This type of staggered scheme
was also generalized to non–cartesian finite volume grids [41, 42]. However, staggered grids are not easy to
handle in the computational practice, and several industrial and commercial codes are based on co-located finite
volume method, that is a method where the primitive variables (velocity and pressure) are used, and all located
within a discretization cell; in this section we shall give an example of a co–located finite volume scheme for which
a convergence theory was developped for both the Stokes and Navier–Stokes equations.

5.1. The continuous problem

The centred finite volume scheme may also be used to discretize the Navier–Stokes equations. For reasons of
simiplicity, let us start with the steady state Stokes equations. The aim is to find u : Ω → Rd and p : Ω → R such
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that: 

−ν∆u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,∫
Ω

p dx = 0.

(26)

Let E(Ω) := {v ∈ (H1
0 (Ω))d,divv = 0 a.e. in Ω}, and assume that f ∈ L2(Ω)d. A weak formulation of (26) is:

u = (u(1), . . . , u(d))t ∈ E(Ω),

ν

∫
Ω

∇u : ∇v dx =
∫

Ω

f · v dx, ∀v ∈ E(Ω),
(27)

with
∫

Ω

∇u : ∇v dx =
∑

i=1,d

∫
Ω

∇u(i) · ∇v(i) dx.

5.2. Discrete gradient and divergence

As in the preceding sections, we consider the discrete space HT (Ω) ⊂ L2(Ω) of piecewise constant functions on
the control volumes. In order to construct a finite volume scheme, we need to discretize the divergence operator.
Let us remark that for u ∈ H1(Ω)d, one has:∫

K

divu dx =
∑

L∈NK

∫
σKL

u · nK,σKL
dγ(x).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Adopting a centred discretization of u·n on σKL leads to the following definition of a discrete divergence operator:

for u ∈ HT (Ω)d, (divT u)K =
1
|K|

∑
L∈NK

|σKL|
(uK + uL)

2
· nK,σKL

,

so that divT u is a linear operator from HT (Ω)d to HT (Ω). Note that one could also choose a more precise
interpolation of the values uK and uL than their mean value, see [44].

Remark 1. Note that since nK,σKL
= −nL,σKL

, we have:

(28)
∫

Ω

divT u(x) dx =
∑
K∈T

|K|(divT u)K = 0, ∀u ∈ HT (Ω).

Now we define the discrete gradient as the adjoint of the discrete divergence, that is a linear operator ∇T from
HT (Ω) to HT (Ω)d such that:∫

Ω

divT u p dx = −
∫

Ω

u · ∇T p dx, ∀u ∈ HT (Ω)d, ∀p ∈ HT (Ω).

An easy calculation leads to:

(∇T p)K =
1
|K|

∑
L∈NK

|σKL|
(pL − pK)

2
nK,σKL

.(29)

Since
∑

L∈NK

|σKL| nK,σKL
= 0, one may also write the discrete gradient as:

(∇T p)K =
1
|K|

∑
L∈NK

|σKL|
(pL + pK)

2
nK,σKL

,(30)

this latter form being conservative.
Let us then give some convergence properties of the discrete gradient.
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Theorem 2 (Weak convergence of the gradient). Let (Tn)n∈N be a sequence of admissible meshes of Ω with
vanishing mesh size, and (un)n∈N ⊂ L2(Ω) such that un ∈ HTn

(Ω) and ‖u(n)‖1,Tn
≤ C for all n ∈ N. Then there

exists ū ∈ H1
0 (Ω) and a subsequence of (u(n))n∈N (still denoted (u(n))n∈N) such that u(n) → ū as n → +∞ in

L2(Ω), and such that, for any ϕ ∈ C∞c (Ω),

1. lim
n→+∞

[u(n), PTn
ϕ]Tn

=
∫

Ω

∇ū · ∇ϕ dx.

2. ∇Tn
u(n) weakly converges to ∇ū in L2(Ω)d as n→ +∞.

Item 1 is already known from the study in the elliptic case. Item 2 follows from the following lemma.

Lemma 2 (Consistency of the discrete derivatives). Let T be a finite volume mesh satisfying the orthogonal-
ity condition. With the notations introduced in Lemma 1, let ϕ ∈ C∞c (Ω), let us define the consistency error
R∂i,T (ϕ) ∈ HT (Ω) on the discrete derivative by:

R∂i,T (ϕ) = ∂
(i)
T PT ϕ−ΠT (∂(i)ϕ).

where ∂(i)
T PT ϕ stands for the component (i) of the above defined discrete gradient. Then:

‖R∂i,T (ϕ)‖−1,T ≤ CϕhT .

The proof of this lemma uses the consistency of the approximation of the normal flux u ·n (see [43] for details).

5.3. A stabilized finite volume scheme for the Stokes equations

Let ET (Ω) = {u ∈ (HT (Ω))d,divT (u) = 0}, then a natural finite volume discretization of problem (27) is:

u ∈ ET (Ω), ν[u, v]T =
∫

Ω

f · v dx, ∀v ∈ ET (Ω),

where [u, v]T stands for
∑

i=1,d[u
(i), v(i)]T . However, this is not a very useful form since the ”direct” construction

of the space ET (Ω) is far from being an easy task. The standard way to proceed is then to write the condition
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divT (u) = 0 as a constraint, but it is well known that such a scheme suffers from some stability problems, related
to the fact that no inf-sup condition is not satisfied for colocated schemes. A cure for this problem which has
become classical in the finite element framework, is then to use a modified divergence constraint including a
stabilization term, which yields a scheme of the following form:

(31)


(u, p) ∈ HT (Ω)d ×HT (Ω),

ν[u, v]T −
∫

Ω

p divT (v) dx =
∫

Ω

f · v dx, ∀v ∈ HT (Ω)d,∫
Ω

divD(u) q dx = −〈p, q〉T ,λ, ∀q ∈ HT (Ω),

where

〈p, q〉T ,λ =
∑

σKL∈Eint

λK|L
|σKL|
dKL

(pL − pK)(qL − qK),(32)

and the coefficients λK|L are determined according to the choice of stabilization. A first possible choice [43],
inspired by the well known Brezzi–Pitkäranta [14] scheme in the finite element framework, is to take λK|L = βhD

α,
α ∈ (0, 2). A stabilization by “clusters” was recently introduced [22, 45], which yields a scheme the accuracy of
which is less affected by the size of the stabilization coefficient [21]. The idea is to introduce a partition of the
mesh into clusters, each cluster containing some control volumes of the mesh. It is assumed that the maximum
diameter of each cluster is bounded by a constant times the mesh size, and therefore, it tends to zero with the
mesh size. For any control volume K we denote by CK the cluster which contains K; let γ ≥ 0, we define the
cluster stabilization by:

λK|L =
{

0, CK 6= CL,
γ, CK = CL.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Note that one could also consider a stabilization term γ on each cluster which would depend on h, and would
lessen the weight of the stabilization within each cluster. The pros and cons of the various choices are currently
being investigated.

Stabilizations by penalization of the pressure jumps across either all the internal edges of the mesh or only the
internal edges of macro-elements have already been proposed in the finite element context for the stabilization
of the so-called Q1 − Q0 element [62]; besides an extension to the finite volume framework, the above scheme
considerably generalizes the notion of macro-element. Under some simple geometrical assumptions for the clusters,
we are able to prove that the pair of spaces associating HT (Ω)d for the velocity and constant by cluster pressures
is “inf-sup stable” [46]. The cluster stabilization can then be interpreted as a minimal stabilization procedure, as
defined by Brezzi and Fortin [13]; this interpretation suggests a variation of γ as the square of the mesh size [46].

The finite volume scheme (31) may also be written in its more classical flux form:

−ν
∑

L∈NK

|σKL|
dKL

(uL − uK)− ν
∑

σ∈EK∩Eext

|σ|
dK,σ

(−uK)

+
∑

L∈NK

|σKL|
(pL − pK)

2
nK,σKL

=
∫

K

f dx, ∀K ∈ T ,∑
L∈NK

GK,L(uT , pT ) = 0, ∀K ∈ T ,

where

GK,L(uT , pT ) = |σKL|
(uK + uL)

2
· nK,σKL

− λKL
|σKL|
dKL

(pL − pK).(33)

This finite volume scheme must be supplemented by the condition
∫
pT dx = 0.
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As in the elliptic case, the convergence analysis for this scheme is based on a priori estimates. First, taking
v = uT and q = pT in (31) yields:

ν2 ‖uT ‖2
1,T + 2ν |pT |2T ,λ ≤ ‖f‖2

−1,T ,

where ‖ · ‖1,T and ‖ · ‖−1,T are now the discrete H1 and H−1 norms on HT (Ω)d, easily deduced from their scalar
counterparts, and | · |T ,λ is the semi–norm associated with the inner product defined by (32). Note that for both
considered stabilizations, the above estimate on the pressure is mesh dependent, and therefore does not yield a
uniform estimate.

The second step is then to prove an L2 estimate on the pressure. To this purpose, we take benefit of the fact
that the inf-sup condition is verified at the continuous level, so there exists v̄ ∈ H1

0 (Ω)d such that divv̄ = pT and
‖v̄‖H1

0 (Ω)d ≤ C‖pT ‖L2(Ω) [69]; taking ΠT v̄ as test function in the first relation of the scheme (31) then yields and
estimate of ‖pT ‖L2(Ω) − |pT |T ,λ which, combined with the preceding bound, yields the result.

From these estimates, we then obtain existence and uniqueness of u and p solution to (31), which implies
the weak convergence of both velocities and pressure in L2(Ω). As in the elliptic case, the compactness on the
velocities, and the regularity of the limit, are obtained by estimates on the translates. We thus obtain the strong
convergence in L2(Ω) of a subsequence of the approximate velocities to some ũ ∈ H1

0 (Ω), and the convergence of
a subsequence of approximate pressures to some p̃ weakly in L2(Ω). In order to conclude the convergence proof,
we then consider ϕ ∈ C∞c (Ω)d, and v = PT ϕ in (31). A passage to the limit as the mesh size tends to 0, using
the weak convergence of the divergence and of the gradient (Theorem 2) yields that (ũ, p̃) is the solution to (27).

If we assume that the weak solution (ū, p̄) to (27) belongs to H2(Ω)d ×H1(Ω), we may also obtain an error
estimate, we refer to [43, 44, 45, 46] for both theoretical and numerical results.
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6. Transient isothermal incompressible Navier Stokes

Let us now consider the (adimensionalised) isothermal incompressible Navier Stokes; we seek u : Ω× [0, T ] → Rd

and p : Ω× [0, T ] → R such that:
ut − ν∆u+ div(u⊗ u) +∇p = f in Ω× (0, T ),
divu = 0, in Ω× (0, T ),
u = 0 in ∂Ω× (0, T ),
u(·, 0) = u0 in Ω,

(34)

where u0 is a divergence free vector field of L∞(Ω)d, u ⊗ u is the tensor such that (u ⊗ u)(i,j) = u(i)u(j) and
div(u⊗ u)(i) =

∑d
j=1 ∂j(u⊗ u)(i,j), so that if divu = 0, then div(u⊗ u) =

∑d
i=1 ui∂iu = (u · ∇)u.

Let us then consider a convenient weak formulation of (34), in the sense that it is the formulation obtained
when passing to the limit in the finite volume scheme which we shall introduce in the sequel (see e.g. [77] or [10]
for other weak formulations). Let E(Ω) = {v ∈ H1

0 (Ω)d; divv = 0 a.e. in Ω}; we seek a function u of time and
space such that:

u ∈ L2(0, T ; E(Ω)) ∩ L∞(0, T ; L2(Ω)d),

−
∫ T

0

∫
Ω

u · ∂tϕ dx dt−
∫

Ω

u0 · ϕ(·, 0) dx

+ ν

∫ T

0

∫
Ω

∇u : ∇ϕ dx dt+
∫ T

0

∫
Ω

(u · ∇)u · ϕ dx dt

=
∫ T

0

∫
Ω

f(x) · ϕ dx dt,

∀ϕ ∈ L2(0, T ;E(Ω)) ∩ C∞c (Ω× [0, T ))d.

(35)
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In order to define the finite volume scheme, we need to discretize the nonlinear convection term, which is
integrated over a control volume K in the following way:∫

K

(u · ∇)u dx =
∫

∂K

(u · nK)u dγ(x) =
∑

σKL∈EK

∫
σKL

(u · nK,σ)u dγ(x),

which is then naturally discretized as: ∑
σKL∈EK

GK,L(uT , pT )
uK + uL

2
,

whereGK,L(uT , p) is the discretisation of the mass flux through the edge separatingK and L which was introduced

in (33). We then obtain the following discrete approximation of the nonlinear form b(u, v, w) =
∫

Ω

(u · ∇)v ·w dx
:

bT (uT , vT , wT ) =
∑

σKL∈EK

GK,L(uT , pT )
vK + vL

2
· wK .

We perform a time discretisation of the system of equations (34) by the well known Crank-Nicolson scheme:
un+1 − un

δt
− ν∆un+ 1

2 + (un+ 1
2 · ∇)un+ 1

2 +∇pn+ 1
2 = fn+ 1

2

divun+ 1
2 = 0,

with un+ 1
2 = 1

2 (un + un+1) and pn+ 1
2 = 1

2 (pn + pn+1). With the same definition of HD(Ω × (0, T )) as in the
parabolic case (space and time piecewise constant functions), the finite volume scheme for (35) may then be
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written:

(36)



(uD, pD) ∈ HD(Ω× (0, T ))d ×HD(Ω× (0, T )),∫
Ω

un+1
D − un

D
δt

v dx+ ν[un+ 1
2

D , v]D + bD(un+ 1
2

D , u
n+ 1

2
D , v)

−
∫

Ω

p
n+ 1

2
D divD(v) dx =

∫
Ω

f · v dx, ∀v ∈ HT (Ω)d,∫
Ω

divD(un+ 1
2

D ) q dx = −〈pn+ 1
2

D , q〉T ,λ, ∀q ∈ HT (Ω),

with uDn+ 1
2 = 1

2 (uDn + uD
n+1) and pDn+ 1

2 = 1
2 (pDn + pD

n+1). As in the previous sections, the convergence of
the scheme is obtained by first deriving a compactness property for a family of approximate solutions, thanks to
some estimates on the translates, which are a bit more difficult to obtain in the present case. Let us for instance
study the three-dimensional case and have a glance at the estimates on the translates which may be obtained for
the continuous problem. Let u be a solution to (35). First, since u ∈ L2(0, T ; E(Ω)), we get that:

‖u(·+ η, ·)− u(·, ·)‖L2(0,T ; L2(Ω)3) ≤ C|η|, ∀η ∈ R3.(37)

Next, since u ∈ L2(0, T ; E(Ω)) and ut ∈ L
4
3 (0, T ; E(Ω)′), we have that:

‖u(·, ·+ τ)− u(·, ·)‖
L

4
3 (0,T ; L2(Ω)3)

≤ C|τ | 12 , ∀τ ∈ R.(38)

In fact, we may also remark that we have the simpler estimates u ∈ L2(0, T ; E(Ω)) and ut ∈ L1(0, T ; E(Ω)′)
which yield:

‖u(·, ·+ τ)− u(·, ·)‖L1(0,T ; L2(Ω)3) ≤ C|τ | 12 , ∀τ ∈ R,(39)

but note that, contrary to the parabolic case, we have no L2(0, T ; L2(Ω)3) estimate on the time translates. We
thus derive corresponding discrete estimates to (37) and (39) for the discrete problem. Let uD ∈ HD(Ω× (0, T ))
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be a solution to (36). Then there exists C ∈ R+ depending only on Ω, ν, u0, f, T such that [43]:

‖uD‖L∞(0,T ; L2(Ω)3) ≤ C and ‖uD‖L2(0,T ; HD(Ω)) ≤ C.

Furthermore, if one assumes some reasonable regularity assumptions on the mesh, see [43], then there exists
C ∈ R+ depending only on Ω, ν, u0, f, T and on the regularity of the mesh such that the following estimates on
the space and time translates hold:

(40)
‖uD(·+ η, ·)− uD(·, ·)‖L2(0,T ; L2(Ω)3) ≤ C

(
|η|(|η|+ hD)

) 1
2 , ∀ η ∈ R3,

‖uD(·, ·+ τ)− uD(·, ·)‖L1(0,T ; L2(Ω)3) ≤ Cτ
1
2 , ∀τ ∈ R+.

The estimate on the space translates is identical to the parabolic case; the proof on the time translates, however,
is much more technical, in particular because we have to deal with L1 and not L2, we refer to [43] for details.
The proof of the convergence of the discrete approximation uD to the solution of (35) may be found in [43] in the
case where the stabilisation pressure term is not taken into account in the nonlinear convective term. The proof
in the case presented here is somewhat similar. Using the above estimates and the Kolmogorov theorem, we get
the convergence of a subsequence of the approximate solutions to ū ∈ L2(0, T ; E(Ω)) in L1(0, T ; L2(Ω)3) as the
mesh size tends to 0. Finally, a passage to the limit in the scheme yields that ū is indeed a solution of (35).

7. Hyperbolic equations

Let us finally briefly mention the wide use of finite volume schemes for nonlinear hyperbolic equations. We refer to
[56, 57, 38, 64, 7] for more on this subject. Here we only consider the following nonlinear hyperbolic equation:

(41)

{
ut + div(vf(u)) = 0 in Rd × (0, T ),

u(·, 0) = u0,
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u0 ∈ L∞(Ω),v ∈ Rd, f ∈ C1(R,R), f ′ ≥ 0. It is well known that the above problem is well–posed, in the sense
that it admits a unique weak entropy solution, that is a function u satisfying:

(42)


u ∈ L∞(Rd × (0, T )),∫ T

0

∫
Rd

(η(u)ϕt + Φ(u) · ∇ϕ) dx dt+
∫

Rd

η(u0(x))ϕ(x) dx ≥ 0,

∀ η ∈ C2(R),Φ ; Φ′ = f ′η′, ∀ ϕ ∈ C∞c (Rd × [0, T ),R+).

With the same notations as in the previous sections, let T be a finite volume mesh of Ω. A finite volume scheme
with an upwind choice for the convection flux can be written:

|K|
un+1

K − un
K

δt
+
∑

σ∈EK

Fn+1
K,σ = 0, n ≥ 0,

u0
K =

1
|K|

∫
K

u0(x) dx,

with: Fn+1
K,σ = v+

K,σf(un+1
K )− v−K,σf(un+1

L ). Note that this flux is consistent without any condition on the mesh,
since there is no more diffusion flux. Multiplying the scheme by uK and summing on K yields an L∞ estimate
on uD: there exists C only depending on u0, T,v such that:

‖uD‖L∞(Rd×(0,T )) ≤ C.(43)

Hence if we consider a family of meshes with vanishing size, we get the weak ? convergence (up to a subsequence)
to ū in L∞(Rd × (0, T )). This estimate is not sufficient to pass to the limit in the scheme even in the linear case
(except in the case of uniform meshes). In order to obtain convergence we use the so-called weak-BV inequality,
first used in the linear case in [19] and nonlinear case in [20], and named BV because it involves the jumps of
the discrete function at the interfaces:∑

σKL∈Eint

|vK,σKL
|(f(un

K)− f(un
L))2 ≤ C.(44)
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This estimate is obtained thanks to the diffusion term added by the upwinding on f(u). Roughly speaking, this
diffusion term may be seen as the discretisation of the continuous diffusion term hD

∑d
i=1 ∂

(i)(|v(i) f ′(u)| ∂(i)u),
so that the scheme may be seen as the discretisation of the following parabolic equation:

ut + div(vf(u))− hD

d∑
i=1

∂(i)(|v(i) f ′(u)| ∂(i)u) = 0(45)

Along the same lines, we may remark that the BV inequality (44) is related to the following weak H1 inequality
obtained from Equation (45):

d∑
i=1

‖v(i) f ′(u) ∂(i)u)‖L2(K) ≤
1√
hD

, for any compact subset K of Rd × (0, T ).

Even though this inequality is sufficient to pass to the limit in the linear case, it does not yield strong compactness,
so that one needs yet another tool in the nonlinear case. Indeed, from the L∞ estimate, we only obtain a weak ?
converging subsequence of approximate solutions, and the question is how to pass to the limit in the nonlinearity.
The key to this point is the nonlinear weak ? convergence [34] or [38, page 965], which is equivalent to the notion
of Young measure [76]. The notion of nonlinear weak ? convergence may be stated as follows:

Theorem 3 (Non linear weak ? convergence). Let (un)n∈N be a bounded sequence of L∞( Rd × (0, T )). There
exist ū ∈ L∞(Ω × (0, T ) × (0, 1)) and a subsequence of (un)n∈N, still denoted (un)n∈N, such that g(un) tends to∫ 1

0
g(ū(·, α))dα in L∞(Ω× (0, T )) weak ?, as n→ +∞, that is:∫

Ω

g(un(x))ϕ(x) dx→
∫ 1

0

∫
Ω

g(ū(x, α))ϕ(x) dxdα,

for all ϕ ∈ L1(Ω × (0, T )) and all g ∈ C(R,R). We shall say that un converges (up to a subsequence) in the
nonlinear weak ? sense. Note that

∫ 1

0
g(ū(x, α)) dα =

∫
R g(s) dνx(s), and that νx is a probability on R.
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Using the nonlinear ? convergence, we get that a subsequence of approximate solutions converges to an entropy
weak process solution of (41), that is a function ū such that:

(46)


u ∈ L∞(Rd × R+×(0, 1)),∫ 1

0

∫
R+

∫
Ω

(η(u)ϕt + Φ(u) · ∇ϕ dx dtdα+
∫

R+

η(u0(x)) ϕ(x) dx ≥ 0,

∀ η ∈ C2(R),Φ ; Φ′ = f ′η′, ∀ ϕ ∈ C∞c (Rd × [0, T ),R+).

The following uniqueness theorem then allows to conclude to the convergence of the scheme towards the entropy
weak solution.

Theorem 4. If ū ∈ L∞(Ω× (0, T )× (0, 1)) is an entropy weak process solution then:
• ū(x, α) does not depends on α.
• ū is the unique entropy weak solution u.

The proof uses the doubling variables method of Krushkov, [52, 34] or [38].
Hence, if we consider a family of approximate solutions on meshes with mesh size tending to 0, we get that

there exists a subsequence of this solution tending to a weak entropy process solution, which is, by the above
theorem, the unique entropy weak solution of (41). The convergence holds in Lp(Rd× (0, T )) for all p <∞. Note
that (non optimal) error estimates may also be obtained, see e.g. [34, 17, 78, 25].

8. Conclusions and perspectives

In this paper, we presented an outline of the analysis of the cell centred finite volume method for elliptic, parabolic
equations, for the incompressible Navier–Stokes equations and for scalar hyperbolic conservation laws. Numerous
works now exist for the analysis of the cell centred scheme for a number of problems and applications; to cite
only a few on elliptic or parabolic problems, let us mention the works on general boundary conditions [53, 11],
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non coercive problems with H−1 or measure right hand side [30, 31]; other topics include nonlinear reaction
diffusion equations and degenerate equations, see [36, 65, 79, 40] and references therein, variational inequalities
[61], hyperbolic equations with boundary conditions and discontinuous fluxes, see [48] and references therein.
Similar tools were also used for a posteriori estimates and mesh adaptation [63, 72], domain decomposition
[1, 16, 75], numerical homogeneisation [35] or image processing [66, 67]. It is quite impossible to give a full
review on the ongoing works on finite volumes; let us however mention the difficulty of anisotropic diffusion
problems or diffusion problems on distorted meshes [2, 39, 28, 29], which give rise to a number of methods
for the construction of discrete gradients and divergence operators, raising the issue of the discrete maximum
principle [8]. Some techniques are also being developed for coupled systems leading to irregular right hand sides
[12, 18], and for diffusion problems in the presence of singularities in the domain [4, 27]. Two phase flow in
porous media was maybe one of the major incentive for the development of the analysis of cell centred finite
volume schemes, and has been and still is often addressed [47, 32]. Boundary conditions for hyperbolic problems
[79, 5] and the difficult problem of efficient solvers for hyperbolic systems [49, 50, 51] are also being intensively
studied.
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69. Nečas J., Equations aux dérivées partielles, Presses de l’Université de Montréal, 1965.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
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