
Acta Math. Univ. Comenianae
Vol. LXXIV, 2(2005), pp. 169–184

169

ADDITIVE STRUCTURE OF THE GROUP OF UNITS MOD pk,
WITH CORE AND CARRY CONCEPTS

FOR EXTENSION TO INTEGERS

N. F. BENSCHOP

Abstract. The additive structure of multiplicative semigroup Zpk = Z(·) mod pk

is analysed for prime p > 2. Order (p − 1)pk−1 of cyclic group Gk of units
mod pk implies product Gk ≡ AkBk , with cyclic ’core’ Ak of order p−1 so np ≡ n
for core elements, and ’extension subgroup’ Bk of order pk−1 consisting of all units
n ≡ 1 mod p, generated by p+1. The p-th power residues np mod pk in Gk form
an order |Gk|/p subgroup Fk, with |Fk|/|Ak| = pk−2, so Fk properly contains core
Ak for k ≥ 3.

The additive structure of subgroups Ak, Fk and Gk is derived by successor
function S(n) = n+1, and by considering the two arithmetic symmetries C(n) = −n
and I(n) = n−1 as functions, with commuting IC = CI, where S does not commute
with I nor C. The four distinct compositions SCI, CIS, CSI, ISC all have period 3

upon iteration. This yields a triplet structure in Gk of three inverse pairs (ni, n−1
i )

with ni + 1 ≡ −(ni+1)−1 for i = 0, 1, 2 where n0 · n1 · n2 ≡ 1 mod pk, generalizing

the cubic root solution n + 1 ≡ −n−1 ≡ −n2 mod pk (p ≡ 1 mod 6).
Any solution in core: (x + y)p ≡ x + y ≡ xp + yp mod pk>1 has exponent p

distributing over a sum, shown to imply the known FLT inequality for integers.
In such equivalence mod pk (FLT case1) the three terms can be interpreted as
naturals n < pk, so np < pkp, and the (p − 1)k produced carries cause FLT
inequality. In fact, inequivalence mod p3k+1 is derived for the cubic roots of 1 mod
pk(p≡ 1 mod 6).

Introduction

The commutative semigroup Zpk(·) of multiplication mod pk (prime p >2) has
for all k > 0 just two idempotents: 12 ≡ 1 and 02 ≡ 0, and is the disjoint union
of the corresponding maximal subsemigroups (Archimedian components [4], [8]).
Namely the group Gk of units (ni ≡ 1 mod pk for some i > 0) which are all relative
prime to p, and maximal ideal Nk as nilpotent subsemigroup of all pk−1 multiples
of p (ni ≡ 0 mod pk for some i > 0). Notice that, since the analysis holds for any
odd prime p, the index p in Gk and Nk is omitted for brevity of notation. Order
|Gk| = (p − 1)pk−1 has two coprime factors, so that Gk ≡ AkBk, with ’core‘ Ak
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and ’extension group‘ Bk of orders p − 1 and pk−1 respectively. Residues of np

form a subgroup Fk ⊂ Gk of order |Fk| = |Gk|/p, to be analysed for its additive
structure. Each n ∈ Ak has np ≡ n mod pk denoted as FSTk , since this is related
to Fermat’s Small Theorem where k = 1.

Notation: Base p number representation is used, which is useful for computer ex-
periments, as reported in Tables 1 and 2. This models residue arithmetic mod pk

by considering only the k less significant digits, and ignoring the more significant
digits. Congruence class [n] mod pk is represented by natural number n < pk, en-
coded by k digits (base p). Class [n] consists of all integers with the same least
significant k digits as n. As usual, concatenation of operands indicates multipli-
cation.

Define the 0-extension of residue n mod pk as the natural number n < pk with
the same k-digit representation (base p), and all more significant digits (at pm,
m ≥ k) set to 0.

Signed residue −n is only a convenient notation for the complement pk−n of n,
which are both positive. C[n] is a cyclic group of order n, such as Zpk(+) ∼= C[pk].
Units mod p form a cyclic group G1 = C[p − 1], and Gk of order (p − 1)pk−1 is
also cyclic for k > 1 [1]. Finite semigroup structure is applied, and digit analysis
of prime-base residue arithmetic, to study the combination of (+) and (·) mod pk,
especially the additive properties of multiplicative subgroups of ring Zpk(+, ·)

Elementary residue arithmetic, cyclic groups, and (associative) function com-
position will be used, starting at the known cyclic (one generator) nature [1] of
the group Gk of units mod pk. The direct product structure of Gk (Lemma 1.1
and Corollary 1.2) on the pk−2 extensions of np mod p2 to cover all p-th power
residues mod pk for k > 2 are known, but they are derived for completeness.
Results beyond Section 1 are believed to be new.

The two symmetries of residue arithmetic mod pk, defined as automorphisms
of order 2, are complement −n under (+) and inverse n−1 under (·). Their role
as functions C(n) = −n and I(n) = n−1, in the triplet additive structure of Z(·)
mod pk (Lemma 3.1 and Theorem 3.1) is essential.

Symbols and Definitions (odd prime p)
Zpk(.) multiplicative semigroup mod pk (k-digit arithmetic base p)
C[m] cyclic group of order m: e.g. Zpk(+) ∼= C[pk]
x ∈ Zpk(.) unique product x = gi pk−j mod pk (gi ∈ Gj coprime to p)
0-extension X of residue x mod pk: the smallest non-negative integer

X ≡ x mod pk

(finite) extension U of x mod pk: any integer U ≡ x mod pk

Gk ≡ Ak · Bk group of units n: ni ≡ 1 mod pk (some i >0),
|Gk| ≡ (p − 1)pk−1

Ak core of Gk, |Ak| = p − 1 (np ≡ n mod pk for n ∈ Ak)
Bk ≡ (p + 1)∗ extension group of all n ≡ 1 mod p, |Bk| = pk−1

Fk subgroup of all p-th power residues in Gk, |Fk| = |Gk|/p
Ak ⊂ Fk ⊂ Gk proper inclusions only for k ≥ 3 (A2 ≡ F2 ⊂ G2)
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Symbols and Definitions (odd prime p)
d(n) core increment A(n + 1) − A(n) of core func’n A(n) ≡ nq,

q = |Bk|
FSTk core Ak (p − 1 residues) extends FST (np ≡ n mod p)

to mod pk>1

solution in core xp + yp ≡ zp mod pk with x, y, z in core Ak.
period of n ∈ Gk order |n∗| of subgroup generated by n in Gk(·)
normation divide xp + yp ≡ zp mod pk by one term (in Fk)

to yield one term ±1
complement −n unique in Zpk(+): −n + n ≡ 0 mod pk

inverse n−1 unique in Gk(·): n−1 · n ≡ 1 mod pk

1-complement pair pair {m,n} in Zpk(+): m + n ≡ −1 mod pk

inverse-pair pair {a, a−1} of inverses in Gk

triplet 3 inv. pairs: a + b−1 ≡ b + c−1 ≡ c + a−1 ≡ −1,
(abc ≡ 1 mod pk)

tripletp a triplet of p-th power residues in subgroup Fk

symmetry mod pk −n and n−1: order 2 automorphism of Zpk(+) resp. Gk(·)
EDS property Exponent Distributes over a Sum:

(a + b)p ≡ ap + bp mod pk

1. Structure of the group Gk of units

Lemma 1.1. Gk
∼= A′

k × B′
k
∼= C[p − 1] · C[pk−1] and Z(·) mod pk has a sub-

semigroup isomorphic to Z(·) mod p.
Proof. Cyclic group Gk of units n (ni ≡ 1 for some i > 0) has order (p−1)pk−1,

namely pk minus pk−1 multiples of p. Then Gk = A′
k × B′

k, the direct product
of two relative prime cycles, with corresponding subgroups Ak and Bk, so that
Gk ≡ Ak Bk where:
extension group Bk = C[ pk−1 ] consists of all pk−1 residues mod pk that are
1 mod p, and
core Ak = C[p − 1], so Zpk(·) contains sub-semigroup Ak ∪ 0 ∼= Zp(·) �

Core Ak, as p − 1 cycle mod pk, is Fermat’s Small Theorem np ≡ n mod p
extended to k >1 for p residues (including 0), to be denoted as FSTk.
Recall that np−1 ≡ 1 mod p for n ≡/ 0 mod p (FST ), then Lemma 1.1 implies:

Corollary 1.1. With |B| = pk−1 = q and |A| = p− 1, core Ak = {nq} mod pk

(n = 1, . . . , p − 1) extends FST for k > 1, and Bk = {np−1} mod pk consists of
all pk−1 residues 1 mod p in Gk.

Subgroup Fk ≡ {np} mod pk of all p-th power residues in Gk, with Fk ⊇ Ak

(only F2 ≡ A2) and order |Fk| = |Gk|/p = (p − 1)pk−2, consists of all pk−2

extensions mod pk of the p−1 p-th power residues in G2, which has order (p−1)p.
Consequently:

Corollary 1.2. Each extension of np mod p2 (in F2) is a p-th power residue
(in Fk).
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Core generation: The p − 1 residues nq mod pk (q = pk−1) define core Ak for
0< n < p. Cores Ak for successive k are produced as the p-th power of each
n0 < p recursively

(n0)p ≡ n1, (n1)p ≡ n2, (n2)p ≡ n3, . . .

where ni has i + 1 digits (base p). In more detail:

Lemma 1.2. For non-negative digits ai < p the p−1 naturals a0 < p define core

Ak(a0) ≡ (a0)pk−1 ≡ a0 +
k−1∑

i=1

aip
i mod pk,

and
Ak+1(a0) ≡ [ Ak(a0) ]p mod pk+1.

Proof. Let a = a0 + mp < p2 be in core A2, so ap ≡ a mod p2. Then

ap = (mp + a0)p ≡ ap−1
0 mp2 + ap

0 ≡ mp2 + ap
0 mod p3,

by FST . Core digit a1 of weight p is not found in this way as function of a0,
requiring actual computation, except for a ≡ p ± 1 as in (1) and (1′). It depends
on the carries produced in computing the p-th power of a0. Similarly, the next
more significant digit in core Ak+1(n) is found by computing, with k+1 digit
precision, the p-th power ap of 0-extension a < pk in core Ak, leaving core Ak

fixed, because ap ≡ a mod pk. �

Notice (p2 ± 1)p ≡ p3 ± 1 mod p5, and (p + 1)p ≡ p2 + 1 mod p3 yields by
induction on m:

(p + 1)pm ≡ pm+1 + 1 mod pm+2(1)

(p − 1)pm ≡ pm+1 − 1 mod pm+2(1′)

Lemma 1.3. Extension group Bk is generated by p + 1 mod pk, with |Bk| =
pk−1, and each subgroup S ⊆ Bk, |S| = |Bk|/ps has sum

∑
S ≡ |S| mod pk 	≡ 0 mod pk.

Proof. For the smallest x with (p + 1)x ≡ 1 mod pk, the period of p + 1, (1)
implies m + 1 = k. So m = k − 1, thus period pk−1. No smaller x generates
1 mod pk since |Bk| has only divisors ps.

Bk consists of all pk−1 residues which are 1 mod p. The order of each subgroup
S ⊂ Bk must divide |Bk|, so that |S| = |Bk|/ps (0 ≤ s < k) and S = {1+m ·ps+1}
(m = 0, . . . , |S| − 1). Then

∑
S = |S| + ps+1 · |S|(|S| − 1)/2 mod pk, where

ps+1 · |S| = p · |Bk| = pk, so that
∑

S = |S| = pk−1−s mod pk. Hence no subgroup
of Bk sums to 0 mod pk. �

Corollary 1.3. For core Ak ≡ g∗, each unit n ∈ Gk ≡ AkBk has the form:

n ≡ gi(p + 1)j mod pk

for a unique pair of non-negative exponents i < |Ak| and j < |Bk|.
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Pair (i, j) are the exponents in the core- and extension- component of unit n.
In case p = 2, the most interesting prime for computer engineering purposes, the
next binary number representation is readily verified [3], [7]:

Lemma 1.4. For p = 2: p + 1 = 3 is a semi-primitive root of 1 mod 2k for
k > 2.

In other words, for base p = 2 and precision k > 2: each odd residue mod 2k is
a unique signed power of 3. Hence an efficient k-bit binary number code is

n = ±3i · 2j mod 2k,

for all integers 0 ≤ n < 2k, with unique non-negative index pair i < 2k−2 and
j ≤ k.
Clearly, this allows a dual-base (2, 3) binary logarithmetic code, which reduces
multiplication to addition of the two indices, and XOR (add mod 2) of the involved
signs (see US-patent [7]).

Theorem 1.1. Each subgroup S ⊃ 1 of core Ak sums to 0 mod pk (k > 0).

Proof. For even |S|: −1 in S implies pairwise zero-sums. In general: c · S = S
for all c in S, and c

∑
S =

∑
S, so S · x = x, writing x for

∑
S. Now for any g in

Gk: |S · g| = |S| so that |S · x|=1 implies x not in Gk, hence x = g · pe for some
g in Gk and 0 < e < k or x = 0 (e = k). Then S · x = S(g · pe) = (S · g)pe with
|S · g| = |S| if e < k. So |S · x|=1 yields e=k and x =

∑
S=0. �

Consider the normation of an additive equivalence a + b ≡ c mod pk in units
group Gk, by multiplying all terms with the inverse of one of these terms, to yield
rhs −1 as right hand side:

1-complement form: a + b ≡ −1 mod pk in Gk,(2)

(digitwise sum p − 1, no carry).

For instance the well known p-th power residue equivalence: xp + yp ≡ zp in Fk

yields:

normal form: ap + bp ≡ −1 mod pk in Gk,(2′)
with a special case in core Ak, considered next.

2. The cubic root solution in core, and core symmetries

Lemma 2.1. Cubic roots a3 ≡ 1 mod pk (p ≡ 1 mod 6, k > 1) are p-th power
residues in core Ak, and a + a−1 ≡ −1 mod pk (a 	≡ −1) has no corresponding
integers as p-th powers < pkp.

Proof. If p ≡ 1 mod 6 then 3 divides p − 1, implying a core subgroup S =
{a, a2, 1} of three p-th powers: the cubic roots a3 ≡ 1 in Gk, with sum 0 mod pk

(Theorem 1.1). Now a3−1 = (a−1)(a2+a+1), so for a 	= 1 : a2+a+1 ≡ 0, hence
a + a−1 ≡ −1 solves the normed (2′), being a root-pair of inverses with a2 ≡ a−1.
Subgroup S ⊂ Ak consists of p-th power residues with np ≡ n mod pk.
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Core A = (43)∗ = 43 42 66 24 25 01 (mod 72)
Cubic rootpair: 42 + 24 ≡ 66 ≡ −1

42 + 1 ≡ −(42)−1

−a−1 ≡ a + 1

Complement C(n) = −n
Inverse I(n) = n−1

Succesor S(n) = n + 1

423 ≡ 1 mod 72

Symmetries:
−n (diagonal) C
n−1 (vertical) I
−n−1 (horizontal) IC=CI

Figure 1. Core A2 mod 72 (6-cycle), Cubic roots {42, 24, 01} (3-cycle) in core.

Write b for a−1, then ap + bp ≡ −1 and a + b ≡ −1, hence ap + bp ≡ (a + b)p

mod pk. The “exponent p distributes over a sum” (EDS) property implies Ap+Bp

< (A+B)p for the corresponding 0-extensions A, B, A+B of residues a, b, a+ b
mod pk. �

1. Successive powers gi of generator g of Gk produce |Gk| points (k-digit residues)
counter clockwise on a unit circle (Figures 1, 2). Inverse pairs (a, a−1) are
connected vertically, complements (a, −a) diagonally, and pairs (a, −a−1) hor-
izontally, representing functions I, C and IC = CI respectively (Theorem 3.1).

2. Scaling any equation, such as a + 1 ≡ −b−1, by a factor s ≡ gi ∈ Gk ≡ g∗,
yields s(a + 1) ≡ −s/b mod pk, represented by a rotation counter clockwise over
i positions.

2.1. Another derivation of the cubic roots of 1 mod pk

The cubic root solution was derived, for 3 dividing p− 1, via subgroup S ⊂ Ak of
order 3 (Theorem 1.1). For completeness a derivation using elementary arithmetic
follows.

Notice a + b ≡ −1 to yield a2 + b2 ≡ (a + b)2 − 2ab ≡ 1 − 2ab, and:

a3 + b3 ≡ (a + b)3 − 3(a + b)ab ≡ −1 + 3ab.

The combined sum is ab − 1:
3∑

i=1

(ai + bi) ≡
3∑

i=1

ai +
3∑

i=1

bi ≡ ab − 1 mod pk.

Find a, b for ab ≡ 1 mod pk. Now
n2 + n + 1 = (n3 − 1)/(n − 1)=0 for n3 ≡ 1 (n 	= 1),
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hence ab ≡ 1 mod pk, (k > 0) if a3 ≡ b3 ≡ 1 mod pk, with 3 dividing p − 1
(p ≡ 1 mod 6). Cubic roots a3 ≡ 1 mod pk exist for any prime p ≡ 1 mod 6 at
any precision k > 0.

In the next section other solutions of
∑3

i=1 ai +
∑3

i=1 bi ≡ 0 mod pk will be
shown, depending not only on p but also on k, with ab ≡ 1 mod p2 but ab ≡/ 1
mod p3, for some primes p ≥ 59.

2.2. Core increment symmetry mod p2k+1 and asymmetry mod p3k+1

Consider:
core function Ak(n) = nq (q = |Bk| = pk−1) as natural monomial,
core increment dk(n) = Ak(n + 1) − Ak(n) = (n + 1)q − nq (even degree q − 1),
natural core Ck(n) < pk with Ak(n) ≡ Ck(n) mod pk,
integer core increment Dk+1(n) = [Ck(n + 1)]p − [Ck(n)]p, with absolute value
less than pkp.

Recall: for natural n < p the p-th power residues [Ak(n)]p mod pk+1 form core
Ak+1 (Lemma 1.2). For any core element a ∈ Ck: ap−1 ≡ 1 mod pk. By FST:
Ck(n) ≡ n mod p, so Dk(n) ≡ 1 mod p, and Dk(n) is called core increment,
although in general Dk(n) ≡/ 1 mod pk for k > 2. Core naturals Ck(n) < pk are
considered in order to study natural p-th power sums.

For example consider p = 7 (Figure 1). The cubic roots in core A2 are
{42, 24, 01} mod 72, with 7-th powers {642, 024, 001} in core A3. In full 14
digits (base 7):

427 + 247= 0 14 24 06 25 00 66 6 (k=2) versus 667= 6 02 62 04 64 00 66 6

which are equivalent mod 72k+1 = 75, but differ mod 76 hence also mod
73·2+1 = 77. Cubic roots {3642, 3024} in core A4, as 7-th powers of cubic roots in
A3 (k=3), have increment 1 mod 77 with increment symmetry mod 72k+1 = 77,
and asymmetry mod p3k+1 = 710. See also Table 1. This core- and carry effect is
generalized for integers as follows.

Lemma 2.2 (Core increment symmetry and asymmetry). For q = |Bk| = pk−1

(k ≥ 1) and natural m, n < p:
(a) Core residues Ak(n) ≡ nq mod pk and increments dk(n) ≡ Ak(n + 1)

− Ak(n) mod pk have period p in n.
(b) If m + n = p then Ak(p − n) ≡ Ak(−n) ≡ −Ak(n) mod pk (odd symm.).
(c) If m + n = p − 1 then Dk+1(m) ≡ Dk+1(n) mod p2k+1 (even symm.).
(d) If m + n = p − 1 and natural cubic roots Ck(m) + Ck(n) = pk − 1 then

Dk+1(m) ≡/ Dk+1(n) mod p3k+1 (asymmetry)

Proof. (a) Core function Ak(n) ≡ nq mod pk (q = pk−1, n ≡/ 0 mod p) has just
p − 1 distinct residues with (nq)p ≡ nq mod pk, and Ak(n) ≡ n mod p (FST).
Include non-core Ak(0) ≡ 0 then Ak(n) mod pk is periodic in n with period p, so
Ak(n + p) ≡ Ak(n) mod pk. Hence difference dk(n) mod pk of two functions of
period p also has period p.
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n core C_k core C_[k+1]==(C_k)^p Core_incr. p=7 (base 7)
C_1 v C_2 v v <---- mod p^3

1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2 4 1
2. 0 0 0 0 0 0 0 2 0 0 0 0 0 2 4 2 0 0 0 0 6.0 0 1 /\
3. 0 0 0 0 0 0 0 3 0 0 0 0 6 2 4 3 0 0 0 5 6 2 5 1 sym
4. 0 0 0 0 0 0 0 4 0 0 0 6 5 5 2 4 0 0 3 4 5.0 0 1 \/
5. 0 0 0 0 0 0 0 5 0 0 4 4 3 5 2 5 0 1 5 0 0 2 4 1
6. 0 0 0 0 0 0 0 6 0 2 2 4 4 0 6 6 6 4 4 2 2 6 0 1

C_2 v v C_3 v v v <-------- mod p^5
1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 4 6 6 3 4 6 4 1
2. 0 0 0 0 0 0 4 2 4 6 6 3 4 6 4 2 5 4 3.0 0 0 0 1 /\
3. 0 0 0 0 0 0 4 3 3 4 2 3 4 6 4 3 4 5 2 6 5 0 5 1 sym
4. 0 0 0 0 0 0 2 4 1 2 5 3 3 0 2 4 6 0 0.0 0 0 0 1 \/
5. 0 0 0 0 0 0 2 5 0 2 5 3 3 0 2 5 4 3 5 3 4 6 4 1
6. 0 0 0 0 0 0 6 6 4 6 4 0 0 6 6 6 2 0 2 6 6 0 0 1

C_3 v v v C_4 v v v v <------------ mod p^7
1. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 6 4 1 4 3 6 4 1
2. 0 0 0 0 0 6 4 2 6 4 1 4 3 6 4 2 136.0 0 0 0 0 0 1 /\
3. 0 0 0 0 0 6 4 3 5 4 1 4 3 6 4 3 2 5 3 5 6 0 5 1 sym
4. 0 0 0 0 0 0 2 4 1 2 5 3 3 0 2 4 666.0 0 0 0 0 0 1 \/
5. 0 0 0 0 0 0 2 5 0 2 5 3 3 0 2 5 3 4 1 4 3 6 4 1
6. 0 0 0 0 0 6 6 6 4 0 0 0 6 6 6 6 2 6 6 6 0 0 0 1

Table 1. Cores C1..C3, increment symmetry mod p[2k+1] of C2..C4. For cubic roots of
1 mod pk: asymmetry mod p[3k+1] in C2..C4..

(b) (−n)q = −nq, odd q = pk−1, yields odd symmetry

Ak(p − n) ≡ Ak(−n) ≡ −Ak(n) mod pk

(c) Difference polynomial dk(n) has leading term q nq−1. Even degree q − 1
results in even symmetry

dk(n − 1) = nq − (n − 1)q = −(−n)q + (−n + 1)q = dk(−n).

Now Ck(n) = pk−Ck(p−n) < pk, hence for m+n = p−1, Ck(m+1) = pk−Ck(n),
so

Dk+1(m) = [pk −Ck(n)]p − [Ck(m)]p and Dk+1(n) = [pk −Ck(m)]p − [Ck(n)]p.

Briefly denote naturals Ck(m) = a, Ck(n) = b, and h = (p − 1)/2 then

Dk+1(m)−Dk+1(n) = [(pk − b)p + bp] − [(pk − a)p + ap]

≡ −h[ bp−2 − ap−2 ] p2k+1 + [ bp−1 − ap−1 ] pk+1 mod p3k+1(*)

≡ 0 mod p2k+1,

because by FST: ap−1 ≡ bp−1 ≡ 1 mod pk.
(d) Carry difference (bp−1 − ap−1)/pk ≡/ h(bp−2 − ap−2) mod pk is required,

to avoid cancellation in (*). It suffices to show this for k = 1 and 0-extensions
1 < a, b < p of cubic roots of 1 mod p. Using b ≡ a2 ≡ a−1, bp−2−ap−2 ≡ −(b−a)
mod p , and h = (p − 1)/2 ≡ −1/2 mod p the carry difference must satisfy (cd)

(bp−1 − ap−1)
p

≡/ (b − a)
2

mod p.(cd)
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Let a3 ≡ cp + 1 mod p2 with some carry c, then for m > 0: a3m ≡ mcp + 1
mod p2. So ap−1 ≡ [(p−1)/3]cp+1 mod p2, and similarly for cubic root power b3.
In other words, in extension group B2 ≡ {xp+1} ≡ (p+1)x mod p2 the coefficient
of p is proportional to the exponent. For ap−1 versus a3 the ratio is (p − 1)/3.
However in (cd), adapted for third powers a3, b3 it is (p − 1)/(3/2) = 2(p − 1)/3,
hence the (cd) inequivalence holds.

So for the cubic roots of 1 mod pk, with a + b = Ck(m) + Ck(n) = pk − 1 core
increment has asymmetry

Dk+1(m) ≡/ Dk+1(n) mod p3k+1. �

Corollary 2.1. Let prime p ≡ 1 mod 6, and any precision k > 0.
For x3 ≡ y3 ≡ 1 mod pk (cubic roots x, y ≡/ 1) 0-extensions X,Y < pk of
x, y have Xp, Y p mod pk+1 in core Ak+1 with Xp + Y p ≡ −1 mod pk+1 and
Xp + Y p ≡/ (pk − 1)p mod p3k+1.

3. Symmetries as functions yield ’triplets’

Any solution of (2’): ap + bp = −1 mod pk has at least one term (−1) in core,
and at most all three terms in core Ak. To characterize such solution by the
number of terms in core Ak, quadratic analysis (mod p3) is essential since proper
inclusion Ak ⊂ Fk requires k ≥ 3. The cubic root solution, involving one inverse
pair (Lemma 2.1) has all three terms in core Ak (k > 1). However, a computer
search (Table 2) reveals another type of solution of (2’) mod p2 for some p ≥ 59,
namely three inverse pairs of p-th power residues, denoted tripletp, in core A2.

Lemma 3.1. A tripletp of three inverse-pairs of p-th power residues in Fk

satisfies
(3a) a + b−1 ≡ −1 mod pk

(3b) b + c−1 ≡ −1 mod pk

(3c) c + a−1 ≡ −1 mod pk with abc ≡ 1 mod pk.

Proof. Multiplying by b, c, a resp. maps (3a) to (3b) if ab ≡ c−1, and (3b) to
(3c) if bc ≡ a−1, and (3c) to (3a) if ac ≡ b−1. All three conditions imply abc ≡ 1
mod pk. �

Table 2 shows all normed solutions of (2′) mod p2 for p < 200, with a tripletp

at p = 59, 79, 83, 179, 193. The cubic roots, indicated by C3, occur only at p ≡ 1
mod 6, while a tripletp can occur for either prime type ±1 mod 6. More than one
tripletp can occur per prime: two at p = 59, three at 1093 (dec) = [1111111] base
3 (one of the two known Wieferich primes [9], [6], and four at 36847, each the first
occurrence of such multiple tripletp). There are primes for which both root forms
occur, e.g. p = 79 has a cubic root solution as well as a tripletp.

Such loop of inverse-pairs in residue ring Z mod pk cannot have a length be-
yond 3, seen as follows. Consider the successor S(n) = n+1 and the two symme-
tries: complement C(n) = −n and inverse I(n) = n−1, as functions which compose
associatively.
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Find a+b = -1 mod p^2 (in A=F < G): Core A={n^p=n}, F={n^p} =A if k=2.
G(p^2)=g*, log-code: log(a)=i, log(b)=j; a.b=1 --> i+j=0 (mod p-1)

TRIPLET^p: a+ 1/b= b+ 1/c= c+ 1/a=-1; a.b.c=1; (p= 59 79 83 179 193 ...
^^^^^^

Root-Pair: a+ 1/a=-1; a^3=1 (’C3’) <--> p=6m+1 (Cubic rootpair of 1)
^^^^^^^^^
p:6m+-1 g=generator; p < 2000: two triplets at p= 59, 701, 1811
5:- 2 three triplets at p= 1093
7:+ 3 C3 11:- 2
13:+ 2 C3 17:- 3
19:+ 2 C3 23:- 5 29:- 2
31:+ 3 C3
37:+ 2 C3 41:- 6
43:+ 3 C3 47:- 5
53:- 2 log lin mod p^2
59:- 2 ------ ------------
-2,-25( 40 15, 18 43) 25, 23( 35 11, 23 47) -23, 2( 53 54, 5 4)

-- -- -- -- -- --
27, 19( 18 44, 40 14) -19, 8( 13 38, 45 20) -8,-27( 5 3, 53 55)

61:+ 2 C3
67:+ 2 C3 71:- 7
73:+ 5 C3
79:+ 3 C3
30, 20( 40 46, 38 32) -20, 10( 36 42, 42 36) -10,-30( 77 11, 1 67)

83:- 2
21, 3( 9 74, 73 8) -3, 18( 54 52, 28 30) -18,-21( 13 36, 69 46)

89:- 3
97:+ 5 C3 101:- 2
103:+ 5 C3 107:- 2
109:+ 6 C3 113:- 3
127:+ 3 C3 131:- 2 137:- 3
139:+ 2 C3 149:- 2
151:+ 6 C3
157:+ 5 C3
163:+ 2 C3 167:- 5 173:- 2
179:- 2
19, 1( 78 176,100 2) -1, 18( 64 90,114 88) -18,-19( 88 59, 90 119)
181:+ 2 C3 191:- 19
193:+ 5 C3
-81, 58( 64 106,128 86) -58, 53( 4 101,188 91) -53, 81(188 70, 4 122)
197:- 2
199:+ 3 C3

Table 2. FLT2 root: inv-pair (C3) & tripletp (for p < 200).

Theorem 3.1 (Two basic solution types). Each normed solution of (2′) is (an
extension of) a tripletp or an inverse- pair.

Proof. Assume that r equations 1 − n−1
i ≡ ni+1 form a loop of length r (in-

dices mod r). Consider function ICS(n) ≡ 1 − n−1, composed of the three el-
ementary functions: Inverse, Complement and Successor, in that sequence. Let
E(n) ≡ n be the identity function, and n 	= 0, 1,−1 to prevent division by zero,
then under function composition the third iteration [ICS]3 = E, since [ICS]2(n)
≡ −1/(n − 1) → [ICS]3(n) ≡ n (repeat substituting 1 − n−1 for n). Since C and
I commute, IC=CI, the 3! = 6 permutations of {I, C, S} yield only four distinct
dual-folded-successor “dfs” functions:

ICS(n) = 1 − n−1, SCI(n) = −(1 + n)−1,

CSI(n) = (1 − n)−1, ISC(n) = −(1 + n−1).
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By inspection each of these has [dfs]3 = E, referred to as loop length 3. For
a cubic rootpair dfs = E, and 2-loops do not occur since there are no duplets (see
Section 3.1 note 2). Hence solutions of (2′) have only dfs function loops of length
1 and 3: inverse pair and tripletp. �

A special tripletp occurs if one of a, b, c equals 1, say a ≡ 1. Then bc ≡ 1 since
abc ≡ 1, while (3a) and (3c) yield b−1 ≡ c ≡ −2, so b ≡ c−1 ≡ −2−1. Although
triplet (a, b, c) ≡ (1,−2,−2−1) satisfies conditions (3), 2 is not in core Ak (k > 2),
and by symmetry a, b, c ≡/ 1 for any tripletp of form (3).

If 2p ≡/ 2 mod p2 then 2 is not a p-th power residue, so triplet (1,−2,−2−1) is
not a tripletp for such primes, that is: at least all primes p < 4 · 1012 [6], except
the two Wieferich primes [9]: 1093 (dec) = [1111111] base 3, and 3511 (dec) =
[6667] base 8.

Figure 2. G = A ·B = g∗ (mod 52), Cycle in the plane.

3.1. A triplet for each unit n in Gk

Notice the proof of Theorem 3.1 does not require p-th power residues. So any
n ∈ Gk generates a triplet by iteration of one of the four dfs functions, yielding
the main triplet structure of Gk

Corollary 3.1. Each unit n in Gk (k > 0) generates a triplet of three inverse
pairs, except if n3 ≡ 1 and n ≡/ 1 mod pk (p ≡ 1 mod 6), which involves one
inverse pair.
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Starting at n0 ∈ Gk six triplet residues are generated upon iteration of e.g.
SCI(n): ni+1 ≡ −(ni + 1)−1 (indices mod 3), or another dfs function to prevent
a non-invertable residue. Less than 6 residues are involved if 3 or 4 divides p − 1

If 3|(p − 1) then a cubic root of 1 (a3 ≡ 1, a ≡/ 1) generates just 3 residues:
a+1 ≡ −a−1 – together with its complement this yields a subgroup (a+1)∗ ≡ C6

(Figure 1, p = 7).
If 4 divides p − 1 then an x on the vertical axis has x2 ≡ −1 so x ≡ −x−1, so

the three inverse pairs involve then only five residues (Figure 2, p = 5).
1. It is no coincidence that the period 3 of each dfs composition exceeds by one the number

of symmetries of finite ring Z(+, ·) mod pk.
2. No duplet occurs: multiply a + b−1 ≡ −1, b + a−1 ≡ −1 by b resp. a. Then ab + 1 ≡ −b

and ab + 1 ≡ −a, so that −b ≡ −a and a ≡ b.

3. Basic triplet mod 32: G2 ≡ 2∗ ≡ {2, 4, 8, 7, 5, 1} is a 6-cycle of residues mod 9. Iterate

SCI(1)∗ : −(1 + 1)−1 ≡ 4, −(4 + 1)−1 ≡ 7, −(7 + 1)−1 ≡ 1, and abc ≡ 1 · 4 · 7 ≡ 1

mod 9.

3.2. The EDS argument extended to non-core triplets

The EDS argument for the cubic root solution CR (Lemma 2.1), with all three
terms in core, also holds for any tripletp mod p2. Because A2 ≡ F2 mod p2, so
all three terms are in core for some linear transform (5). Then for each of the
three equivalences (3a) – (3c) holds the EDS property: (x + y)p ≡ xp + yp, and
thus no finite (equality preserving) extension exists, yielding inequality for the
corresponding integers for all k > 1, to be shown next. A cubic root solution is
a special tripletp for p ≡ 1 mod 6, with a ≡ b ≡ c in (3a) – (3c).

Denote the p − 1 core elements as residues of integer function Ak(n) = n|Bk|

(0 < n < p), then for any k > 2 consider core increment form:

Ak(n + 1) − Ak(n) ≡ (rn)p mod pk, where (rn)p ≡ 1 mod p2.(4)

This tripletp rootform with two terms in core, and (rn)p ≡/ 1 mod p3, is useful for
the additive analysis of subgroup Fk of p-th power residues mod pk, in essence:
the known Fermat’s Last Theorem FLT case1 for residues coprime to p, discussed
in the next section.

Any assumed FLT case1 solution (5) for integers less than pkp can be trans-
formed to (4), in two equality preserving steps. Namely first a multiplicative
scaling by an integer p-th power factor sp that is 1 mod p2 (so s ≡ 1 mod p),
to yield as one lefthand term the core residue Ak(n + 1) mod pk. And secondly
an additive translation by integer term t which is 0 mod p2 applied to both sides,
resulting in the other lefthand term −Ak(n) mod pk, while preserving integer
equality. Assuming, without loss, the normed form with zp ≡ 1 mod p2, such
linear transformation (s, t) yields:

xp + yp = zp ←→ (sx)p + (sy)p + t = (sz)p + t [integers],(5)

with sp ≡ Ak(n + 1)/xp, (sy)p + t ≡ −Ak(n) mod pk, so:

Ak(n + 1) − Ak(n) ≡ (sz)p + t mod pk, equivalent to 1 mod p2.(5′)
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With sp ≡ zp ≡ 1, t ≡ 0 mod p2 this yields an equivalence which is 1 mod p2,
hence a p-th power residue, and (5′) has two of the three terms in core, for k >2.
All three terms of a tripletp mod p2 are in core (Corrolary 1.2). In core increment
form (4) for k > 2 this holds apparently only if the righthand side (rn)p ≡ 1
mod pk, yielding:

Corollary 3.2 (For precision k > 2 (base p)). Core increment form (4) with
all three terms in core Ak is the cubic root solution, and an FLT equivalence mod
pk with three terms in core is a (scaled) cubic root solution.

Lemma 3.2. The p-th powers of 0-extended terms of a tripletp (mod pk) yield
integer inequality.

Proof. In a tripletp for some odd prime p the core increment form (4) holds for
three distinct values of n < p. Consider each tripletp equivalence separately. To
simplify notation let r be any of the three rn, and core residues Ak(n+1) ≡ xp ≡ x,
−Ak(n) ≡ yp ≡ y mod pk. Then xp + yp ≡ x + y ≡ rp mod pk, where rp ≡ 1
mod p2, has both summands in core, but rp ≡/ 1 mod pk for k > 2 is not in core:
deviation d ≡ r − rp ≡/ 0 mod pk.

Hence r ≡ rp + d ≡ (x + y) + d mod pk (with d ≡ 0 mod pk in the cubic root
case), and xp +yp ≡ x+y ≡ (x+y+d)p mod pk. The corresponding 0-extensions
yield integer p-th power inequality: Xp + Y p < (X + Y + D)p. �

In the case of cubic roots in core Ak, less than full pk digit precision (base p),
namely mod p3k+1 suffices to yield the FLT inequality (Corollary 2.1). For any
tripletp mod p2, necessarily in core A2 (Corollary 1.2), and for cubic roots of 1
mod pk (any k > 0), there holds (x + y)p ≡ x + y ≡ xp + yp, where exponent
p distributes over a sum. By binomial expansion the sum of mixed terms yields
integer (X + Y )p − (Xp + Y p) 	= 0 of precision kp, which is 0 mod p2 for any
tripletp.

For any tripletp mod pk (k > 2), say in core increment form (5′), it is conjec-
tured that there is a least precision m(k) (base p), not exceeding that for cubic
roots, which implies inequivalence Xp − Y p ≡/ Zp mod pm (Zp ≡ 1 mod p2) for
successive core 0-extensions X,Y < pk.

Conjecture. The 0-extensions X,Y,Z < pk of terms in any tripletp mod pk

equivalence in core increment form (5′) with X − Y = Z ≡ 1 mod p2 yield:
Xp − Y p ≡/ Zp mod p3k+1.

4. Relation to Fermat’s Small and Last Theorem

Core Ak as FST extension mod pk (k > 1), the additive zero-sum property of
its subgroups (Theorem 1.1), and the triplet structure of units group Gk (Theo-
rem 3.1), allow a direct approach to Fermat’s Last Theorem:

(6) xp + yp = zp (prime p > 2) has no solution for positive integers x, y, z

with case1: xyz ≡/ 0 mod p, and case2: p divides one of x, y, z.



182 N. F. BENSCHOP

Usually (6) mentions exponent n > 2, but it suffices to show inequality for primes
p > 2, because composite exponent m = p · q yields apq = (ap)q = (aq)p. In case2:
p divides just one term, because if p divides two terms then it also divides the
third, and all terms can be divided by pp.

A finite integer FLT solution of (6) has three p-th powers, each less than pm

for some finite fixed m = kp, with x, y, z < pk, so (6) holds mod pm, yet with no
carry beyond pm−1, 0-extending all terms.

The present approach needs only a simple form of Hensel’s lemma [5] (in the
general p-adic number theory), which is a direct consequence of Corollary 1.2,
extend digit-wise the normed 1-complement form (2′) such that the i-th digit of
weight pi in ap and bp sum to p−1 (0 ≤ i < k), with p choices per extra digit. Thus
to each normed solution of (2′) mod p2 there correspond pk−2 solutions mod pk.

Corollary 4.1 (1-complement extension). For k > 2, a normed FLTk root is
an extended FLT2 root.

4.1. Proof of the FLT inequality

Regarding FLT case1, cubic root of 1 and tripletp are the only (normed) FLTk

roots (Theorem 3.1). Any assumed integer case1 solution has a corresponding
equivalent core increment form (4) with two terms in core, which by Lemma 3.2
has no integer extension, contradicting the assumption, as follows :

Theorem 4.1 (FLT case1). For prime p > 2 and integers x, y, z > 0 coprime
to p equation xp + yp = zp has no solution.

Proof. An FLTk (k > 1) solution is a linear transformed extension of an FLT2

root in core A2 = F2 (Corollary 4.1). By Lemma 3.2 it has no finite p-th power
extension, yielding the theorem. �

In FLT case2 just one of x, y, z is a multiple of p, hence pp divides one of
the three p-th powers in xp + yp = zp. Again, any assumed case2 equality can
be transformed to an equivalence mod pp with two terms in core Ap, having no
integer extension, contra the assumption.

Theorem 4.2 (FLT case2). For prime p > 2 and positive integers x, y, z, if p
divides only one of x, y, z then xp + yp = zp has no solution.

Proof. In a case2 solution p divides a lefthand term, x = cp or y = cp (c >0),
or the right hand side z = cp. Bring the multiple of p to the right hand side,
for instance if y = cp then zp − xp = (cp)p, while otherwise xp + yp = (cp)p. So
the sum or difference of two p-th powers coprime to p must be shown not to yield
a p-th power (cp)p for any c > 0 :

xp ± yp = (cp)p has no solution for integers x, y, c > 0.(7)

Notice that core increment form (4) does not apply here. However, by FST
the two lefthand terms, coprime to p, are either complementary or equivalent
mod p, depending on their sum or difference being (cp)p. Scaling by sp for some
s ≡ 1 mod p, so sp ≡ 1 mod p2, transforms one lefthand term into a core residue
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Ap(n) mod pp, with n ≡ x mod p. And translation by adding t ≡ 0 mod p2

yields the other term Ap(n) or −Ap(n) mod pp, respectively. The right hand side
then becomes sp(cp)p + t, equivalent to t mod pp. So the assumed equality (7)
yields, by two equality preserving tansformations, the next equivalence (8), where
Ap(n) ≡ u ≡ up mod pp (u in core Ap for 0 < n < p with x ≡ n mod p) and
s ≡ 1, t ≡ 0 mod p2

(8) up ± up ≡ u ± u ≡ t mod pp (u ∈ Ap), with u ≡ (sx)p,

± u ≡ ±(sy)p + t mod pp.

Equivalence (8) does not extend to integers, because Up + Up > U + U , and
Up − Up = 0 	= T , where U, T are the 0-extensions of u, t mod pp, respectively.
But this contradicts assumed equalities (7), which consequently must be false. �

Note. From a practical point of view the FLT integer inequality with terms
less than ppk of a 0-extended FLTk root (case1) is caused by the carries beyond pk,
amounting to a multiple of the modulus pk, produced in the arithmetic (base p).
In the expansion of (a + b)p, the mixed terms can vanish mod pk for some a, b,
p. Ignoring the carries yields (a + b)p ≡ ap + bp mod pk, and the EDS’ property
is as it were the syntactical expression of ignoring the carry (overflow) in residue
arithmetic. In other words, in terms of p-adic number theory, this means ’breaking
the Hensel lift’: the residue equivalence of an FLTk root mod pk, although it holds
for all k >0, does imply inequality for integer p-th powers less than ppk due to its
special triplet structure, where exponent p distributes over a sum.

Conclusions and Remarks

1. The two symmetries −n, n−1 determine FLTk roots, which are necessary
for an FLT integer solution. However, these symmetries (automorphisms)
do not exist for positive integers.

2. Another proof of FLT case1 might use product 1 mod pk of FLTk root
terms: ab ≡ 1 or abc ≡ 1, which is impossible for integers > 1. The
p-th power of a k-digit natural requires upto pk digits. Arithmetic mod pk

ignores carries of weight pk and beyond. Interpreting a given FLTk equiv-
alence in naturals less than pk, their p-th powers produce for p > 2 carries
that cause inequality.

3. Core Ak ⊂ Gk as extension of FST to mod pk k > 1, and the zero-sum
of its subgroups (Theorem 1.1) yielding the cubic FLT root (Lemma 2.1),
initiated this work. The triplets were found by analysing a computer listing
(Table 2) of the FLT roots mod p2 for primes p < 200.

4. Linear analysis (mod p2) suffices for root existence (Hensel, Corollary 4.1),
but tripletp core increment form (4) with two successor terms in core re-
quires quadratic analysis (mod p3). Similarly, FLT case1 inequivalence
mod p3k+1 holds for increments of Ck+1 ≡ (Ck)p for 0-extended core Ak.

5. “FLT eqn(1) has no finite solution” and “[ICS]3 has no finite fixed point”
are equivalent (Theorem 3.1), yet each n ∈ Gk is a fixed point of [ICS]3
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mod pk (re: FLT2 roots imply all roots for k > 2, yet no 0-extension to
integers).

6. Crucial in finding the arithmetic triplet structure were extensive computer
experiments, and the application of associative function composition, the
essence of semi-groups, to the three elementary functions (Theorem 3.1):
successor S(n) = n+1, complement C(n) = −n and inverse I(n) = n−1,
with period 3 for SCI(n) = −(n + 1)−1 and the other three such compo-
sitions. In this sense FLT is not a purely arithmetic problem, but essen-
tially requires non-commutative and associative function composition for
its proof.
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