ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXV, 1 (2006)
p. 137 - 146
Regular additively inverse semirings
M. K. Sen and S. K. Maity
Abstract. 
In this paper we show that in a regular additively inverse semiring (S, +, ×)
with 1 satisfying the conditions
    (A)     a(a + a') = a + a';       
(B)    a(b + b') = (b + b')a,    
    and     (C)     a + a(b + b') = a,
for all a, b Î S, the sum of two principal left ideals is again a principal left ideal.
Also, we decompose S as a direct sum of two
mutually inverse ideals.
Keywords:
Additive inverse semiring, regular semiring, mutually inverse ideals.  
AMS Subject classification:16A78, 20M10, 20M07.
Download:    
Adobe PDF
   
Compressed Postscript
 
   
Version to read:      
Adobe PDF
Acta Mathematica Universitatis Comenianae
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295755 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2005, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE