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SUBDIRECTLY IRREDUCIBLE QUASI-MODAL ALGEBRAS

S. A. CELANI

Abstract. In this paper we give suitable notions of congruences and subdirectly

irreducible algebras for the class of quasi-modal algebras introduced in [1]. We also
prove some characterizations of subdirectly irreducible algebras following the similar
results given by G. Sambin [5] for modal algebras.

1. Introduction

In [1] we introduce the class of quasi-modal algebras as a generalization of the class
of the modal algebras. A quasi-modal algebra is a Boolean algebra A endowed
with a map of A into the lattice Id (A) of ideals of A satisfying certains conditions.
This type of maps, called quasi-modal operators, are not operations in the Boolean
algebra, but have some properties similar to modal operators. Since the quasi-
modal operator is not an operation, we have not the usual notions of congruences
and simple and subdirectly irreducible algebras. The main of this paper is to
introduce and study the natural analogous notions for the class of quasi-modal
algebras.

In Section 2 we will recall some notions on Boolean duality and the duality for
quasi-modal algebras given in [1]. In Section 3 we shall introduce the notion of
q-congruence. We will prove that the set of q-congruences and the set of ∆-filters
(introduced in [1]) are isomorphic lattices. In the study of any class of algebras
the knowledge of the simple and subdirectly irreducible algebras is very impor-
tant. In Section 4 we will define a notion of a simple and subdirectly irreducible
quasi-modal algebra. Following the results given by G. Sambin in [5] on subdi-
rectly irreducible modal algebras, we shall determinate the simple and subdirectly
irreducible algebras of some classes of quasi-modal algebras introduced in [1].
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2. Preliminaries

We assume that the reader is familiar with basic concepts of modal algebras (see
[2] or [5]). We shall recall some concepts of the topological duality for quasi-modal
algebras. For more details see [1].

A Boolean space X is a topological space that is compact and totally discon-
nected, i.e., for given distinct points x, y ∈ X, there is a closed and open subset
U of X such that x ∈ U and y /∈ U . If X is a Boolean space, then the set
Clop (X) of the all closed and open subsets of X (= clopen) is a basis for X and it
is a Boolean algebra under set-theoretical complement and intersection. We shall
denote by O (X) (C (X)) the set of all open subsets (closed subsets) of X.

If A = 〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra, by Ul (A) we shall denote the set
of all ultrafilters (or proper maximal filters) of A while by Id(A) and Fi(A) we
shall denote the families of all ideals and filters of A, respectively.

Let X be a Boolean space. The map ε : X → Ul (Clop(X)) given by ε (x) =
{U ∈ Clop (X) : x ∈ U} is a bijective and continuous function. With each Boolean
algebra A we can associate a Boolean space whose points are the elements of Ul (A)
with the topology determined by the clopen basis β (A) = {β (a) : a ∈ A} , where
β (a) = {P ∈ Ul (A) : a ∈ P}. By the above considerations we have that, if X is
a Boolean space, then X ∼= Ul (Clop (X)), and if A is a Boolean algebra, then
A ∼= Clop (Ul (A)).

If A is a Boolean algebra and Ul (A) is the associated Boolean space, then there
exists a duality between ideals (filters) of A and open (closed) sets of Ul(A). More
precisely, if β : A → P (Ul (A)) is the map given by β (a) = {P ∈ Ul (A) : a ∈ P},
then for I ∈ Id (A) and F ∈ Fi (A) , we have that

β (I) = {P ∈ Ul (A) : I ∩ P 6= ∅} ∈ O (Ul (A)) ,

defines an isomorphism between Id (A) and O (Ul (A)), and

β (F ) = {P ∈ Ul (A) : F ⊆ P} ∈ C (Ul (A)) ,

defines a dual-isomorphism between Fi (A) and C (Ul (A)) (see [4] and [5] for
further information on Boolean duality).

Let A be a Boolean algebra. The filter (ideal) generated by a subset Y ⊆ A is
denoted by F (Y ) (I (Y )). The set complement of a subset Y ⊆ A will be denoted
by Y c or A− Y.

Definition 1. Let A be a Boolean algebra. A quasi-modal operator defined on
A is a function ∆ : A → Id (A) such that it satisfies the following conditions for
all a, b ∈ A :

(Q1) ∆ (a ∧ b) = ∆a ∩∆b,
(Q2) ∆1 = A.

A quasi-modal algebra, or qm-algebra, is a structure A = 〈A,∨,∧,¬,∆, 0, 1〉 where
〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra and ∆ is a quasi-modal operator.
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The class of qm-algebras is denoted by QMA. Let A ∈ QMA. We define the
dual operator ∇ : A → Fi (A) by ∇a = ¬∆¬a, where ¬∆x = {¬y : y ∈ ∆x} . It is
easy to see that the operator ∇ satisfies the following conditions:
(Q3) ∇ (a ∨ b) = ∇a ∩∇b,
(Q4) ∇0 = A.

Recall that a modal algebra is an algebra 〈A,∨,∧,¬,�, 0, 1〉, where 〈A,∨,∧,¬, 0, 1〉
is a Boolean algebra and � is an operator defined on A satisfying the following
conditions:
(M1) � (a ∧ b) = �a ∧�b,
(M2) �1 = 1.

Let A ∈ QMA with the property that for each a ∈ A, ∆a is a principal ideal.
If we define the function � : A → A by �a = x such that ∆a = I (x), then
the structure 〈A,∨,∧,¬,�, 0, 1〉 is a modal algebra, called the associated modal
algebra of A. On the other hand, any modal algebra 〈A,∨,∧,¬,�, 0, 1〉 has an
associated quasi-modal algebra A = 〈A,∨,∧,¬,∆�, 0, 1〉, where the operator ∆�

is defined by ∆�a = I (�a), for each a ∈ A.
Let A ∈ QMA. For each P ∈ Ul (A) we define the set

∆−1 (P ) = {a ∈ A : ∆a ∩ P 6= ∅} .

Dually, we can define the set ∇−1 (P ) = {a ∈ A : ∇a ⊆ P} .

Lemma 2. [1] Let A ∈ QMA.
1. For each P ∈ Ul (A), ∆−1 (P ) ∈ Fi (A) ,
2. For each a ∈ A, a ∈ ∆−1 (P ) ⇔ ∀Q ∈ Ul (A) : if ∆−1 (P ) ⊆ Q then a ∈ Q.

Let A ∈ QMA. We define on Ul (A) a binary relation RA by

(1)
(P,Q) ∈ RA ⇔ ∀a ∈ A : if ∆a ∩ P 6= ∅ then a ∈ Q

⇔ ∆−1 (P ) ⊆ Q.

We note that the relation RA can be defined using the operator ∇ as (P,Q) ∈
RA ⇔ Q ⊆ ∇−1 (P ) .

Definition 3. A descriptive quasi-modal space, or a q-descriptive space for
short, is a structure F = 〈X, R,D〉 such that:

1. X is a Boolean space and D = Clop(X),
2. R is a binary relation defined on X such that for each x ∈ X,

R (x) = {y ∈ X : (x, y) ∈ R} is a closed subset of X, and
3. ∆R (O) = {x ∈ X : R (x) ⊆ O} ∈ O (X), for any O ∈ D.

Let F = 〈X, R,D〉 be a q-descriptive space. Let us consider the structure

A (F) =
〈
D,∪,∩,c ,∆, ∅, X

〉
,

where ∆ : D → Id (D) is defined by ∆ (O) = I (∆R (O)) = {U ∈ D : U ⊆ ∆R (O)}.

Theorem 4. [1] Let F = 〈X, R,D〉 be a q-descriptive space.
Then A (F) =

〈
D,∪,∩,c ,∆, ∅, X

〉
is a quasi-modal algebra.
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Let F = 〈X, R,D〉 be a q-descriptive space. Since A (F) is a quasi-modal alge-
bra, we can define in the set Ul (D) the relation RD ⊆ Ul (D)2 by (P,Q) ∈ RD ⇔
∆−1

R (P ) ⊆ Q, where

∆−1
R (P ) = {O ∈ D : I (∆RO) ∩ P 6= ∅} = {O ∈ D : ∃U ∈ P U ⊆ ∆R (O)} .

We note that RD is the relation associated with the qm-algebra A (F) along the
general description following Lemma 2. Since the space X is compact, for all
P ∈ Ul (D) there exists x ∈ X such that ε (x) = P . So,

∆−1
R (ε (x)) = {O ∈ D : ∃U ∈ ε (x) U ⊆ ∆R (O)} = {O ∈ D : R (x) ⊆ O} ,

and therefore we have that (ε (x) , ε (y)) ∈ RD ⇔ ∆−1
R (ε (x)) ⊆ ε (y).

Definition 5. Let A1 and A2 be two qm-algebras. A function h : A1 → A2 is
a q-homomorphism, if

1. h is a homomorphism of Boolean algebras, and
2. for any a ∈ A1, I (h (∆1a)) = ∆2 (h (a)) .

A q-isomorphism is a Boolean isomorphism that is a q-homomorphism.

Theorem 6. [1] Let A ∈ QMA. Then the structure F (A)=〈Ul(A), RA, β(A)〉
is a q-descriptive space such that A (F (A)) ∼= A.

Theorem 7. [1] Let F = 〈X, R,D〉 be a q-descriptive space. Then the map
ε : X → Ul (D) is a bijective and continuous function such that (ε (x) , ε (y)) ∈ RD

iff (x, y) ∈ R, for any x, y ∈ X.

3. Q-congruences

A filter F in a modal algebra 〈A,∨,∧,¬,�, 0, 1〉 is said to be open if �a ∈ F
when a ∈ F. It is known that the lattice of open filters is isomorphic to the lattice
of congruences (see [5, 6]). In [1] we introduce the following generalization of the
notion of open filter.

Definition 8. Let A be a quasi-modal algebra. A filter F of A is called
a ∆-filter, if ∆a ∩ F 6= ∅, provided a ∈ F.

Lemma 9. Let A ∈ QMA. The set of all ∆-filters of A is a lattice.

Proof. Let F1, F2 be ∆-filters. We prove that F1 ∨ F2 is a ∆-filter. Let a ∈
F1 ∨ F2. Then there exist f1 ∈ F1 and f2 ∈ F2 such that f1 ∧ f2 ≤ a. So,
∆ (f1 ∧ f2) = ∆f1 ∩ ∆f2 ⊆ ∆a. Since ∆f1 ∩ F1 6= ∅ and ∆f2 ∩ F2 6= ∅, there
exists x1 ∈ ∆f1 ∩ F1 and there exists x2 ∈ ∆f2 ∩ F2. As ∆f1, ∆f2 are ideals,
x1 ∧ x2 ∈ ∆f1 ∩∆f2 ⊆ ∆a. It follows that x1 ∧ x2 ∈ ∆a ∩ (F1 ∨ F2). Therefore,
F1 ∨ F2 is a ∆-filter. The proof that F1 ∧ F2 = F1 ∩ F2 is a ∆-filter is easy and
left to the reader. �

The congruences in modal algebras are Boolean congruences compatible with
the unary operator � (see [3] and [5]). In the case of quasi-modal algebras we
can define a notion of equivalence relation compatible with the boolean operations
and compatible, in a certain sense, with the operator ∆.
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Definition 10. Let A ∈ QMA. Let θ be a Boolean congruence of A. Let
a, b ∈ A such that (a, b) ∈ θ. We shall say that (∆a,∆b) ∈ θ∆ iff
(Co1) For each x ∈ ∆a there exists y ∈ ∆b such that (x, y) ∈ θ, and
(Co2) for each y ∈ ∆b there exists x ∈ ∆a such that (x, y) ∈ θ.
We shall say that a Boolean congruence θ is a q-congruence if for all a, b ∈ A,
(a, b) ∈ θ implies that (∆a,∆b) ∈ θ∆.

Lemma 11. Let 〈A,∨,∧,¬,�, 0, 1〉 be a modal algebra and let 〈A,∨,∧,¬,
∆�, 0, 1〉 be the associated quasi-modal algebra. Then θ is a modal congruence iff
θ is a q-congruence.

Proof. Let θ be a congruence of the modal algebra 〈A,∨,∧,¬,�, 0, 1〉. Let
(a, b) ∈ θ. We prove that for each x ≤ �a there exists y ≤ �b such that (x, y) ∈ θ.
Let x ≤ �a. Since (�a,�b) ∈ θ and x = x ∧�a,

(x, x ∧�b) = (x ∧�a, x ∧�b) ∈ θ.

So, y = x ∧�b ≤ �b is the necessary element.
Let us suppose that θ is a q-congruence. Let (a, b) ∈ θ. Since (I (�a) , I (�b)) ∈

θ∆, �a ∈ I (�a), and �b ∈ I (�b), there exist x ≤ �a and y ≤ �b such that
(�a, y) ∈ θ and (x,�b) ∈ θ. Let |x|θ = {y ∈ A : (x, y) ∈ θ} be the equivalence
class of an element x ∈ A. Then

|�a|θ = |�a ∨ x|θ = |�a|θ ∨ |x|θ
= |y|θ ∨ |�b|θ = |y ∨�b|θ
= |�b|θ .

Thus, (�a,�b) ∈ θ and consequently θ is a congruence of the modal algebra
〈A,∨,∧,¬,�, 0, 1〉. �

Theorem 12. Let A ∈ QMA. Let F be a ∆-filter and let θ be a q-congruence.
Then

F (θ) = {a ∈ A : (a, 1) ∈ θ}
is a ∆-filter, and

θ (F ) =
{
(a, b) ∈ A2 : a ∧ f = b ∧ f for some f ∈ F

}
is a q-congruence such that θ (F (θ)) = θ and F = F (θ (F )) . Therefore, there
exists an order-isomorphism between of the lattice of ∆-filters and the lattice of
the q-congruences of A.

Proof. Let F be a ∆-filter. We prove that θ (F ) is a q-congruence. Let a, b ∈ A
such that a∧f = b∧f for some f ∈ F. Let x ∈ ∆a. Since ∆f ∩F 6= ∅, there exists
z ∈ ∆f ∩ F, and since ∆a and ∆f are ideals,

x ∧ z ∈ ∆a ∩∆f = ∆ (a ∧ f) = ∆ (b ∧ f) = ∆b ∩∆f.

So, the element y = x ∧ z belongs to ∆b and satisfies x ∧ z = y ∧ z. Thus,
(x, y) ∈ θ (F ) .

Let y ∈ ∆b. Similarly, we can prove that there exists w ∈ ∆a such that (y, w) ∈
θ (F ) . Thus, (∆a,∆b) ∈ θ (F )∆.
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Let θ be a q-congruence. Let a ∈ F (θ) . Since (a, 1) ∈ θ, we get (∆a,∆1) =
(∆a,A) ∈ θ∆. As 1 ∈ A, there exists x ∈ ∆a such that (x, 1) ∈ θ, i.e., x ∈ F (θ) .
Thus, ∆a ∩ F (θ) 6= ∅, and this implies that F (θ) is a ∆-filter.

Since the transformation F → θ (F ) is isotone and, hence, is the required order-
isomorphism, we conclude that θ (F (θ)) = θ and F = F (θ (F )) . �

Definition 13. Let F = 〈X, R,D〉 be a q-descriptive space. A subset Y ⊆ X
is called an R-saturated, if R (x) ⊆ Y for each x ∈ Y. A subset Y ⊆ X is called an
R-subset, if Y is closed and R-saturated.

Let F = 〈X, R,D〉 be a q-descriptive space. The family of subsets of X that are
R-saturated will be denoted by SR (X) . It is easy to check that the intersection
and union of any subfamily of SR (X) is an R-saturated set. Moreover, since X
and ∅ are R-saturated sets, the family SR (X) is a complete sublattice of P (X) .
Also, we can see that the R-subsets, ordered by inclusion, form a sublattice of
C (X) closed under arbitrary intersections. The family of subsets of X that are
R-subsets will be denoted by CR (X).

Theorem 14. [1] Let A be a quasi-modal algebra. Then the lattice of ∆-filters
of A is anti-isomorphic to the lattice of RA-subsets of F (A)=〈Ul (A) , RA, β (A)〉.

Corollary 15. Let A ∈ QMA. There exists an anti-isomorphism between the
lattice of the q-congruences of A and the lattice of RA-subsets of F (A).

Let A ∈ QMA. Let θ be a q-congruence of A. We shall define a quotient
structure A/θ as follows:

A/θ = {|x|θ : x ∈ A} ,

where |x|θ = {y ∈ A : (x, y) ∈ θ} is the equivalence class of x. Since θ is a Boolean
congruence, A/θ is a Boolean algebra. We define on A/θ a structure of quasi-modal
algebra taking a quasi-modal operator ∆θ as follows:

∆θ |a| = I ({|x| : x ∈ ∆a}) ,

i.e., ∆θ |a| is the ideal in A/θ generated by the set {|x| : x ∈ ∆a} .

Theorem 16. Let A ∈ QMA. Let θ be a q-congruence of A. Then the structure

A/θ = 〈A/θ,∨,∧,∆θ,¬, |0|θ , |1|θ〉

is a quasi-modal algebra.

Proof. It is easy and left to the reader. �

Let A,B ∈ QMA. Let us recall that a q-homomorphism is a Boolean homo-
morphism h : A → B such that I (h (∆a)) = ∆h (a), for all a ∈ A. The kernel of
h is the relation

Kerh =
{
(a, b) ∈ A2 : h (a) = h (b)

}
.

It is known that Ker h is a Boolean congruence.

Theorem 17. The kernel of a q-homomorphism is a q-congruence.
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Proof. Let a, b ∈ A such that h (a) = h (b) . Let x ∈ ∆a. Since h (x) ∈ ∆h (a) =
∆h (b), there exists y ∈ ∆b such that h (x) = h (y), i.e., (x, y) ∈ Kerh. Thus, Kerh
is a q-congruence. �

Finally, we can give a Homomorphism Theorem, whose proof is easy and left
to the reader.

Theorem 18. Let A,B ∈ QMA and let h : A → B be a q-homomorphism.
Then, A/ Kerh ∼= h (A) .

4. Simple and subdirectly irreducible algebras

In the above section we introduced a satisfactory notion of congruence for quasi-
modal algebras, in the sense that we can define an appropriate notion of quotient
structure. Then we may expect that it is possible also to give an adequate no-
tion of simple and subdirectly irreducible quasi-modal algebra. In this section we
shall define these notions and we give characterizations of simple and subdirectly
irreducible algebras of some classes of quasi-modal algebras.

Definition 19. Let A ∈ QMA. We shall say that A is subdirectly irreducible
iff there exists a minimal non trivial q-congruence θ in A. Similarly, we shall say
that A is simple if A has only two q-congruences.

By Theorem 14 and Corollary 15, we can affirm that a quasi-modal algebra A
is simple iff it has only two ∆-filters iff there are only two RA-subsets on Ul (A),
and A is subdirectly irreducible iff there is a minimal non-trivial ∆-filter in A iff
there is a maximal RA-subset of Ul (A) distinct from Ul (A) and ∅.

Let F = 〈X, R,D〉 be a q-descriptive space. We define R0 = {(x, x) : x ∈ X}
and Rn+1 = R ◦ Rn. The reflexive and transitive closure of R is denoted as R∞.
We note that R∞ (x) =

⋃
n≥0 Rn (x), for x ∈ X. The domain of the relation R is

the set domR = {x ∈ X : (x, y) ∈ R for some y ∈ X}.
As the family CR (X) = C (X) ∩ SR (X) is closed under arbitrary intersections,

we can define the set

Yx =
⋂
{Y : x ∈ Y and Y ∈ CR (X)} ,

for each x ∈ X. It is clear that Yx ∈ CR (X).
Let us define the set

IF = {x ∈ X : Yx = X} ,

Let HF = X −IF . We note that the set IF is not exactly the same set as the set
considered in [5].

Theorem 20. Let A ∈ QMA. Then:

1. A is simple iff YP = Ul (A), for each P ∈ Ul (A).
2. A is subdirectly irreducible but non-simple iff the set

HF(A) ∈ CRA
(Ul (A))− {∅,Ul (A)} .
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Proof. 1. (⇒) Let P ∈ Ul(A).
Since P ∈ YP and YP ∈ CRA

(Ul(A)) = {∅,Ul(A)}, YP = Ul(A).
(⇐) Let Y ∈ CRA

(Ul(A))− {∅}.
Then there exists P ∈ X(A) such that P ∈ Y . It follows that YP ⊆ Y. Thus,
Y = Ul(A), and consequently A is simple.

2. (⇒) Assume that A is subdirectly irreducible but non-simple.
So there exists a minimal non-trivial ∆-filter F of A. Let us consider the set

β (F ) = {P ∈ Ul (A) : F ⊆ P} .

It is clear that β (F ) is an RA-subset. It is enough to prove that β (F ) = HF(A).
If F ⊆ P , then YP ⊆ β (F ), because β (F ) is a RA-subset of Ul(A). Since
β (F ) 6= Ul (A), we get P ∈ HF(A).

Let P ∈ HF(A). Then YP 6= Ul(A) . Then A is subdirectly irreducible and β (F )
is the maximal RA-subset of Ul(A) distinct from Ul(A) and ∅, P ∈ YP ⊆ β (F ) .
It follows that F ⊆ P , i.e., P ∈ β (F ). Thus, HF(A) is an RA-subset of Ul (A) .

(⇐) Assume that HF(A) ∈ CRA
(Ul (A))− {∅,Ul (A)} .

We prove that HF(A) is the maximal RA-subset of Ul (A) . Let P ∈ HF(A) and
Q ∈ RA (P ) . Then Q ∈ YP , and consequently YQ ⊆ YP 6= Ul (A). It follows that
Q ∈ HF(A). Thus, HF(A) is an RA-subset.

Let Z be an RA-subset of Ul (A) non-void and different from Ul (A) . Let P ∈ Z.
So, YP ⊆ Z 6= Ul (A), and thus P ∈ HF(A). So, Z ⊆ HF(A). Therefore, A is
subdirectly irreducible. �

Now we shall determine the simple and subdirectly irreducible algebra in some
classes of quasi-modal algebras.

Theorem 21. [1] Let A ∈ QMA. Then:

1. ∆a ⊆ I (a) for all a ∈ A ⇔ RA is reflexive.
2. ∆a ⊆ ∆2a for all a ∈ A ⇔ R2

A ⊆ RA, i.e., RA is transitive.
3. I (a) ⊆ ∆∇a =

⋂
x∈∇a

∆x for all a ∈ A ⇔ RA is symmetric.

Definition 22. Let A ∈ QMA. We shall say that A is a quasi-topological
algebra if it satisfies the conditions ∆a ⊆ I (a) and ∆a ⊆ ∆2a, for every a ∈ A.
A quasi-monadic algebra is a quasi-topological algebra A such that I (a) ⊆ ∆∇a,
for every a ∈ A.

We note that from Theorem 21 it follows that a quasi-modal algebra A is
a quasi-topological algebra iff RA is reflexive and transitive, and A is a quasi-
monadic algebra iff the relation RA is an equivalence.

Theorem 23. Let A be a quasi-topological algebra.

1. A is simple if and only if for each P ∈ Ul (A) , RA (P ) = Ul (A) .
2. A is subdirectly irreducible but non-simple if and only if there exists a ∈ A,

a 6= 1 such that I (a) = ∆a and for every x 6= 1, ∆x ⊆ I (a) .
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Proof. First, we note that since RA is reflexive and transitive, R∞A (P ) =
RA (P ) 6= ∅, for every P ∈ Ul(A). So, RA (P ) is a closed and R-saturated set, for
each P ∈ Ul(A). Thus, YP = RA (P ), for each P ∈ Ul(A).

The assertion 1 follows from Theorem 20.

2. (⇒) It follows from Theorem 20.2 that HF(A) is a proper and nonvoid closed
RA-subset of Ul (A) . We prove that HF(A) is open. Let P ∈ HF(A). Then,
YP = RA (P ) 6= Ul (A) . So, there exists Q ∈ Ul (A) such that Q /∈ RA (P ) .
It follows that there exists a ∈ A such that RA (P ) ⊆ β (a) and a /∈ Q. Then,
P ∈ β (∆a) = ∆Rβ (a) . Thus,

HF(A) ⊆
⋃
{∆Rβ (a) : a ∈ A− {1}} .

Let P ∈
⋃
{∆Rβ (a) : a ∈ A− {1}}. Then P ∈ ∆Rβ (a) for some a ∈ A − {1} .

Thus, RA (P ) 6= Ul (A) , i.e., P ∈ HF(A). Therefore, HF(A) is the union of open
subsets, and consequently is it open. Since HF(A) is closed, it follows that HF(A)

is a clopen subset of Ul (A). So, there exists a ∈ A such that β (a) = HF(A).
Therefore HF(A) is an RA-subset,

β (a) = β (I (a)) = ∆R (β (a)) = β (∆a) ,

i.e., I (a) = ∆a.
Let x 6= 1. Let P ∈ ∆R (β (x)) = β (∆x). Then, RA (P ) ⊆ β (x), and hence

x 6= 1, RA (P ) 6= Ul (A) , i.e., P ∈ HF(A) = β (a) . Thus,

∆R (β (x)) = β (∆x) ⊆ β (a) = β (I (a)) .

We conclude that ∆x ⊆ I (a) .
(⇐) Suppose that there exists a ∈ A, a 6= 1 such that I (a) = ∆a and for

every x 6= 1, ∆x ⊆ I (a). Let us consider the filter F (a). We prove that F (a)
is a minimal ∆-filter. Let a ≤ b 6= 1. Then, ∆a ⊆ ∆b. By the hypothesis,
∆b ⊆ I (a) = ∆a. Thus, ∆a = ∆b = I (a), and this implies that ∆b ∩ F (a) 6= ∅.
So, F (a) is a ∆-filter.

Let F be a ∆-filter. Let b ∈ F with b 6= 1. Then ∆b ⊆ I (a), and hence
∆b∩F 6= ∅, I (a)∩F 6= ∅, i.e., a ∈ F. Therefore, F (a) ⊆ F. Now, from Theorem 12,
we deduce that A is subdirectly irreducible. �

Theorem 24. Let A be a quasi-monadic algebra. Then the following conditions
are equivalent:

1. A is simple
2. A is subdirectly irreducible,
3. For every x ∈ A− {1}, ∆x = {0},
4. For every P ∈ Ul (A), RA (P ) = Ul (A) .

Proof. (1 ⇒ 2) is immediate.
(2 ⇒ 3) Suppose that there exists x∈A−{1}, ∆x 6= {0} . Then, ∆RA

(β (x)) 6= ∅.
So,

(∆RA
(β (x)))c = ∇RA

(β (¬x)) 6= Ul (A) .
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By Theorem 23, there exists U = β (a) 6= Ul (A) such that ∆RA
(β (x)) ⊆ U and

∆RA
(∇RA

(β (¬x))) ⊆ U. Since RA is an equivalence, it is easy to see that

∆RA
(β (x)) ∪∆RA

(∇RA
(β (¬x))) = Ul (A) .

Thus, U = Ul (A) , which is a contradiction. Therefore, ∆RA
(β (x)) = ∅, i.e.

∆x = {0} .
(3 ⇒ 4) Suppose that there exists P ∈ Ul (A) such that RA (P ) 6= Ul (A) .

Then there exists Q ∈ Ul (A) and a ∈ A such that RA (P ) ⊆ β (a) and Q /∈ β (a) .
It follows that a 6= 1, but by the hypothesis we have that ∆RA

(β (a)) = ∅, which
is a contradiction. Thus, RA (P ) = Ul (A), for every P ∈ Ul (A) .

(4 ⇒ 1) Since RA (P ) = Ul (A) for every P ∈ Ul (A), we conclude by assertion 1
of Theorem 23 that A is simple. �
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