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COEFFICIENT ESTIMATES IN SUBCLASSES
OF THE CARATHÉODORY CLASS RELATED

TO CONICAL DOMAINS

S. KANAS

Abstract. We study some properties of subclasses of of the Carathéodory class

of functions, related to conic sections, and denoted by P(pk). Coefficients bounds,
estimates of some functionals are given.

1. Introduction

We denote by P the class of Carathéodory functions analytic in the unit disk
U = {z : |z| < 1}, e.g.

(1.1) P = {p : p analytic in U , p(0) = 1, Re p(z) > 0}.

Some special subclasses of P play an important role in geometric function theory
because of their relations with subclasses of univalent functions. Many such classes
have been introduced and studied; some became the well-known, for instance,
the class of analytic functions p in the unit disk U such that p(0) = 1 and p ≺
(1+Az)/(1+Bz), that is the class of functions for which p(U) is a subset of a disk,
or a half-plane. The other choice is the class of all p such that p ≺ [(1+z)/(1−z)]γ .
In this case p(U) is a subset of a sector, contained in a right half-plane with a vertex
at the origin and symmetric about the real axis. Here the symbol “≺” denotes the
subordinations (cf. e.g. [7]).

Let k ∈ [0,∞). For arbitrarily chosen k let Ωk denote the following domain

(1.2) Ωk =
{
u + iv : u2 > k2(u− 1)2 + k2v2

}
.

Note that Ωk is convex and symmetric in the real axis and 1 ∈ Ωk for all k. Ω0 is
nothing but the right half-plane and when 0 < k < 1, Ωk is an unbounded domain
enclosed by the right branch of the hyperbola

(1.3)
(

(1− k2)u + k2

k

)2

−
(

(1− k2)v√
1− k2

)2

= 1
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with foci at 1 and −(1 + k2)/(1 − k2). When k = 1, the domain Ω1 is still
unbounded domain enclosed by the parabola

2u = v2 + 1

with the focus at 1. When k > 1, the domain Ωk becomes bounded domain being
the interior of the ellipse(

(k2 − 1)u− k2

k

)2

−
(

(k2 − 1)v√
k2 − 1

)2

= 1

with foci at 1 and (k2 + 1)/(k2 − 1). It should be noted that, for no choice of
parameter k, Ωk reduce to a disk. {Ωk, k ∈ [0,∞)} forms the family of domains
bounded by conic sections, convergent in the sense of the kernel convergence.

Let pk denote the conformal mapping of U onto Ωk determined by conditions
pk(0) = 1, p′k(0) > 0. The concrete form of pk was given in [7], [8], [11] and in [5].

Theorem 1.1. Let k ∈ [0,∞). The conformal mapping of U onto Ωk is of the
form

(1.4) pk(z) =


1+z
1−z for k = 0,

1 + 2
1−k2 sinh2 (A(k)arctanh

√
z) for k ∈ (0, 1),

1 + 8
π2 (arctanh

√
z)2 for k = 1,

1 + 2
k2−1 sin2

(
π

2K(t)F(
√

z/t, t)
)

for k > 1,

where A(k) = (2/π) arccos k, F(w, t) is the Jacobi elliptic integral of the first kind

(1.5) F(w, t) =
∫ w

0

dx√
(1− x2)(1− t2x2)

,

and k = cosh µ(t) = cosh
(

πK′(t)
2K(t)

)
, t ∈ (0, 1).

By P(pk) we denote the subclass of the Carathéodory class P, consisting of
functions p, analytic in U , p(0) = 1, Re p(z) > 0 in U , and such that p ≺ pk in U .
Observe that when k varies, P(pk) generate a number of subclasses of the class P.

The aim of this paper is to present some properties of the class P(pk). In
Section 2 we prove the continuity of functions “extremal” in P(pk) as regards the
parameter k. Some coefficients problems are treated in Section 3, in particular we
obtain the sharp bound on the coefficient functional |b2 − µb2

1| (−∞ < µ < ∞).

2. General properties of the family P(pk)

We recall some notation and properties of Jacobi elliptic functions which will be
used in next theorems (cf. e.g. [1], [4]).

The elliptic integral (or normal elliptic integral) of the first kind has been defined
at (1.5). By K(t) we denote the complete elliptic integral of the first kind

K(t) = F(1, t), and let K′(t) = K(t′), t′ =
√

1− t2, t ∈ (0, 1).
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Let E(w, t) denote the elliptic integral of the second kind, e.g.

(2.1) E(w, t) =
∫ w

0

√
1− t2x2

1− t2
dx,

and let E(t) = E(1, t) be the complete elliptic integral of the second kind, t ∈ (0, 1).
Also, set E ′(t) = E(t′). Changing the variable by x = sin θ integrals (1.5) and (2.1)
reduce to the Legendre form

F(ϕ, t) =
∫ ϕ

0

(1− t2 sin2 θ)−1/2dθ,

E(ϕ, t) =
∫ ϕ

0

√
1− t2 sin2 θdθ.

The equation z = F(ϕ, t), where z is assumed to be real, defines ϕ as a function
of z which has been called by Jacobi the amplitude of z and denoted ϕ = am(z, t).
Further Jacobi introduced sin(amz), and cos(amz) (sinus and cosinus amplitudi-
nus) that have several applications in geometry and mechanics. Among numerous
interesting properties of elliptic functions, the following will be used in the proof:

(2.2) lim
t→0+

K(t) = lim
t→0+

E(t) = lim
t→1−

K′(t) =
π

2
,

(2.3) lim
t→0+

K′(t) = ∞, lim
t→0+

E ′(t) = 1,

(2.4)

lim
t→1−

K(t) = ∞, lim
t→1−

E(t) = 1,

lim
t→1−

(1− t2)K(t) = 0, lim
t→1−

K′(t)
K(t)

= 0,

(2.5) lim
t→0+

K′(t)
K(t)

= ∞, so that lim
t→0+

sinh
(

πK′(t)
4K(t)

)
= ∞.

Functions K,K′, E , E ′ are continuous and differentiable on (0, 1), and

(2.6)
dK(t)

dt
=
E(t)− (1− t2)K(t)

t(1− t2)
,

dE(t)
dt

=
E(t)−K(t)

t
,

dK′(t)
dt

=
t2K′(t)− E(t)

t(1− t2)
,

from which the Legendre identity can be derived (cf. [1, p. 112])

E(t)K′(t) + E ′(t)K(t)−K(t)K′(t) =
π

2
.

Further, (2.6) and the above identity yields the result

d[K′(t)/K(t)]
dt

=
K(t)K′(t)− E(t)K′(t)− E ′(t)K(t)

t(1− t2)K2(t)

= − π

2t(1− t2)K2(t)
.(2.7)
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Moreover

(2.8)
π

1 +
√

1− t2
≤ K(t) ≤ π

2
√

1− t2
,

(c.f. [2], see also [3]).
Finally, by a simple computation we arrive at

(2.9) lim
t→1−

F(
√

z/t, t) = arctanh
√

z.

We now return to functions “extremal” in the class P(pk).

Theorem 2.1. Functions pk is continuous as regards the parameter k ∈ [0,∞).

Proof. First we observe that

lim
k→0+

pk(z) = lim
k→0+

2
1− k2

sinh2
(
A(k)arctanh

√
z
)

+ 1

= 2 sinh2

(
arcsinh

√
z√

1− z

)
+ 1 = p0(z),

since limk→0+ A(k) = limk→0+(2/π) arccos k = 1.
Simultaneously, by (1.4) and setting t = 2arctanh

√
z one gets

lim
k→1−

pk(z) = lim
k→1−

(
1 +

2
1− k2

sinh2
(
A(k)arctanh

√
z
))

= 1 + 2 lim
k→1−

sinh2 A(k)t
2

1− k2

= 1 +
t2

2
lim

k→1−

(
A(k)√
1− k2

)2
(

sinh A(k)t
2

A(k)t
2

)2

= 1 +
t2

2

(
lim

k→1−

−2
π
√

1−k2

−k√
1−k2

)2(
lim

k→1−

sinh A(k)t
2

A(k)t
2

)2

= 1 +
2
π2

t2 = p1(z).

Here, A(k) = (2/π) arccos k → 0+ as k → 1−.
Finally, we will prove the right-hand continuity of pk at k = 1 if we show that

(2.10) lim
k→1+

sin
(

π
2K(t)F(

√
z/t, t)

)
√

k2 − 1
=

2
π

arctanh
√

z.

Note that k = cosh
(

πK′(t)
2K(t)

)
, so that

√
k2 − 1 = sinh

(
πK′(t)
2K(t)

)
and if k → 1+ then

t → 1−, thus (2.10) is equivalent to

(2.11) lim
t→1−

sin
(

π
4K(t)F(

√
z/t, t)

)
sinh

(
πK′(t)
2K(t)

) =
2
π

arctanh
√

z.
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Since by (2.4) and (2.9) both, the numerator and the denominator tend to 0 we
need to prove, by the l’Hospital rule, that there exists the limit of the quotient of
derivatives of (2.11), or equivalently

lim
t→1−

(
cos
(

π

2K(t)
F(
√

z/t, t)
)
·

·

π
2

[
E(t)−(1−t2)K(t)

t(1−t2)K2(t) F(
√

z/t, t)− 1
K(t)

d[F(
√

z/t,t)]

dt

]
cosh

(
πK′(t)
2K(t)

)
π2

4
1

t(1−t2)K2(t)

 .(2.12)

Set

D(z, t) =
(
E(t)− (1− t2)K(t)

)
F(
√

z/t, t)− t(1− t2)K(t)
d[F(

√
z/t, t)]

dt
.

Then (2.12) reduces to

2
π

lim
t→1−

cos
(

π
2K(t)F(

√
z/t, t)

)
cosh

(
πK′(t)
2K(t)

) D(z, t).

Differentiating with respect to t we obtain from (1.5)

d[F(
√

z/t, t)]
dt

=
∫ √z/t

0

tx2√
(1− x2)(1− t2x2)3

dx−
√

z

2t
√

t− z
√

1− tz

so that

lim
t→1−

d[F(
√

z/t, t)]
dt

=
1
4

log
1−

√
z

1 +
√

z
− 1

2(1−
√

z)
.

Since, by (2.4)

lim
t→1−

t(1− t2)K(t) = 0, and lim
t→1−

E(t) = 1

then using (2.9) we obtain

lim
t→1−

D(z, t) = arctanh
√

z.

Therefore, the above and first and fourth relation from (2.4) finally yield

2
π

lim
t→1−

cos
(

π
2K(t)F(

√
z/t, t)

)
cosh

(
πK′(t)
2K(t)

) D(z, t) =
2
π

arctanh
√

z,

that is equivalent to (2.11). It completes the proof. �

Theorem 2.2. Let k ∈ [0,∞) be fixed. The function pk(z) has the positive
Taylor coefficients around the origin.
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The proof of Theorem 2.2 appeared complicated for the case k ∈ (1,∞) and
has been proved in [11] using the theory of continued fractions. We quote it here
for the sake of completeness. Applying Theorem 2.2 estimates of the modulus and
the real part of p ∈ P(pk) were derived [11].

3. Coefficient bounds

Now, we find some bounds in the family P(pk). The first problem, we discus, is
the Fekete-Szegö-Goluzin’s problem in the class P(pk). We begin by proving the
theorem that is itself interesting, since it improves the Livingston result in P(pk)
[12]. For fixed k, set

pk(z) = 1 + P1(k)z + P2(k)z2 + · · · , z ∈ U .

Theorem 3.1. Let 0 ≤ k < ∞ be fixed. Then

(3.1) |P 2
1 (k)− P2(k)| ≤ P1(k).

Proof. The inequality (3.1) is obvious for k = 0, by Livingston result [12],
therefore we assume k > 0. We consider separately cases:

1. k ∈ (0, 1),
2. k = 1,
3. k > 1.

Case 1. By virtue of (1.4) a precise form of coefficients of pk were derived
(cf. [5], [9])

P1(k) =
2A2(k)
1− k2

, P2(k) =
2A2(k)(A2(k) + 2)

3(1− k2)
= P1(k)

A2(k) + 2
3

,

A(k) =
2
π

arccos k.

Since P1(k) is positive for k ∈ (0, 1), the inequality (3.1) reduces to proving |P1(k)−
(A2(k) + 2)/3| ≤ 1. Note that

P1(k)− A2(k) + 2
3

=
A2(k)(5 + k2) + 1− k2

3(1− k2)
> 0

for k ∈ (0, 1), then it suffices to show the inequality P1(k)− (A2(k) + 2)/3 ≤ 1, or
equivalently

5(1− k2)
k2 + 5

− 4
π2

arccos2 k ≥ 0.

Set

h(k) :=

√
5(1− k2)
k2 + 5

− 2
π

arccos k.

Then functions h is well defined on a closed interval [0, 1] and

h′(k) =
2

π
√

1− k2

[
1− 3

√
5πk

(k2 + 5)3/2

]
.
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Note that h′(0) > 0, h′(1−) < 0. Since g(k) = 3
√

5πk
(k2+5)3/2 is monotone then there

exists the only point k0 ∈ (0, 1) such that h′(k0) = 0. Then h′(k) > 0 in 0 < k < k0

and h′(k) < 0 in 0 < k0 < k < 1. Therefore h(k) ≥ min{h(0), h(1)} = 0 in
0 ≤ k < 1, so that the proof of the case 1. is complete.

Case 2. In this instance P1(k) = 8/π2 and P2(k) = 16/(3π2) = 2P1(k)/3 (cf. [14],
[15]). The inequality (3.1) now follows immediately by means of the relation
−1/3 < P1(k) < 5/3.

Case 3. To this purpose we use the following form of pk for k > 1

(3.2) pk(z) =
1

k2 − 1
sin
(

π

2K(t)
F(u(z)/

√
t, t

)
+

k2

k2 − 1
,

(cf. [5, p. 20]), where u(z) = (z−
√

t)/(1−
√

tz) and k = cosh(µ(t)/2) for t ∈ (0, 1).
In view of [5]

P1(k) =
π2

4(k2 − 1)K2(t)
√

t(1 + t)
,

P2(k) = P1(k)
4K2(t)(t2 + 6t + 1)− π2

24K2(t)
√

t(1 + t)
=: P1(k)D(k),

see also [9]. Since P1(k) is positive for all t ∈ (0, 1), the inequality (3.1) will hold if
|P1(k)−D(k)| ≤ 1, equivalently P1(k) ≤ D(k)+1 and D(k) ≤ P1(k)+1. Now, we
will show that the inequality D(k) ≤ P1(k) + 1 holds. We rewrite the inequality
D(k) ≤ P1(k) + 1 into the form

(3.3)
4K2(t)(t2 + 6t + 1)− π2

4K2(t)
≤ 3π2

2(k2 − 1)K2(t)
+ 6

√
t(1 + t).

Observing that k2 − 1 = sinh2(πK′(t)/(4K(t))), the relation (3.3) becomes

(3.4) t2 − 6t
√

t + 6t− 6
√

t + 1− π2

4K2(t)
≤ 3π2

2K2(t) sinh2
(

πK′(t)
4K(t)

) .

Observe next, that if k → 1+ then t → 1− and the case k → ∞ corresponds to
the case t → 0+. Thus, we may study the inequality (3.4) as regards t ∈ (0, 1).
The left-hand side function satisfies

(3.5) t2−6t
√

t+6t−6
√

t+1− π2

4K2(t)
≤ t2−6t

√
t+6t−6

√
t+1− (1− t2).

by means of the right-hand estimation in (2.8). Set

w(t) := t2 − 6t
√

t + 6t− 6
√

t + 1− (1− t2) = 2t2 − 6t
√

t + 6t− 6
√

t.

The function w(t) is defined on the closed interval [0, 1] and it decreases contin-
uously from w(0) = 0 to w(1) = −4. Indeed w′(t) = 4t − 9

√
t + 6 − 3/

√
t =

(t− 3) + 3(
√

t− 1)3/
√

t < 0 on (0, 1). Therefore w(t) < 0 on (0, 1).
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Now we show that the right-hand function of (3.4) is positive in (0, 1) and
increases from 0 to 96/π2. Let

W (t) :=
3π2

2K2(t) sinh2
(

πK′(t)
4K(t)

) .

Making use the first relation in (2.2) and the last relation in (2.5) we find that

lim
t→0+

W (t) = 0.

Also, after necessary transformations, we obtain

lim
t→1−

W (t) = lim
t→1−

24
(

πK′(t)
4K(t)

)2

(K′)2(t) sinh2
(

πK′(t)
4K(t)

) =
96
π2

,

because of the last formula in (2.4) and the fact that lim
x→0

sinhx/x = 1. Now, we

will show that W (t) is increasing. Differentiating W (t) and using (2.6) and (2.7)
one gets

W ′(t) = −
3π2

[
(E(t)− (1− t2)K(t)) sinh

(
πK′(t)
4K(t)

)
− π2

8K(t) cosh
(

πK′(t)
4K(t)

)]
t(1− t2)K3(t) sinh3

(
πK′(t)
4K(t)

) .

In order to show that W ′(t) > 0 it suffices to prove that the expression in the
square brackets of W ′(t) is negative for t ∈ (0, 1). Such relation may be rewritten
in the form

(E(t)− (1− t2)K(t)) sinh
(

πK′(t)
4K(t)

)
<

π2

8K(t)
cosh

(
πK′(t)
4K(t)

)
or

(3.6)
8
π2

[
E(t)− (1− t2)K(t)

K(t)

]
< coth

(
πK′(t)
4K(t)

)
.

Set
φ(t) = E(t)− (1− t2)K(t).

Then, in view of (2.6) we have

dφ(t)
dt

=
E(t)−K(t)

t
− −2t2K(t) + E(t)−K(t) + t2K(t)

t
= tK(t) > 0

in (0, 1). Moreover φ(0+) = 0 and φ(1−) = 1 by the second and third relation in
(2.4). Thus 0 < φ(t) < 1 in (0, 1). Note also that K(t) is increasing from π/2 to
∞, when t ∈ (0, 1). Therefore

8
π2

[
E(t)− (1− t2)K(t)

K(t)

]
<

8
π2

1
π/2

=
16
π3

< 1,

whereas the right-hand side of (3.6) is greater than 1 since
(

πK′(t)
4K(t)

)
> 0. Then

the inequality (3.6) holds, equivalently W ′(t) > 0 on (0, 1) so that W increases
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on (0, 1). Thus, having in view properties of w(t) and W (t) we conclude that
w(t) ≤ W (t) for all t ∈ (0, 1), so that (3.4) is satisfied.

Next, we will show that P1(k) ≤ D(k) + 1 holds for t ∈ (0, 1), or equivalently

3π2

2K2(t) sinh2
(

πK′(t)
4K(t)

) ≤ t2 + 6t
√

t + 6t + 6
√

t + 1− π2

2K2(t)
,

by reversing the inequality in (3.4). Since K(t) > π
2 we have − π2

4K2(t) > −1 so that
it suffices to show that

(3.7)
3π2

2K2(t) sinh2
(

πK′(t)
2K(t)

) ≤ t2 + 6t
√

t + 6t + 6
√

t.

Set
r(t) := t2 + 6t

√
t + 6t + 6

√
t.

Then r′(t) = 2t + 9
√

t + 6 + 3/
√

t > 0 on (0, 1) and r(0) = 0, r(1) = 19. Moreover
r(1/

√
2) ≈ 14.158379 > 96

π2 whereas the value 96
π2 is the supremum of the left hand

side of (3.7) as was shown in the first part of the proof of that case. Thus, it
suffices to show (3.7) for t ∈ (0, 1/

√
2). Since K(t) > π

2 then

3π2

2K2(t) sinh2
(

πK′(t)
4K(t)

) <
6

sinh2
(

πK′(t)
4K(t)

) .

Now, we will show that
6

sinh2
(

πK′(t)
4K(t)

) ≤ 6(t +
√

t) ≤ r(t)

for t ∈ (0, 1/
√

2], which concludes the desired result. The last inequality is obvious
therefore it suffices to show that

(3.8) (t +
√

t) sinh2

(
πK′(t)
4K(t)

)
− 1 ≥ 0.

Let

s(t) := (t +
√

t) sinh2

(
πK′(t)
4K(t)

)
− 1.

Now we prove that s(t) decreases in (0, 1/
√

2) to s(1/
√

2) > 0. Differentiating,
we obtain

s′(t) =
1
2

sinh
(

πK′(t)
2K(t)

)[(
1 +

1
2
√

t

)
tanh

(
πK′(t)
4K(t)

)
− π2(

√
t + 1)

4
√

t(1− t2)K2(t)

]
.

Since sinh
(

πK′(t)
2K(t)

)
is positive for t ∈ (0, 1/

√
2] then s′(t) < 0 if and only if the

expression in square brackets of s′(t) is negative, or equivalently(
1 +

1
2
√

t

)
tanh

(
πK′(t)
4K(t)

)
− π2(

√
t + 1)

4
√

t(1− t2)K2(t)
< 0.
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The above will be fulfilled if

2
√

t + 1
2(
√

t + 1)
tanh

(
πK′(t)
4K(t)

)
− π2

4(1− t2)K2(t)
< 0,

or, by means of the relation tanh x < 1, when the inequality

2
√

t + 1
2(
√

t + 1)
− π2

4(1− t2)K2(t)
< 0

holds. It is easy to see that b(t) = 2
√

t+1
2(1+

√
t)

is increasing on (0, 1/
√

2) with the

maximal value b(1/
√

2) ≈ 0.73. Let

c(t) :=
π2

4(1− t2)K2(t)
.

Since, by (2.6),

c′(t) =
π2

2
K(t)− E(t)

t(1− t2)2K3(t)

and K(t) > E(t) on (0, 1), then c′(t) > 0 on (0, 1) so does on (0, 1/
√

2) and therefore
c(t) > c(0+) = 1 for all t ∈ (0, 1/

√
2). Thus b(t) − c(t) < 0 for all t ∈ (0, 1/

√
2)

and hence s(t) decreases on (0, 1/
√

2).
Next, we show that s(0+) = ∞. Note that

sinh2

(
πK′(t)
4K(t)

)
=
(

πK′(t)
4K(t)

)2
[
1 +

1
3!

(
πK′(t)
4K(t)

)2

+ · · ·

]2

.

Then

lim
t→0+

(t +
√

t) sinh2

(
πK′(t)
2K(t)

)

= lim
t→0+

π2(1 +
√

t)
4K2(t)

√
t (K′(t))2

[
1 +

1
3!

(
πK′(t)
2K(t)

)2

+ · · ·

]2

.

By properties of K(t) at 0+ (the relation (2.2)) we have

lim
t→0+

π2(1 +
√

t)
4K2(t)

= 1,

so that we need to calculate the limit

lim
t→0+

√
t (K′(t))2 .

Applying (2.8) to the value
√

1− t2 we obtain

(3.9)
π

1 + t
≤ K(

√
1− t2) = K′(t) ≤ π

2t
,

and since
√

t/(1 + t)2 and
√

t/t2 tend to ∞, as t → 0+, we conclude that

(3.10) lim
t→0+

√
t (K′(t))2 = ∞.
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Thus also limt→0+ s(t) = ∞. Moreover s(1/
√

2) ≈ 0.9614 > 0 so that we obtain
the desired result. Hence the proof of the case 3. is complete. �

Theorem 3.2. Let 0 ≤ k < ∞ be fixed, and let a function p ∈ P(pk) be such
that p(z) = 1 + b1z + b2z

2 + · · · . Then

(3.11) |b2
1 − b2| ≤ P1(k).

The equality holds if p(z) is pk(z2) or one of its rotation.

Proof. Since p ≺ pk then, in view of a definition of the subordination, there
exists a function ω(z) = α1z + α2z

2 + · · · , |ω(z)| < 1 such that p(z) = pk(ω(z)),
therefore

1 + b1z + b2z
2 + · · · = 1 + P1(k)α1z + z2(P1(k)α2 + P2(k)α2

1) + · · · .

Comparing the coefficients of z and z2 we have b1 = P1(k)α1 and b2 = P1(k)α2 +
P2(k)α2

1, thus

|b2
1 − b2| = |P 2

1 (k)α2
1 − P1(k)α2 − P2(k)α2

1|
= |α2

1(P
2
1 (k)− P2(k))− P1(k)α2|

≤ |α1|2|P 2
1 (k)− P2(k)|+ |P1(k)||α2|.

For the Schwarz’ function ω the classical inequality |α2| ≤ 1−|α1|2 holds then, on
account (3.1), we conclude

|b2
1 − b2| ≤ |α1|2|P 2

1 (k)− P2(k)|+ |P1(k)|(1− |α1|2)
= |α1|2

[
|P 2

1 (k)− P2(k)| − P1(k)
]
+ P1(k)

≤ P1(k),

and the proof of the inequality of (3.11) is complete.
The equality in (3.11) holds if |b1| = 0 and |b2| = P1(k), or equivalently, p(z) is

pk(z2) or one of its rotations. �

Remark. Observe that the bound like (3.11) can be used in those subclasses
of Carathéodory class for which the inequality similar to (3.1) holds. Let

(3.12) q(z) = 1 + c1z + c2z
2 + · · · ,

be such that

(3.13) |c2
1 − c2| ≤ c1, with c1 ≥ 0,

it means q satisfies the bounds similar to (3.1). Then, reasoning along the same
line as in Theorem 3.2 we may prove that for p ∈ P(q), p(z) = 1+ b1z + b2z

2 + · · ·
the inequality

(3.14) |b2
1 − b2| ≤ c1,

is satisfied.
For instance, if 0 < γ ≤ 1 then the function ϕ(z) = [(1 + z)/(1 − z)]γ maps

the unit disk onto an angle, symmetric with respect to real axis, of width γπ and
contained in the right half-plane. Moreover, ϕ(z) = 1 + 2γz + 2γ2z2 + · · · . Then,
|c2

1 − c2| = 2γ2 ≤ 2γ = c1 therefore (3.13) is satisfied, so that (3.14) applies.
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Concluding, if p ∈ P(ϕ) = {q : q ≺ ϕ} and p(z) = 1 + b1z + b2z
2 + · · · , then

|b2
1 − b2| ≤ 2γ. This inequality remarkable improves the result |b2

1 − b2| ≤ 2,
due to Ma and Minda [13]. Similarly, the family P((1 + (1 − 2β)z)/(1 − z)) can
be treated. In this instance we obtain the inequality |b2

1 − b2| ≤ 2(1 − β) for
p ∈ P((1 + (1− 2β)z)/(1− z)).

Theorem 3.3. Let 0 ≤ k < ∞ be fixed, and let a function p ∈ P(pk) be of the
form p(z) = 1 + b1z + b2z

2 + · · · . Then

(3.15) |b2 − µb2
1| ≤

 P1(k)− µP 2
1 (k) µ ≤ 0,

P1(k) µ ∈ (0, 1],
P1(k) + (µ− 1)P 2

1 (k) µ ≥ 1.

When µ < 0 or µ > 1, the equality holds if p(z) is pk(z) or one of its rotations. If
0 < µ < 1 then the equality holds if p(z) = pk(z2) or one of its rotation.

Proof. Since p ≺ pk then by Rogosinski Subordination Theorem we have |bn| ≤
P1(k) for n ≥ 1 and each fixed k ∈ [0,∞) First assume that µ ≥ 1. In view of
Theorem 3.2, we have |b2 − b2

1| ≤ P1(k) therefore we obtain

|b2 − µb2
1| ≤ |b2

1 − b2|+ (µ− 1)|b1|2 ≤ P1(k) + (µ− 1)P 2
1 (k).

Next, suppose that µ ≤ 0. Then

|b2 − µb2
1| ≤ |b2|+ (−µ)|b1|2 ≤ P1(k)− µP 2

1 (k).

Finally, if 0 < µ ≤ 1 then µ = 1/t with t ≥ 1. Hence one gets

|b2 − µb2
1| = |b2 −

1
t
b2
1| =

1
t
|tb2 − b2

1| =
1
t
|(t− 1)b2 + b2 − b2

1|

≤ 1
t
[(t− 1)|b2|+ |b2 − b2

1|]

≤ 1
t
[(t− 1)P1(k) + P1(k)] = P1(k),

and the proof of all cases of (3.15) is complete.
When µ < 0 or µ > 1, the equality holds if and only if |b1| = P1(k), that is,

p(z) = pk(z) or one of its rotation. If 0 < µ < 1 then the equality holds if |b1| = 0
and |b2| = P1(k), or equivalently, p(z) is pk(z2) or one of its rotations. �

Remark. In the paper [13] Ma and Minda proved similar bounds in the class
P. For instance, when µ ≤ 0 authors obtained the estimate |b2 − µb2

1| ≤ 2 − 4µ.
Observe that in the case of P(pk) the result is far better; the same it holds in the
remaining range of the constant µ.
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