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A NOTE ON CLOSED GRAPH THEOREMS

F. GACH

Abstract. We give a common generalisation of the closed graph theorems of De
Wilde and of Popa.

1. Introduction

In the theory of locally convex spaces, M. De Wilde’s notion of webs is the abstrac-
tion of all that is essential in order to prove very general closed graph theorems.
Here we concentrate on his theorem in [1] for linear mappings with bornologically
closed graph that have an ultrabornological space as domain and a webbed lo-
cally convex space as codomain. Henceforth, we shall refer to this theorem as ‘De
Wilde’s closed graph theorem’.

As far as the category of bounded linear mappings between separated convex
bornological spaces is concerned, there exists a corresponding bornological notion
of so-called nets that enabled N. Popa in [5] to prove a bornological version of the
closed graph theorem which we name ‘Popa’s closed graph theorem’.

Although M. De Wilde’s theorem in the locally convex and N. Popa’s theorem
in the convex bornological setting are conceptually similar (see also [3]), they do
not directly relate to each other.

In this manuscript I present a bornological closed graph theorem that generalises
the one of N. Popa and even implies the one of M. De Wilde. First of all, I
give a suitable definition of bornological webs on separated convex bornological
spaces with excellent stability properties and prove the aforementioned general
bornological closed graph theorem. It turns out that there is a connection between
topological webs in the sense of M. De Wilde and bornological webs on locally
convex spaces. This is the keystone of this paper and the reason why I could
reveal the bornological nature of De Wilde’s theorem.

2. De Wilde’s closed graph theorem

The following definition goes back to M. De Wilde and may be found in [4, 5.2].
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Definition 2.1 (Topological webs). Let E be a Hausdorff locally convex space.
A mapping W :

⋃
k∈N Nk → P(E) is called a topological web if all of the conditions

below hold. We set

Ws,k := W (s(0), . . . , s(k)), where s : N → N.

(TW1): The image of W consists of absolutely convex sets.
(TW2): W (∅) = E;
(TW3): Given a finite sequence (n0, . . . nk), every point in W (n0, . . . , nk) is ab-

sorbed by ⋃
n∈N

W (n0, . . . , nk, n).

Note that in particular
⋃

n∈N W (n) is absorbent in W (∅) = E.
(TW4): For every finite sequence (n0, . . . , nk, nk+1) one has

2 W (n0, . . . , nk, nk+1) ⊆ W (n0, . . . , nk).

We say that W is completing if the following condition is satisfied:
(TW5): For every s : N → N and for every choice of yk ∈ Ws,k, the series

∑
k yk

converges topologically in E.
A separated locally convex space E that carries a topological web is called

webbed locally convex space.

Next, we state M. De Wilde’s intriguing closed graph theorem which may be
found in [4, 13.3.4(a)].

Theorem 2.2 (De Wilde’s closed graph theorem). If E is ultrabornological and
F is a webbed locally convex space, then every linear mapping f : E → F which
has bornologically closed graph with respect to those convex bornologies on E and
F that are generated by all bounded Banach disks in E and in F , respectively,
is continuous even if regarded as a mapping into the ultrabornologification Fuborn

of F .

3. Popa’s closed graph theorem

Now let us turn to a bornological version of the closed graph theorem that goes
back to N. Popa (see [5]) and may also be found in [2, 4.4.3].

First of all, we give a definition of nets in separated convex bornological spaces.
Only the terminology differs from [2, 4.4.3].

Definition 3.1. Let (F,B) be a separated convex bornological space. A map-
ping N :

⋃
k∈N Nk → P(F ) is called a net which is compatible with B if the

conditions below hold.
(N1): The image of N consists of disks.
(N2): N(∅) = F ;
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(N3): For every finite sequence (n0, . . . nk) we have

N(n0, . . . nk) =
⋃
n∈N

N(n0, . . . , nk, n).

(N4): For every s : N → N there is a b(s) : N → R>0 such that for all
xk ∈ Ns,k and ak ∈ [0, b(s)k] the series

∑
k akxk converges bornologi-

cally in (F,B) and
∑

k≥n akxk ∈ Ns,n for every n ∈ N.

(N5): For every sequence (λk)k∈N of positive reals and s : N → N the set⋂
k∈N λkNs,k belongs to B.

Given a mapping b : NN → RN
>0, we say that b satisfies (N4) if, for all s : N → N,

b(s) is suitable for s in the sense of (N4).

Here is the already existent bornological version of the closed graph theorem:

Theorem 3.2 (Popa’s bornological closed graph theorem). Let E and F be
separated convex bornological spaces such that E is complete and F has a net
which is compatible with its bornology. Then every linear mapping f : E → F with
bornologically closed graph is bounded.

4. The generalised bornological closed graph theorem

In the rest of this paper, I establish my theory and its connection to the theorems
(2.2) and (3.2). So let me first introduce a suitable notion of webs on separated
bornological spaces.

Definition 4.1 (Bornological webs). Let F be a separated convex bornolog-
ical space. A pair (V, b) consisting of mappings V :

⋃
k∈N Nk → P(F ) and

b : NN → RN
>0 is called a bornological web if all of the conditions below hold.

As in (2.1), we use the abbreviations Vs,k.
(BW1): The image of V consists of disks.
(BW2): V (∅) = F ;
(BW3): Given a finite sequence (n0, . . . , nk), every point in V (n0, . . . , nk) is ab-

sorbed by
⋃

n∈N V (n0, . . . , nk, n).
The relationship between V and the given bornology is established by the following
property:
(BW4): For every s : N → N the series

∑
k b(s)kxk converges bornologically

in F , whenever we choose xk ∈ Vs,k.
We define the following sets, which of course depend on b:

∀s : N → N, ∀n ∈ N : Ṽs,n := 〈Vs,n ∪ {
∑

k≥n+1

b(s)kxk| ∀k ≥ n + 1 :

xk ∈ Vs,k}〉ac,
where 〈A〉ac is the absolutely convex hull of A. Furthermore, let B(V,b) denote
the convex linear bornology on F which is generated by all sets of the form⋂

k∈N λkṼs,k, where the (λk)k∈N are arbitrary real-valued sequences and s : N → N.
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A separated convex bornological space F which is endowed with a bornological
web will be called a webbed convex bornological space. A separated locally convex
space E will be called bornologically webbed space if E equipped with its von
Neumann bornology is a webbed convex bornological space.

The following theorem states that for a separated convex bornological space it
is a weaker condition to be webbed than to carry a net which is compatible with
the given bornology. So the concept of webbed convex bornological spaces is a
generalisation of convex bornological spaces with nets.

Theorem 4.2. Let (F,B) be a separated convex bornological space. If N is a
net on F which is compatible with B, then, for every b : NN → RN

>0 satisfying (N4)
of N , (N, b) is a bornological web on F such that in addition B(N,b) ⊆ B holds.

Proof. (BW1)–(BW3) are direct consequences of (N1)–(N3), respectively.
(BW4) is clear.
B(N,b) ⊆ B: Let

⋂
k∈N λkÑs,k be a typical generator of B(N,b). Then∑

k≥n+1

b(s)kxk ∈ Ns,n+1

(N3)

⊆ Ns,n.

Hence Ñs,n = Ns,n and
⋂

k∈N λkÑs,k =
⋂

k∈N λkNs,k

(N5)
∈ B, at least for sequences

of positive reals. For arbitrary real-valued sequences everything remains true, since
the Ns,k are circled and {0} is bounded. �

Even more, the following general bornological closed graph theorem holds:

Theorem 4.3 (General bornological closed graph theorem). Let E and F be
separated convex bornological spaces, where E is complete and F is endowed with
a bornological web (V, b). Then every linear mapping f : E → F with bornologically
closed graph is bounded with respect to the given convex bornology on E and B(V,b)

on F .

Proof. Step 1. First of all, note that E = lim−→BEB , where B runs through all
bounded Banach disks, i.e. E can be described as the inductive limit of a family
of Banach spaces. In order to get that f is bounded we only have to show that the
compositions of f with the coprojections pB : EB → E are bounded. Since the
graph of f ◦pB is bornologically closed, it suffices to show the theorem for Banach
spaces E.

Step 2. Let therefore E be a Banach space, F be endowed with a bornological
web (V, b), and f : E → F be a linear mapping with bornologically closed graph.

By (BW2) and (BW3) F =
⋃

k,l∈N l V (k), hence E =
⋃

k,l∈N lf−1(V (k)). Since
E is Baire, there must exist an n0 ∈ N such that f−1(V (n0)) is not meagre. By
(BW3) V (n0) ⊆

⋃
k,l∈N l V (n0, k).

⇒ f−1(V (n0)) ⊆
⋃

k,l∈N
lf−1(V (n0, k)).
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Since f−1(V (n0)) is not meagre, there is an n1 ∈ N such that f−1(V (n0, n1)) is
not meagre. Thus we recursively find a sequence n : N → N such that the sets
f−1(V (n0, . . . , nk)) are not meagre, for all k ∈ N. Set Vk := Vn,k and bk := b(n)(k),
for all k ∈ N.

Since (V, b) satisfies (BW4), the series
∑

k bkxk converges bornologically in F ,
whenever we choose xk ∈ Vk.

For the next step let B denote the unit disk in E. If we can show that f(B)
is absorbed by Ṽk, or equivalently, that B is absorbed by f−1(Ṽk), for all k ∈ N,
then f(B) ∈ B(V,b), and we are done.

Step 3. Define Ak := bkf−1(Vk), for all k ∈ N. Since Ak is not meagre and
consequently not nowhere dense, the interior of Ak is not empty. Hence there exist
yk ∈ Ak and λk < 1

k+1 : yk + 2λkB ⊆ Ak. As yk ∈ Ak, there is a yk ∈ Ak such
that yk ∈ yk + λkB.

⇒ yk + λkB = (yk − yk) + (yk + λkB) ⊆ yk + 2λkB ⊆ Ak.

We obtain λkB ⊆ Ak − yk ⊆ 2Ak.
Step 4. Next we show, for fixed n, that f−1(Ṽn) ⊆ 3f−1(Ṽn), which completes

the proof, since then we have

λnB ⊆ 2An = 2bnf−1(Vn) ⊆ 2bnf−1(Ṽn) ⊆ 6bnf−1(Ṽn).

So let x ∈ f−1(Ṽn). Then there is a un ∈ f−1(Ṽn) with x− un ∈ λn+1B.

⇒ x− un + yn+1 ⊆ λn+1B + yn+1 ⊆ An+1

(see step 3). Now there is a un+1 ∈ An+1 with (x− un + yn+1)− un+1 ⊆ λn+2B.
Inductively we find uk ∈ Ak, k > n, such that we have x−

∑l
k=n uk+

∑l
k=n+1 yk ∈

λl+1B, for l > n. Hence, x −
∑l

k=n uk +
∑l

k=n+1 yk converges to 0, since
λn → 0. Define vk := f(uk) and zk := f(yk). Then vn ∈ Ṽn, zn ∈ bnVn, and
∀k > n : vk, zk ∈ bkVk. It follows from (BW4) that

∑
k vk and

∑
k zk converge

bornologically in F . Besides,

y :=
∑
k≥n

vk −
∑

k≥n+1

zk = vn +
∑

k≥n+1

vk −
∑

k≥n+1

zk ∈ Ṽn + Ṽn − Ṽn ⊆ 3Ṽn,

since the Ṽn are absolutely convex. Since f has bornologically closed graph, we
infer f(0) = f(x)− y, i.e. f(x) = y. �

Theorem 4.4. Popa’s closed graph theorem (3.2) is a consequence of the pre-
ceding theorem (4.3).

Proof. Let E and (F,B) be separated convex bornological spaces, where E is
complete and (F,B) carries a net N which is compatible with B. Let further
f : E → F be a bornologically closed linear mapping. By (4.2) there is a sequence
b : N → N such that (N, b) is a bornological web on F . Now we apply (4.3) and
conclude that f is bounded with respect to the given convex bornology on E and
B(N,b) on F . Since B(N,b) is contained in B by (4.2), we are done. �
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In order to see the relation between topological and bornological webs on locally
convex spaces, we shall need the following

Lemma 4.5. Let E be a Hausdorff locally convex space which is endowed with
a topological web W . Then the mapping V :

⋃
k∈N Nk → P(E), defined by

V (n0, . . . , nk) :=
1
2k

W (n0, . . . , nk),

is again a topological web on E.

Proof. (TW1)–(TW3) are clear.
(TW4): 2 V (n0, . . . , nk, nk+1) = 1

2k W (n0, . . . , nk, nk+1) ⊆ 1
2k W (n0, . . . , nk)

= V (n0, . . . , nk)

(TW5) is true since the sets W (n0, . . . , nk) are in particular circled, and therefore
V (n0, . . . , nk) = 1

2k W (n0, . . . , nk) ⊆ W (n0, . . . , nk) holds. �

Apart from what follows, the preceding lemma may also be used to correct the
proof of [4, 13.3.3]:

Theorem 4.6. If E is a webbed locally convex space, then so is its ultra-
bornologification Euborn.

There a mapping Ŵ on a webbed locally convex space E is defined as follows:

Ŵϕ,n := Wϕ,2n−1,

for all ϕ ∈ NN and n ∈ N, where N := {1, 2, . . .} and W is a topological web on
E. It is claimed then that the first three axioms (W1)–(W3), which correspond
to (TW1)–(TW3), are trivially satisfied. But this is not true, since Ŵ is not
well-defined. Indeed, Ŵϕ,n depends on more entries than just ϕ(0), . . . , ϕ(n).

Now one may proceed as in the proof of [4, 13.3.3] by taking V as in (4.5)
instead of Ŵ .

Notation 4.7. For locally convex spaces let BBanach denote the convex linear
bornology which has the bounded Banach disks as basis.

Theorem 4.8 (Bornological via topological webs). Let E be a locally convex
space. If E is webbed, then (E,BBanach) is a webbed convex bornological space with
a bornological web (V, b) that may be chosen in such a way that B(V,b) is finer than
the von Neumann bornology of E.

Proof. Let W be a topological web on E. By (4.5) we find another topological
web on E which is given by V (n0, . . . , nk) := 1

2k W (n0, . . . , nk). For s : N → N
define b(s) : N → R>0 to be constant with value 1. We claim that (V, b) is
a bornological web for (E,BBanach):
(BW1)–(BW3) are clear.
(BW4): Let s : N → N be given and choose yk ∈ Vs,k, for all k ∈ N. We then find
xk ∈ Ws,k with xk = 2kyk, for all k ∈ N. Because W satisfies (TW5),

∑
k λkxk

converges for every choice of λk ∈ D. Consequently we obtain a linear mapping
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f∗ : l1 → E defined by (λk)k∈N 7→
∑

k∈N λkxk. Let B denote the unit ball in l1,
then f∗(B) ⊆ K, where K is the bipolar {xk : k ∈ N}◦◦.

Observe that f∗ is the adjoint of f : E∗ → c0, f(u) := (u(xk))k∈N. The
mapping f is well-defined, since (xk)k∈N is a null sequence. The mapping f∗ is
(σ(l1, c0), σ(E,E∗))-continuous. Because B is the polar of the unit ball in c0, it is
σ(l1, c0)-compact, and hence f∗(B) is a σ(E,E∗)-compact disk. Since xk = f∗(ek),
for all k ∈ N, it follows that f∗(B) = K. So K is a σ(E,E∗)-compact disk, hence
in particular a bounded Banach disk (see [4, 8.4.4 (b)]). Clearly,

∑
k yk converges

in EK .
In order to prove the last assertion, note first that (V, b) is also a bornolog-

ical web for F when equipped with its von Neumann bornology, since BBanach

is contained therein (see (4.11.4)). Next, let (λk)k∈N be a real-valued sequence.
For every choice of xk ∈ Vs,k, k ∈ N, the resulting limit

∑
k≥n+1 xk belongs to

Vs,n, as follows from property (TW4) of V . Hence Ṽs,n ⊆ Vs,n, but
⋂

k∈N λkVs,k

is bounded, since for any given closed and absolutely convex 0-neighbourhood U
there is an index n ∈ N such that Vs,n ⊆ U (see [4, 5.2.1]). Hence, λnVs,n, and
consequently

⋂
k∈N λkVs,k, is absorbed by U . We thus see that the elements of

B(V,b) are bounded with respect to the canonical bornology of E. �

Corollary 4.9. Let E be a webbed locally convex space. Then (Euborn,BBanach)
carries a bornological web (V, b) such that the corresponding convex bornology B(V,b)

is contained in the von Neumann bornology of Euborn.

Proof. By (4.6) the ultrabornologification Euborn of a webbed locally convex
space E is also webbed. Now the preceding theorem applied to Euborn yields the
assertion. �

Theorem 4.10. De Wilde’s closed graph theorem (2.2) is a consequence
of (4.3).

Proof. We consider (E,BBanach) as domain space of f and (Fuborn,BBanach) as
codomain of f . Note that the bounded Banach disks of F and its ultrabornologi-
fication coincide and that, by (4.9), Fuborn carries a bornological web (V, b) such
that B(V,b) is finer than the canonical bornology of Fuborn.

By assumption f has bornologically closed graph with respect to (E,BBanach)
and (Fuborn,BBanach). Hence we may apply (4.3) in order to see that f is
(BBanach,B(V,b))-bounded, which in turn implies that f is bounded with respect to
BBanach on E and the von Neumann bornology on Fuborn.

Since E is ultrabornological, we finally get that f : E → Fuborn is continuous.
�

Thus one sees that De Wilde’s closed graph theorem actually is a statement in
the category of bounded linear mappings between separated convex bornological
spaces.

Finally, we state some stability properties for webbed convex bornological spaces.
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Theorem 4.11 (Stability of bornological webs).
(1): Let E be a Fréchet space, then E is bornologically webbed.
(2): Let E be a diagram in the category CBS of bounded linear mappings between

separated convex bornological spaces which is given by a monotonic sequence
E0 ⊆ E1 ⊆ . . . ⊆ En ⊆ . . . of webbed convex bornological spaces together
with the canonical bounded injections injn : En → En+1. Then the colimit
E∞ := lim−→n∈NEn =

⋃
n∈N En exists in CBS and is webbed again.

(3): Every complete separated convex bornological space with a countable basis
is webbed.

(4): In case B,B′ are separated convex linear bornologies on a vector space E,
the following is true: If B ⊆ B′ and (E,B) is webbed, then so is (E,B′).

(5): Every bornologically closed subspace F ⊆ E of a webbed convex bornological
space is webbed.

(6): Countable products of webbed convex bornological spaces are webbed.
(7): Countable projective limits of webbed convex bornological spaces are webbed.
(8): Countable coproducts of webbed convex bornological spaces are webbed.

Proof. (1): Being a Fréchet space, E carries a topological web and consequently
is bornologically webbed. For details see (4.8).

(2): First of all, we show that E∞ is separated:
The final convex bornology of an inductive limit in the category CBS is already
described by all subsets of sets of the form fi(B), where fi : Ei → E and B is
bounded in Ei. If in addition the mappings fi are injective, we observe that when
a set C is bounded in the final convex bornology, then f−1

i (C) ⊆ f−1
i (fi(B)) = B

is bounded in Ei for some i.
So if all Ei are separated convex bornological spaces, then the same is true for

the inductive limit.
For each n ∈ N let (V (n), b(n)) be the given bornological web on En. Now define

a web (V (∞), b(∞)) on E∞ as follows:

∀n ∈ N : V (∞)(n) := En and

∀ (n0, . . . nk) ∈ Nk+1, k > 0 : V (∞)(n0, . . . nk) := V (n0)(n1, . . . , nk) .

For s : N → N set s̃ := (s(1), s(2), . . .) and b(∞)(s) := c, where c(0) := 1 and
c(k) := b(s(0))(s̃)(k − 1), for k ≥ 1. Indeed, (V (∞), b(∞)) is a bornological web:

(BW1) – (BW3) are trivial.
(BW4): Let s : N → N be given and choose yk ∈ V (∞)(s(0), . . . , s(k)), k ∈ N.

Then the series
∑

k≥0 b(∞)(s)kyk = y0 +
∑

k≥1 b(s(0))(s̃)k−1yk converges bornolog-
ically in Es(0).

Note that a set which is bounded in some En belongs to the final convex bornol-
ogy of E∞.

(3): Let E be a complete separated convex bornological space with a countable
basis. Then there exists a monotonic basis B of the same bornology which consists
of Banach disks, and hence E =

⋃
B∈B EB = lim−→B∈BEB . Since the EB are Banach
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spaces and consequently bornologically webbed by (1), the bornological inductive
limit is again webbed.

(4): Indeed, one may use the same bornological web.

(5): For a given bornological web (V, b) on E define a bornological web (VF , bF )
on F by VF (n0, . . . , nk) := F ∩ V (n0, . . . , nk) and bF := b. Then (BW1) – (BW3)
are clear, and (BW4) follows from the assumption that F is bornologically closed
in E.

(6): First of all, notice that products of separated convex bornological spaces are
separated.

Let (En) be a sequence of webbed convex bornological spaces with correspond-
ing webs (V (n), b(n)).

There are bijections fn : Nn+1
∼=−→ N, for all n ∈ N. Given s(k) ∈ N, there

exists (a(k)
0 , . . . , a

(k)
k ) ∈ Nk+1 such that s(k) = fk(a(k)

0 , . . . , a
(k)
k ).

For n ∈ N we define mappings sn : N → N by sn(k) := a
(n+k)
n , and we set

∀k ∈ N : Vs,k := V
(0)
s0,k × V

(1)
s1,k−1 × . . .× V

(k)
sk,0 ×

∏
i>k

Ei .

If t : N → N is such that t(i) = s(i), 0 ≤ i ≤ k, then clearly Vs,k = Vt,k, since the fn

are bijections. We then get a well-defined mapping V :
⋃

k∈N Nk → P(
∏

n∈N En)
by setting V (∅) =

∏
n∈N En and V (n0, . . . , nk) := Vs,k, where s : N → N and

s(i) = ni, 0 ≤ i ≤ k.
Let further b : NN → RN

>0 be defined as follows:

∀s : N → N, ∀k ∈ N : b(s)(k) := min{b(i)(si)(k − i) : 0 ≤ i ≤ k}

Indeed, (V, b) is a bornological web on
∏

n∈N En:
(BW1): Clearly products of absolutely convex sets are absolutely convex.
(BW2) is true by definition.
(BW3): First, fix x = (xn)n∈N ∈

∏
n∈N En. Since V (0) satisfies (BW2) and

(BW3), there is a λ > 0 and a u : N → N with x0 ∈ λV
(0)
u,0 . Now set a

(k)
0 := u(k)

and a
(k)
i := 1, for k ≥ i ≥ 1. Then we obtain a mapping s : N → N via s(n) :=

fn(a(n)
0 , . . . , a

(n)
n ). By definition s0 = u. It is obvious that x is absorbed by the

set Vs,0 = V
(0)
s0,0 ×

∏
i>0 Ei.

Second, let x = (xk)k∈N ∈ Vs,n = V
(0)
s0,n×V

(1)
s1,n−1×. . .×V

(n)
sn,0×En+1×

∏
i>n+1 Ei

be given. Since the V (i) are topological webs, there are λ > 0 and mappings
ti : N → N such that ∀ 0 ≤ i ≤ n + 1 : xi ∈ λV

(i)
ti,n−i+1 and ∀ 0 ≤ i ≤ n, ∀ 0 ≤ k ≤

n− i : ti(k) = si(k). For i > n + 1 choose ti : N → N arbitrarily. Define t : N → N
by t(n) := fn(t0(n), t1(n − 1), . . . , tn(0)). Then ti coincides with ti, for 0 ≤ i ≤
n + 1. Hence x ∈ λ

(
V

(0)
t0,n+1 × V

(1)
t1,n × . . .× V

(n+1)
tn+1,0 ×

∏
i>n+1 Ei

)
= Vt,n+1. Since

t(k) = fk(t0(k), t1(k − 1), . . . , tk(0)) = fk(s0(k), s1(k − 1), . . . , sk(0)) = s(k) for
0 ≤ k ≤ n, V satisfies (BW3).
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(BW4): Since for countable products of separated convex bornological spaces
the concept of bornological convergence coincides with the componentwise borno-
logical convergence, it suffices to show that for a given sequence s : N → N and
xk ∈ Vs,k the n-th projection of the series

∑
k b(s)kxk converges bornologically in

En, for all n ∈ N. Indeed, we have

prn

(
l∑

k=0

b(s)kxk

)
=

n−1∑
k=0

b(s)kx
(n)
k +

l∑
k=n

b(n)(sn)(k − n) · b(s)k

b(n)(sn)(k − n)
x

(n)
k

=
n−1∑
k=0

b(s)kx
(n)
k +

l∑
k=n

b(n)(sn)(k − n) y
(n)
k−n,

for all l ≥ n. Observe that by the definition of b(s)

∀k ≥ n :
∣∣∣∣ b(s)k

b(n)(sn)(k − n)

∣∣∣∣ ≤ 1

and that the sets V
(n)
sn,k−n are circled. Hence y

(n)
k−n := b(s)k

b(n)(sn)(k−n)
x

(n)
k belongs to

V
(n)
sn,k−n. Now the series

∑
k≥n b(n)(sn)(k−n) y

(n)
k−n converges bornologically, since

(En, (V (n), b(n))) is a webbed convex bornological space, and we are done.

(7): The projective limit of a diagram F is the bornologically closed linear subspace

{(xα) ∈
∏

F(α) : F(f)(xα) = xβ for all f : α → β}.

Now the assertion is a consequence of (6) and (5).

(8): Let (En)n∈N be a sequence of webbed convex bornological spaces. Then the
direct sum may be obtained in the following way:⊕

n∈N
En = lim−→n∈N

n∏
i=0

Ei ,

where equality holds in the category CBS. Now (4) and (2) imply (5). �
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