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SOME APPLICATIONS OF PARABOLIC COMPARISON
PRINCIPLES TO THE STUDY OF DECAY ESTIMATES

C.-P. DANET

Abstract. This paper is concerned with the asymptotic behavior of solutions of
general nonlinear parabolic equations. We consider a boundary value problem which

was treated by Reynolds in a classical paper (J. Diff. Equations 12 (1972), 256–261).

Our goal is to prove by different means a version of the main result in the above
mentioned paper. We also point out that it remains valid under some weaker hy-
potheses if the working domain is cylindrical.

1. Introduction

We consider the problem:

Qu = −Dtu + aij(x, t, u,Du)Diju + b(x, t, u,Du) = 0 inΩ× IR+

u = h onS,
(1)

where Ω is a bounded domain in IRn and S are the “side walls” ∂Ω× [0,∞). Here
IR+ = {t ∈ IR|t > 0}, and b(x, t, z, p) is differentiable with respect to the z and p
variables in Ω×IR+×IR×IRn. The summation convention is followed throughout.

We make the following assumptions:
The operator Q is strictly parabolic in the sense that there exists a constant λ > 0
such that,

λ|ξ2| ≤ aij(x, t, z, p)ξiξj ,(2)

for all ξ = (ξ1, . . . , ξn) ∈ IRn \ {0} and for all (x, t, z, p) ∈ Ω× IR+ × IR× IRn.∣∣∣∣ ∂b

∂pi

∣∣∣∣ = |Dpi
b| ≤ β(3)

in Ω× IR+ × IR× IRn, for i = 1, . . . , n, where β > 0 is a constant.

∂b

∂z
= Dzb ≤ C =

β + 1 + δ

e(β+1+δ)diamΩ
(4)
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in Ω× IR+× IR× IRn where diamΩ is the diameter of Ω, and δ is a strictly positive
constant

|b(x, t, 0, 0)| ≤ K1e
−µ1t(5)

and

|h(x, t)| ≤ K2e
−µ2t(6)

in ∂Ω× IR+, where K1,K2, µ1, µ2 are strictly positive constants.
Reynolds [5] proved (alongside with other relations) decay for the classical solution
u of problem (1) when

Dzb ≤ C∗(x, t) inΩ× IR+ × IR× IRn,

lim sup
t→∞

C∗(x, t) ≤ 0 inΩ× IR+.(7)

Our main purpose here is to relax the condition (7) allowing lim supt→∞ C∗(x, t) ≥
α > 0, where α is a constant (see condition (4)) and to note that the full conditions
(1.5.a) (i.e. b(x, t, 0, 0) is continuous in Ω× IR+),
(1.5.b) (i.e. aij are continuous in Ω× IR+ × IR× IRn, i, j = 1, . . . , n),
(1.5.c) (i.e. Dpi

b is continuous in Ω× IR+ × IR× IRn, i = 1, . . . , n) and
(1.5.d) (i.e. Dzb is continuous in Ω× IR+ × IR× IRn, i = 1, . . . , n)
in [5] are not needed if the working domain is supposed cylindrical. Moreover our
decay remains valid for strong solutions u ∈ C0(Ω × IR+) ∩ W 2,1

n+1,loc(Ω × IR+).
W 2,1

n+1(D), D ∈ IRn+1 is defined to be the completion of C∞(D) under the norm

||u||W 2,1
n+1(D) = ||Dtu||Ln+1(D)+

∑
||Diju||Ln+1(D)+

∑
||Diu||Ln+1(D)+ ||u||C0(D).

Most decay results (see [2], [5], [7]) are stated under the restriction “there exists
(at least) an i such that aii is bounded below”. We next show, using a method
due to Hu and Yin ([4]), that a decay holds without this restriction. The proofs
are based on the well known Nagumo-Westphal Lemma ([6, p. 187]) as well as on
the following comparison principle:

Theorem 1. Let u, v ∈ C0(ΩT ) ∩W 2,1
n+1,loc(ΩT ) satisfy Qu ≥ Qv in ΩT ,u ≤ v

on ST . Assume that
i) Q is uniformly parabolic in ΩT ,
ii) the coefficients aij are independent of z,
iii) the coefficient b is non-increasing in z for each (x, t, p) ∈ ΩT × IRn,
iv) the coefficients aij , b are continuously differentiable with respect to the p

variables in ΩT × IR× IRn.
Then u ≤ v in ΩT .
Here ΩT = Ω× (0, T ], ST = Ω× {0} ∪ ∂Ω× [0, T ].

Proof. We will imitate the proof of [3, Theorem 10.1, p. 263]. The details are
left to the reader.
Step 1. Write Qu − Qv = Lw = −Dtw + aij(x, t)Dijw + bi(x, t)Diw ≥ 0 in
Ω+

T = {(x, t) ∈ ΩT | w(x, t) > 0}, where w = u− v.



SOME APPLICATIONS OF PARABOLIC COMPARISON PRINCIPLES 229

Step 2. Prove a similar result to [3, Theorem 9.6, p. 235], i. e. if u ∈ W 2,1
n+1,loc(ΩT )

satisfies Lu ≥ 0 in ΩT , then u cannot achieve a maximum in ΩT , unless it is a
constant. Here L is uniformly parabolic in ΩT and bi are bounded in ΩT To
prove this result use an Alexandrov, Bakelman, Pucci, Krylov and Tso maxi-
mum principle (for example [1, Corollary 1.16, p. 548]), an auxiliary function
v(x, t) = e−α[r2+(t−t0)

2] − e−α(R2+T 2), α large and imitate the proof of Theorem
9.6.
Step 3. Use Step 1 and Step 2 to conclude that

max
ΩT

+
w = max

∂ΩT
+

w.

Step 4. Use Step 3, the continuity of w and the boundary conditions to obtain

w ≤ 0 inΩT .

�

2. Main results

We are now in position to prove our main results.

Theorem 2. Let (2)–(6) hold. If u is a classical solution of (1) (i.e. u ∈
C0(Ω× IR+) ∩ C2,1(Ω× IR+) then limt→∞ |u(x, t)| = 0 uniformly in Ω× IR+

Proof. We restrict ourselves to the case aij = δij . We assume initially that u
solves Qu ≥ 0 in Ω×IR+. We also assume that Ω lies in the strip 0 < x1 < diamΩ.
We choose as comparison function, the strictly positive function

w(x, t) = e−rt[γ − eηx1 ],

where the strictly positive constants r, η and γ are to be chosen below.
Hence

Qw = e−rteηx1

[
r
( γ

eηx1
− 1

)
− η2

]
+ b(x, t, w, D1w, 0, . . . , 0, 0).

By the mean value theorem we get

b(x, t, w, D1w, 0, . . . , 0, 0) = b(x, t, 0, . . . , 0, 0) + wDzb(ξ) + D1wDp1b(ξ).

By (3), (4) and (5)

b(x, t, w, D1w, 0, . . . , 0, 0) ≤ K1e
−µ1t + Cw + β|D1w|

in Ω× IR+. We now have

Qw ≤ e−rteηx1

[
r
( γ

eηx1
− 1

)
− η2 + C

( γ

eηx1
− 1

)
+ βη + K1e

(r−µ1)t
]
.

We select r small such that

r
( γ

eηx1
− 1

)
<< 1 inΩ

and
0 < r < min{1, µ1, µ2}

to obtain
Qw ≤ e−rteηx1

[
δ − η2 + C(γ − 1) + βη

]
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in Ω × [σ,∞), where δ > 0 is any positive constant and σ is a sufficiently large
constant.

Choose η = β + 1 + δ and γ = eηdiamΩ + 1.
It follows that

Qw < 0 ≤ Qu

in Ω × [σ,∞). The Nagumo-Westphal Lemma tells us that u < w in Ω × [σ,∞).
Since −u solves a similar equation we obtain |u| < w in Ω× [σ,∞),
and the result follows. �

In Theorem 1, the condition “there exist an i such that aii > λ in Ω × IR+ ×
IR× IRn” cannot be relaxed to allow aii > 0, i = 1, 2, . . . n. This is possible in

Theorem 3. Suppose that the matrix [aij ] is semipositive definite and that
relation (3) holds. If in addition the following assumptions are satisfied

aij are bounded in Ω× IR+ × IR× IRn for i 6= j, i, j = 1, . . . , n.(8)

aii are bounded above in Ω× IR+ × IR× IRn for i, j = 1, . . . , n.(9)

Dzb ≤
K1

t2+δ
in Ω× IR+ × IR× IRn.(10)

b(x, t, 0, 0) ≤ K2

t2+δ
in Ω× IR+,(11)

where K1, K2 and δ are strictly positive constants,
then the classical solution of problem (1) satisfies limt→∞ |u(x, t)| = 0 uniformly
in Ω× IR+.

Proof. For the sake of simplicity we take aij = δij . Let us assume initially that
Ω is of class C2.

We define the distance function d(x) = dist(x, ∂Ω). For µ > 0 small (µ need to
be less than 1

K where K is an upper bound for the normal curvatures of Ω ) we
set Ωµ = {x ∈ Ω|d(x) < µ}. [3, Lemma 14.16, p. 335] tells us that the function d

is smooth, namely d ∈ C2(Ωµ).
In a principal coordinate system (see [3, p. 354]) we have for small enough µ

∆d2 + 2βd
∑

|Did|+ 2 = 2(1 + d∆d) + 2βd + 2 ≤ 6 inΩµ.

We extend the function d to a strictly positive function in Ω, belonging to
C2(Ω), which we still denote by d, such that

∆d2 + 2βd
∑

|Did|+ 2 ≤ C

2
inΩ,

for some C > 0.
We choose w as comparison function, where

w(x, t) = ε− 1
d2 + Ct + 1

.
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Here ε is any strictly positive constant. Of course w(x, t) > 0 in Ω × [σ,∞), for
sufficiently large σ.
We get

Qw ≤ −C

(d2 + Ct + 1)2
+

1
(d2 + Ct + 1)2

[
∆d2 − 8d2|Dd|2

d2 + Ct + 1

]
+ b(x, t, w, Dw)

in Ω× [σ,∞).
Using the mean value theorem, (10) and (11) we obtain

Qw ≤ −1
(d2 + Ct + 1)2

[
C −

(
∆d2 − 8d2|Dd|2

d2 + Ct + 1

)
−εK1(d2 + Ct + 1)2

t2+δ
− K2(d2 + Ct + 1)2

t2+δ
− 2βd

∑
|Did|

]
in Ω× [σ,∞).
Hence Qu < 0 ≤ Qw in Ω×[σ,∞) and the proof follows by the Nagumo-Westphal
Lemma for smooth domains.

To remove the above restriction on Ω we approximate Ω by smooth domains. �

By virtue of Theorem 1 it is easy to check that the conclusion of Theorem 2 and
Theorem 3 remain valid for solutions u ∈ C0(Ω× (0,∞)) ∩W 2,1

n+1,loc(Ω× (0,∞)).
Similar decay estimates for fully nonlinear parabolic operators defined on non
cylindrical domains can be inferred from the corresponding results for quasilinear
equations. One can easily check that

−Dtu + F (x, t, u,Du, D2u) = −Dtu + aij(x, t, u,Du)Diju + b(x, t, u,Du)

where,

aij(x, t, z, p) =
∫ 1

0

Fij(x, t, z, p, sD2u)ds,

b(x, t, z, p) = F (x, t, z, p, 0).

Here F = F (x, t, z, p, r), r = [rij ] is a matrix and Fij = ∂F
∂rij

.
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