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SHARP UPPER BOUNDS ON THE SPECTRAL RADIUS OF
THE LAPLACIAN MATRIX OF GRAPHS

K. CH. DAS

Abstract. Let G = (V, E) be a simple connected graph with n vertices and e edges.
Assume that the vertices are ordered such that d1 ≥ d2 ≥ . . . ≥ dn, where di is the

degree of vi for i = 1, 2, . . . , n and the average of the degrees of the vertices adjacent
to vi is denoted by mi. Let mmax be the maximum of mi’s for i = 1, 2, . . . , n. Also,
let ρ(G) denote the largest eigenvalue of the adjacency matrix and λ(G) denote the
largest eigenvalue of the Laplacian matrix of a graph G. In this paper, we present
a sharp upper bound on ρ(G):

ρ(G) ≤
√

2e − (n − 1)dn + (dn − 1)mmax,

with equality if and only if G is a star graph or G is a regular graph.

In addition, we give two upper bounds for λ(G):

1. λ(G) ≤

⎧⎪⎪⎨
⎪⎪⎩

2 +
√∑n

i=1di(di−1)−(
1
2

∑n
i=1 di−1

)
(2dn−2)+(2dn−3)(2d1−2),

if dn ≥ 2,

2 +
√∑n

i=1 di(di − 1) − d1 + 1, if dn = 1,

where the equality holds if and only if G is a regular bipartite graph or G is a star
graph, respectively.

2. λ(G) ≤
d1 +

√
d2
1 + 4

[
2e

n−1
+ n−2

n−1
d1 + (d1 − dn)

(
1 − d1

n−1

)]
mmax

2
,

with equality if and only if G is a regular bipartite graph.

1. Introduction

Let G = (V,E) be a simple connected graph with the vertex set V ={v1, v2, . . . , vn}
and let e be the cardinality of the edge set E. To avoid trivialities we always assume
that n ≥ 2. We denote the line graph of G by LG. Assume that the vertices are
ordered such that d1 ≥ d2 ≥ . . . ≥ dn, where di is the degree of vi, for i =
1, 2, . . . , n. The set of neighbors of vi and the average of the degrees of the vertices
adjacent to vi are denoted by Ni and mi, respectively. Let mmax be the maximum
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of mi’s for i = 1, 2, . . . , n. Also, let D(G)=diag{d1, d2, . . . , dn} be the diagonal
matrix of vertex degrees. The Laplacian matrix of G is L(G) = D(G) − A(G),
where A(G) is the (0, 1)-adjacency matrix of G. Both A(G) and L(G) are real
symmetric matrices and they have real eigenvalues. The adjacency spectral radius,
ρ(G), of G is the largest eigenvalue of A(G). The Laplacian spectral radius, λ(G),
of G is the largest eigenvalue of L(G). It is known that the multiplicity of 0 as
the eigenvalue of L(G) is equal to the number of connected components of G. So
a graph G is connected if and only if the second smallest Laplacian eigenvalue is
strictly greater than 0.

The eigenvalues of the Laplacian matrix are important in graph theory, because
they have relations to numerous graph invariants including connectivity, expand-
ing property, isoperimetric number, maximum cut, independence number, genus,
diameter, mean distance, and bandwidth-type parameters of a graph (see, for ex-
ample, [1, 2, 16, 17] and the references therein). Especially, the largest and the
second smallest eigenvalues of L(G) (for instance [1, 2, 16, 17]) are probably the
most important information contained in the spectrum of a graph. Since the sum
of the second smallest Laplacian eigenvalue of a graph G and the largest Lapla-
cian eigenvalue of the complement graph of G is equal to n, it is not surprising at
all that the importance of one of these eigenvalues implies the importance of the
other. In many applications good bounds for the largest Laplacian eigenvalue of
G are needed (see, for instance, [1, 2, 16, 17]).

In 2001, Y. Hong et al. (see [12], Section 1), there are plenty of upper bounds
on the largest eigenvalue of the adjacency matrix of a graph G. We give another
upper bound for ρ(G) on n, e, mmax and dn.

In 2000, Y. Hong et al. (see [11], Section 1), a large number of upper bounds
on the sum of the spectral radius of a graph and its complement are presented.
We also give one upper bound on the sum of the spectral radius of a graph and
its complement in terms of n, d1 and dn.

Also we saw that a there is large number of upper bounds on the largest Lapla-
cian eigenvalue of a graph G (see [3], [5]), but all of them are in terms of di’s
and mi’s.

However, in 2001, J.-S. Li and Y.-L. Pan [15] proved that

λ(G) ≤
√

2d2
1 + 4e − 2dn(n − 1) + 2d1(dn − 1),(1)

with equality if and only if G is a regular bipartite graph, and in 2002, J.-L. Shu
et al. [20] presented the following result:

λ(G) ≤ dn +
1
2

+

√√√√(
dn − 1

2

)2

+
n∑

i=1

di(di − dn),(2)

with equality if and only if G is a star graph or G is a regular bipartite graph.
Likewise, we give three new upper bounds for λ(G), two depend only on the

degree sequences and the other depends on n, e, d1 and dn. Also we determine its
extremal graphs.
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2. Lemmas and Results

The following result is of Perron-Frobenius in matrix theory ([8], p. 66).

Lemma 2.1. [8] A non-negative matrix B always has a non-negative eigenvalue
r such that the moduli of all the eigenvalues of B do not exceed r. To this ‘maximal’
eigenvalue r there corresponds a non-negative eigenvector

BY = rY (Y ≥ 0, Y �= 0).

Lemma 2.2. [13] Let M = (mij) be an n × n irreducible nonnegative ma-
trix with spectral radius λ1(M), and let Ri(M) be the ith row sum of M , i.e.,
Ri(M) =

∑n
j=1 mij. Then

min{Ri(M) : 1 ≤ i ≤ n} ≤ λ1(M) ≤ max{Ri(M) : 1 ≤ i ≤ n}.(3)

Moreover, if the row sums of M are not all equal, then the both inequalities in
(3) are strict.

Lemma 2.3. [20] If G is a connected graph, then

λ(G) ≤ 2 + ρ(LG),

with equality if and only if G is a bipartite graph.

Lemma 2.4. Let G be a simple connected graph. Then
n∑

k=1

|Ni ∩ Nk|dk =
∑

j

{djmj : vivj ∈ E}, for vi ∈ V ,

where di is the degree of the vertex vi, mi is the average of the degrees of the
vertices adjacent to vi and |Ni ∩Nk| is the cardinality of the common neighbors of
vi and vk.

Proof. For vi ∈ V , we have
n∑

k=1

|Ni ∩ Nk|dk =
n∑

k=1,k �=i

|Ni ∩ Nk|dk + d2
i

=
∑

i−j−k

dk + d2
i , summation is taken over all the paths i − j − k,

starts from fixed vertex vi

=
∑

j

{∑
k

{dk : vjvk ∈ E} : vivj ∈ E

}

=
∑

j

{djmj : vivj ∈ E} .

�
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3. Upper bound for spectral radius of graphs

The largest eigenvalue ρ(G) is often called the spectral radius of G. We now
give some known important upper bounds for the spectral radius ρ(G). Let G be
a simple graph with n vertices and e edges. Also let d1 and dn be the highest
degree and the lowest degree of G.

1. Hong [9]. If G is a connected graph, then

ρ(G) ≤ √
2e − n + 1,(4)

with equality if and only if G is a star graph or G is a complete graph.

2. Hong, Shu and Fang [12]. If G is a connected graph, then

ρ(G) ≤ dn − 1 +
√

(dn + 1)2 + 4(2e − dnn)
2

,(5)

with equality if and only if G is a regular graph or G is a bidegreed graph
in which each vertex is of degree either dn or n − 1.

3. Das and Kumar [7]. Let G be a connected graph and let ρ(G) be the
spectral radius of A(G). Then

ρ(G) ≤ max

{√
TTi

di
: 1 ≤ i ≤ n

}
,(6)

where TTi =
∑

j{djmj : vivj ∈ E} and the degree of the vertex vi and
the average of the degrees of the vertices adjacent to vi are di and mi,
respectively.

Now we will extend our upper bound (6) to give a new upper bound for con-
nected graphs. Our new upper bound (7) is in terms of n, e, dn and mmax.
Moreover, we characterize the graphs for which the upper bound is attained.

Theorem 3.1. Let G be a simple connected graph and ρ(G) be the spectral
radius of G, then

ρ(G) ≤
√

2e − (n − 1)dn + (dn − 1)mmax,(7)

where mmax is the maximum of mi’s, mi is the average of the degrees of the vertices
adjacent to vi. Moreover, the equality in (7) holds if and only if G is a star graph
or G is a regular graph.

Proof. If G is a path P2 then the equality holds in (7). Now we have to show
that Theorem 3.1 is true for n > 2. Since ρ(G) is the spectral radius of A(G),
ρ2(G) is also the spectral radius of D(G)−1A2(G)D(G).

Now the (i, j)-th element of D(G)−1A2(G)D(G) is

dj

di
|Ni ∩ Nj |.
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Using Lemma 2.2 we conclude that

ρ2(G) ≤ max
i

⎧⎨
⎩di +

1
di

∑
k:k �=i

|Ni ∩ Nk|dk

⎫⎬
⎭(8)

= max
i

{
1
di

∑
k

|Ni ∩ Nk|dk

}

= max
i

⎧⎨
⎩ 1

di

∑
j

{djmj : vivj ∈ E}
⎫⎬
⎭ ,

by Lemma 2.4

≤ max
i

{2e − (n − 1)dn + (dn − 1)mi} ,(9)

by djmj ≤ 2e − dj − (n − dj − 1)dn

≤ 2e − (n − 1)dn + (dn − 1)mmax,(10)

by mi ≤ mmax.
Now suppose that equality in (7) holds. Then all inequalities in the above

argument must be equalities. In particular, from equality in (8) and Lemma 2.2
we have that the row sums of D(G)−1A2(G)D(G) are all equal. Thus

1
d1

∑
j

{djmj : v1vj ∈ E} =
1
d2

∑
j

{djmj : v2vj ∈ E} = . . .

=
1
dn

∑
j

{djmj : vnvj ∈ E}.(11)

From equality in (9) and using (11), we conclude that all vertices which are not
adjacent to vertex vi are of degree dn as graph G is connected, for all vi ∈ V .

From equality in (10), if dn > 1 we have

mmax = mi, for all vi ∈ V .

Two cases arise viz., (i) d1 < n − 1,
(ii) d1 = n − 1.

Case (i): d1 < n − 1. In this case there exists at least one vertex which is not
adjacent to the highest degree vertex v1. Therefore the highest degree d1 is equal
to the lowest degree dn as all the vertices which are not adjacent to vertex vi are
of degree dn, for all vi ∈ V . Hence d1 = dn and graph G is regular.

Case (ii): d1 = n − 1. In this case graph G has only two type of degrees n − 1
and dn as all vertices which are not adjacent to vertex vi are of degree dn, for all
vi ∈ V . Two subcases arise viz., (a) dn = 1,

(b) dn > 1.
Subcase (a): dn = 1. We have that the lowest degree vertex vn of degree one

is adjacent to the highest degree vertex v1. Since all the vertices those are not
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adjacent to vertex vn are of degree dn, all the remaining vertices are of degree one.
Hence G is a star graph.

Subcase (b): dn > 1. We have mmax = m1 = m2 = . . . = mn. If possible, let
dn �= n− 1. Also, let p be the number of vertices of degree n− 1. From m1 = mn

we get
2e − (n − 1)

n − 1
=

p(n − 1) + (dn − p)dn

dn
,

i.e., (n − 1 − dn)(2e − (n − 1)dn) = 0, as 2e = p(n − 1) + (n − p)dn,

i.e., 2e = (n − 1)dn, as dn �= n − 1,

i.e., 2e < ndn, as ndn > (n − 1)dn,
a contradiction. So our assumption is wrong and therefore all the vertices are of
degree n − 1. Hence G is a complete graph.

Conversely, let G be a star graph or G be a regular graph. Therefore we can
easily see that the equality holds in (7). �

Corollary 3.2. [6]. Let G be a simple connected graph with n vertices and e
edges. Then

ρ(G) ≤
√

2e − (n − 1)dn + (dn − 1)d1,(12)

where d1 and dn are the highest degree and the lowest degree of G. Moreover, the
equality holds if and only if G is a star graph or G is a regular graph.

Proof. The result follows by dn ≥ 1, mmax ≤ d1, and Theorem 3.1. �

Remark. The upper bound obtained by applying (7) is always better than the
bounds obtained by applying (4) and (12). But the upper bound given by (7) and
(5) are not comparable. For the graph G2 in Fig. 1, the use of (7) and (5) gives
ρ(G2) ≤ 2.549 and ρ(G2) ≤ 2.561, respectively. But for the graph G4 in Fig. 1,
the use of (7) and (5) gives ρ(G4) ≤ 3.162 and ρ(G4) ≤ 3, respectively.

4. Upper bound on the sum of the spectral radius of a graph

and its complement

In this section we give an upper bound of the sum of the spectral radius of a graph
and its complement in terms of n, d1 and dn only. First we give some known upper
bounds of the sum of the spectral radius of a graph and its complement.

1. Nosal [18].

ρ(G) + ρ(Gc) ≤
√

2(n − 1).

2. Li [14].

ρ(G) + ρ(Gc) ≤ −1 +
√

1 + 2n(n − 1) − 4dn(n − 1 − d1).

3. Li [14] and Zhou [21].

ρ(G) + ρ(Gc) ≤
√

2(n − 1)(n − 2).
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4. Hong and Shu [10]. Let k be the chromatic number of a graph G and let k̄
be the chromatic number of Gc. Then

ρ(G) + ρ(Gc) ≤
√

(2 − 1
t
)n(n − 1)

and ρ(G) + ρ(Gc) ≤
√

(2 − 1
T

)(n − 1),

where t = min{k, k̄}, T = max{k, k̄}.

5. Hong and Shu [11]. Let k be the chromatic number of a graph G and let k̄
be the chromatic number of Gc. Then

ρ(G) + ρ(Gc) ≤
√

(2 − 1
k
− 1

k̄
)n(n − 1),

with equality if and only if G is a complete graph or an empty graph.

Theorem 4.1. Let G be a graph with n vertices. Also let both G and its
complement Gc be connected. Then

ρ(G) + ρ(Gc) ≤
√

2[(n − 1)2 + 2d1dn − 2ndn + 3dn − d1],(13)

where d1, dn are respectively the highest degree and the lowest degree of G.

Proof. From Corollary 3.2, we have

ρ(G) ≤
√

2e − (n − 1)dn + (dn − 1)d1

and ρ(Gc) ≤
√

2e′ − (n − 1)d′n + (d′n − 1)d′1

=
√

n(n − 1) − 2e − (n − 1)(dn + 1) + dn(d1 + 1),

where 2e′ = n(n − 1) − 2e, d′1 = n − 1 − dn and d′n = n − 1 − d1.
Therefore

ρ(G) + ρ(Gc) ≤
√

2e − (n − 1)dn + (dn − 1)d1

+
√

n(n − 1) − 2e − (n − 1)(dn + 1) + dn(d1 + 1).

Let

f(e) =
√

2e − (n − 1)dn + (dn − 1)d1

+
√

n(n − 1) − 2e − (n − 1)(dn + 1) + dn(d1 + 1).

It is easy to show that

f(e) ≤ f

(
(n − 1)2 + d1 + dn

4

)
=

√
2[(n − 1)2 + 2d1dn − 2ndn + 3dn − d1].

Hence the theorem holds. � �
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5. Upper bounds on the spectral radius of Laplacian matrix

Let G = (V,E). If V is the disjoint union of two nonempty sets V1 and V2 such
that every vertex vi in V1 has the same vertex degree r and every vertex vj in V2

has the same vertex degree s, then G will be called a (r, s)-semiregular graph. In
this section, we give two new upper bounds on λ(G) for simple connected graphs.

Theorem 5.1. Let G be a simple connected graph. Also, let d1 ≥ d2 ≥ . . . ≥ dn

be the degree sequence of G and λ(G) be the spectral radius of L(G). Then

λ(G) ≤

⎧⎪⎪⎨
⎪⎪⎩

2 +
√∑n

i=1 di(di−1)|−(
1
2

∑n
i=1 di−1

)
(2dn−2) + (2dn−3)(2d1−2),

if dn ≥ 2, (∗)
2 +

√∑n
i=1 di(di − 1) − d1 + 1, if dn = 1,

where the equality holds if and only if G is a regular bipartite graph or G is a star
graph, respectively.

Proof. From the fact that G and LG are connected graphs and Corollary 3.2,
we have

ρ(LG) ≤
√

2e′ − (n′ − d′1 − 1)d′n′ − d′1,(14)

where n′ = e = 1
2

∑n
i=1 di, 2e′ =

∑n
i=1 di(di − 1), d1 + dn − 2 ≤ d′1 ≤ 2d1 − 2,

d′n′ ≥ 2dn − 2.

Therefore

ρ(LG) ≤
√√√√ n∑

i=1

di(di − 1) −
(

1
2

n∑
i=1

di − d′1 − 1

)
d′n′ − d′1

≤
√√√√ n∑

i=1

di(di − 1) −
(

1
2

n∑
i=1

di − d′1 − 1

)
(2dn − 2) − d′1,(15)

by d′n′ ≥ 2dn − 2

≤
√√√√ n∑

i=1

di(di − 1) −
(

1
2

n∑
i=1

di − 1

)
(2dn − 2) + (2dn − 3)d′1.(16)

Using d1 + dn − 2 ≤ d′1 ≤ 2d1 − 2 in (16), we get

ρ(LG) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ n∑
i=1

di(di−1) −
(

1
2

n∑
i=1

di−1

)
(2dn−2) + (2dn−3)(2d1−2),

if dn ≥ 2,√√√√ n∑
i=1

di(di − 1) − d1 + 1, if dn = 1.
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Using Lemma 2.3, we prove the first part of the theorem.
Now we suppose that

λ(G) = 2 + ρ(LG)

= 2 +

√√√√ n∑
i=1

di(di − 1) −
(

1
2

n∑
i=1

di − 1

)
(2dn − 2) + (2dn − 3)(2d1 − 2).

Then we must have dn ≥ 2, d′1 = 2d1 − 2 and d′n′ = 2dn − 2.
By Lemma 2.3 and λ(G) = 2 + ρ(LG), we conclude that G is a connected

bipartite graph.
By Corollary 3.2, the equality holds in (14) then LG is a star graph or LG is

a regular graph. But LG is not a star graph as dn ≥ 2, that is, d′n′ ≥ 2. Thus LG

is a regular graph, that is,

d′1 = d′n′ ,
i.e., 2d1 − 2 = 2dn − 2,
i.e., d1 = dn.

Hence G is a regular bipartite graph.
Next we suppose that

λ(G) = 2 + ρ(LG)

= 2 +

√√√√ n∑
i=1

di(di − 1) − d1 + 1.

Then we must have dn = 1 and d′1 = d1 + dn − 2.
Now we have that G is a connected bipartite graph and either LG is a star

graph or LG is a regular graph. If LG is a star graph then using d′1 = d1 − 1, we
get that G is a path P3.

If LG is a regular graph then G must be a connected semiregular graph as G is
connected bipartite graph. Since dn = 1, hence G is a star graph.

Conversely, it is easy to verify that equality in Theorem 5.1 holds for a regular
bipartite graph or a star graph, respectively. �

Let K(G) = D(G) + A(G). If G is a connected graph then K(G) is a non-
negative, symmetric and irreducible matrix. Let µ(G) be the largest eigenvalue of
K(G). Using Lemma 2.1 we have that all the eigencomponents of an eigenvector
corresponding to the eigenvalue µ(G) of K(G) are of the same sign (non-zero) if G
is a connected graph. We can assume that all the eigencomponents are positive.

Lemma 5.2. [19] Let G = (V,E) be a connected graph with n vertices. Then
λ(G) ≤ µ(G) with equality if and only if G is a bipartite graph.

Lemma 5.3. [5] Let G be a graph with n vertices, e edges. Then

di + mi ≤ 2e

n − 1
+

n − 2
n − 1

d1 + (d1 − dn)
(

1 − d1

n − 1

)
,(17)
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holds for any non-isolated vertex vi, where d1 and dn are the highest and the lowest
degree of the graph G. Moreover, the equality holds in (17) if and only if di = n−1
or vertex vi (degree is d1) is adjacent to all vertices with degree d1 and not adjacent
to any vertex of degree dn.

Now we give a new upper bound for λ(G) in the following Theorem 5.4 and
determine its extremal graphs.

Theorem 5.4. Let G be a simple connected graph with n vertices and e edges.
Also let d1, dn be respectively the highest degree and the lowest degree of G and let
λ(G) be the spectral radius of L(G). Then

λ(G) ≤
d1 +

√
d2
1 + 4

[
2e

n−1 + n−2
n−1d1 + (d1 − dn)

(
1 − d1

n−1

)]
mmax

2
,(18)

where mmax is the maximum of m′
is, mi is the average of the degrees of the vertices

adjacent to vi. Moreover, the equality in (18) holds if and only if G is a regular
bipartite graph.

Proof. If G is a path P2 then the equality holds in (18). Now we have to show
that Theorem 5.4 is true for n > 2. Let X=(x1, x2, . . . , xn)T be an eigenvector
corresponding to the eigenvalue µ(G) of D(G)−1K(G)D(G). We can assume that
one eigencomponent xi is equal to 1 and the other eigencomponents are less than
or equal to 1, that is, xi = 1 and 0 < xk ≤ 1, for all k.

Now the (i, j)-th element of D(G)−1K(G)D(G) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di if vi = vj ,

dj

di
if vivj ∈ E,

0 otherwise.

We have

{D(G)−1K(G)D(G)}X = µ(G)X.(19)

From the i-th equation of (19),

µ(G)xi = dixi +
∑

j

{
djxj

di
: vivj ∈ E

}
,

i.e., µ(G) = di +
∑

j

{
djxj

di
: vivj ∈ E

}
.(20)

From the j-th equation of (19),

µ(G)xj = djxj +
∑

k

{
dkxk

dj
: vjvk ∈ E

}
.(21)
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Multiplying both sides of (20) by µ(G) and substituting this value µ(G)xj , we
get

µ2(G) = diµ(G) +
∑

j

{
dj

di

[
djxj +

∑
k

{
dkxk

dj
: vjvk ∈ E

}]
: vivj ∈ E

}

= diµ(G) +
∑

j

{
d2

jxj

di
: vivj ∈ E

}

+
∑

j

{
1
di

∑
k

{dkxk : vjvk ∈ E} : vivj ∈ E

}

≤ diµ(G) +
∑

j

{
d2

j

di
: vivj ∈ E

}
+
∑

j

{
djmj

di
: vivj ∈ E

}
(22)

= diµ(G) +
∑

j

{
dj(dj + mj)

di
: vivj ∈ E

}
.

Using (17),

µ2(G) ≤ diµ(G) +
[

2e

n − 1
+

n − 2
n − 1

d1 + (d1 − dn)
(

1 − d1

n − 1

)]
mi(23)

≤ d1µ(G) +
[

2e

n − 1
+

n − 2
n − 1

d1 + (d1 − dn)
(

1 − d1

n − 1

)]
mmax,(24)

i.e., µ(G) ≤
d1 +

√
d2
1 + 4

[
2e

n−1 + n−2
n−1d1 + (d1 − dn)

(
1 − d1

n−1

)]
mmax

2
.

Using Lemma 5.2 we get the required result (18).
Now suppose that equality in (18) holds. Then all inequalities in the above ar-

gument must be equalities. First we have λ(G) = µ(G). It follows from Lemma 5.2
that G is bipartite.

Since G is a bipartite graph, we can make a partition V = U ∪ W in such a
way that U contains vertex vi and each edges of G connected to the vertices, one
contained in U and another contained in W . Hence graph G is connected and
n > 2, d1 ≥ 2.

From equality in (22), we get di = d1. We have |W | ≥ 2, as di = d1 ≥ 2. So,
dj �= n − 1, vivj ∈ E.

From equality in (23) and using Lemma 5.3, we conclude that either dj = n− 1
or all the vertices vk adjacent to vj (degree is d1), are of degree d1 and not adjacent
to vj are of degree dn, where vivj ∈ E. Using this result we conclude that all the
vertices in W are of degree dn as dj �= n − 1 and |W | ≥ 2.

From equality in (24), we get mi = mmax. Since all the vertices in W are of
degree dn, we get

mmax = mi = dn,
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which implies that all the vertices are of degree dn. Hence G is a regular bipartite
graph.

From equality in (22) we have that

xj = 1 for all j such that vivj ∈ E and xk = 1 for all k such that vjvk ∈ E.

Also it holds for regular bipartite graph.
Conversely, let G be a regular bipartite graph. Therefore we can see easily that

the equality holds in (18). �

Corollary 5.5. Let G be a simple connected graph with n vertices and e edges.
Also let d1, dn be respectively the highest degree and the lowest degree of G and let
λ(G) be the spectral radius of L(G). Then

λ(G) ≤
d1 +

√
d2
1 + 4

[
2e

n−1 + n−2
n−1d1 + (d1 − dn)

(
1 − d1

n−1

)]
d1

2
,(25)

with equality if and only if G is a regular bipartite graph.

Lemma 5.6. [19] Let G be a simple connected graph. Then

λ(G) ≤ max{di + mi : 1 ≤ i ≤ n},
with equality if and only if G is a regular bipartite graph or G is a semiregular
bipartite graph.

Figure 1
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Using Lemma 5.3 and Lemma 5.6, we get the following upper bound for λ(G)
on n, e, d1 and dn only.

Theorem 5.7. Let G be a simple connected graph with n vertices and e edges.
Then

λ(G) ≤ 2e

n − 1
+

n − 2
n − 1

d1 + (d1 − dn)
(

1 − d1

n − 1

)
,(26)

with equality if and only if G is a star graph or G is a regular bipartite graph.

Remark. The three bounds (*), (18) and (26) are incomparable. Moreover,
there is no comparability between any one of them and any one of the upper
bounds (1) and (2). Also, we can construct a graph for which any one of the
bound is better than any one of the other bounds. It is interesting that all the
upper bounds are equal to 2(n−1) for a complete graph of order n. Let us consider
five graphs P7, K1,5, G1, G2 and G3 shown in Figure 1. Values of λ(G) and the
various bounds for the five graphs illustrated in Figure 1 are given (to two decimal
places) in Fig. 2.

λ(G) (1) (2) (*) (18) (25) (26)
P7 3.80 4.47 4.70 5.00 4.11 4.11 4.33
K1,5 6.00 7.74 6.00 6.00 8.52 8.52 6.00
G1 5.56 6.00 6.27 6.24 6.00 6.00 6.00
G2 5.00 5.66 5.37 5.46 5.53 5.86 5.60
G3 5.00 7.21 7.00 7.20 7.48 7.48 6.50

Figure 2

Acknowledgment. The author is grateful to the reviewers for their valuable
comments and suggestions.

References

1. Alon N., Eigenvalues and expanders, Combinatorica 6(2) (1986), 83–96.
2. Chung F. R. K., Eigenvalues of graphs, in: Proceeding of the International Congress of
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