SOME RESULTS ON INCREMENTS OF THE WIENER PROCESS

A. BAHRAM

AbStract. Let $\lambda_{\left(T, a_{T}, \alpha\right)}=\left\{2 a_{T}\left[\log \frac{T}{a_{T}}+\alpha \log \log T+(1-\alpha) \log \log a_{T}\right]\right\}^{-\frac{1}{2}}$
where $0 \leq \alpha \leq 1$ and $\{W(t), t \geq 0\}$ be a standard Wiener process. This paper
studies the almost sure limiting behaviour of $\sup _{0 \leq T-a_{T}} \lambda_{\left(T, a_{T}, \alpha\right)}\left|W\left(t+a_{T}\right)-W(t)\right|$
as $T \longrightarrow \infty$ under varying conditions on a_{T} and $\frac{T}{a_{T}}$.

1. Introduction

Let $\{W(t), t \geq 0\}$ be a standard Wiener process. Suppose that a_{T} is a nondecreasing function of T such that $0<a_{T} \leq T$ and $\frac{T}{a_{T}}$ is nondecreasing. Csörgő and Révész [2], [3] etablished the following theorem.

Theorem 1.1. Let a_{T} for $T \geq 0$ satisfy
(1) a_{T} is nondecreasing,
(2) $0<a_{T} \leq T$,
(3) $\frac{a_{T}}{T}$ is nonincreasing.

Define $\beta_{T}=\left(2 a_{T}\left(\log \frac{T}{a_{T}}+\log \log T\right)\right)^{-\frac{1}{2}}$. Then
(4) $\quad \limsup _{T \longrightarrow \infty} \sup _{0 \leq t \leq T-a_{T}} \beta_{T}\left|W\left(T+a_{T}\right)-W(t)\right|=1 \quad$ a.s.
(5) $\quad \limsup _{T \longrightarrow \infty} \sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}} \beta_{T}|W(t+s)-W(t)|=1 \quad$ a.s.

If, in addition,

$$
\begin{equation*}
\lim _{T \longrightarrow} \frac{\log \frac{T}{a_{T}}}{\log \log T}=\infty, \tag{6}
\end{equation*}
$$

then "limsup" may be replaced by "lim" in both equations (4) and (5).

[^0]Here and in the sequel we shall define for each $u \geq 0$ the functions

$$
L u=\log u=\log (\max (u, 1))
$$

and

$$
L_{2} u=\log \log (\max (u, e))
$$

ε stands for a positive number given arbitrarily, and C will be understood as a positive constant independent of n, which can take different values on each appearance.
To simplify the notation, we will set

$$
\begin{aligned}
& A\left(T, a_{T}, \alpha\right)=\sup _{0 \leq t \leq T-a_{T}} \lambda_{\left(T, a_{T}, \alpha\right)}\left|W\left(t+a_{T}\right)-W(t)\right| \\
& B\left(T, a_{T}, \alpha\right)=\sup _{0 \leq t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}} \lambda_{\left(T, a_{T}, \alpha\right)}|W(t+s)-W(t)|,
\end{aligned}
$$

where

$$
\lambda_{\left(T, a_{T}, \alpha\right)}=\left\{2 a_{T}\left[L \frac{T}{a_{T}}+\alpha L_{2} T+(1-\alpha) L_{2} a_{T}\right]\right\}^{-\frac{1}{2}} \quad \text { and } \quad 0 \leq \alpha \leq 1
$$

2. Main result

In this section we shall investigate the analogous problem when β_{T} is replaced by $\lambda_{\left(T, a_{T}, \alpha\right)}$. Our goal is to prove the following result.

Theorem 2.1. Under assumptions (2) and (3) of Theorem 1.1, we have
(7) $\quad \limsup _{T \longrightarrow \infty} A\left(T, a_{T}, \alpha\right)=1 \quad$ a.s.,
(8) $\quad \limsup _{T \longrightarrow \infty} B\left(T, a_{T}, \alpha\right)=1 \quad$ a.s.

If we also have

$$
\begin{equation*}
\lim _{T \longrightarrow \infty} \frac{L \frac{T}{a_{T}}}{L\left((L T)^{\alpha}\left(L a_{T}\right)^{1-\alpha}\right)}=\infty \tag{*}
\end{equation*}
$$

then
(9) $\lim _{T \longrightarrow} A\left(T, a_{T}, \alpha\right)=1 \quad$ a.s.,

$$
\begin{equation*}
\lim _{T \longrightarrow \infty} B\left(T, a_{T}, \alpha\right)=1 \quad \text { a.s. } \tag{10}
\end{equation*}
$$

Remark 2.1. Let us mention some particular cases .

1. For $a_{T}=T$ we obtain the law of iterated logarithm.
2. If $\alpha=1$, we obtain Csörgő-Révész theorem (see Theorem 1.1).
3. If $\alpha=0$, under assumptions (2) and (3) of Theorem 1.1, then we also have

$$
\begin{array}{ll}
\limsup _{T \longrightarrow \infty} A\left(T, a_{T}, 0\right)=1, & \text { a.s. } \\
\limsup _{T \longrightarrow \infty} B\left(T, a_{T}, 0\right)=1, & \text { a.s. } \tag{12}
\end{array}
$$

If we also have $\lim _{T \rightarrow \infty} \frac{\log \frac{T}{a_{T}}}{\log \log a_{T}}=\infty$, then " limsup" in Equation (11) and (12) may be replaced by "lim".

Proof of Theorem 2.1. Our proof will be given in three steps expressed by the following three lemmas.

Lemma 2.1. Let a_{T} be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then for any $\varepsilon>0$ we have

$$
\begin{equation*}
\limsup _{T \longrightarrow \infty} A\left(T, a_{T}, \alpha\right) \geq 1-\varepsilon \tag{13}
\end{equation*}
$$

Lemma 2.2. Let a_{T} be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then for any $\varepsilon>0$ we have

$$
\begin{equation*}
\limsup _{T \longrightarrow \infty} B\left(T, a_{T}, \alpha\right) \leq 1+\varepsilon \tag{14}
\end{equation*}
$$

Lemma 2.3. Let a_{T} be a nondecreasing function of T satisfying conditions (2), (3) of Theorem 1.1 and $(*)$ of Theorem 2.1. Then for any $\varepsilon>0$ we have

$$
\begin{equation*}
\liminf _{T \longrightarrow \infty} A\left(T, a_{T}, \alpha\right) \geq 1-\varepsilon \tag{15}
\end{equation*}
$$

Proof of Lemma 2.1. Let

$$
C(T)=\lambda_{\left(T, a_{T}, \alpha\right)}\left|W(T)-W\left(T-a_{T}\right)\right| .
$$

Using the well known probability inequality
(16) $\frac{1}{\sqrt{2} \pi}\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \exp \left(-\frac{x^{2}}{2}\right) \leq P(W(1) \geq x) \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-\frac{x^{2}}{2}\right)$,
for $x \geq 0$, (see, e.g., [4, p.175]), it follows that

$$
\begin{aligned}
P(C(T) \geq 1-\varepsilon) & \geq\left(\frac{a_{T}}{T(L T)^{\alpha}\left(L a_{T}\right)^{1-\alpha}}\right)^{1-\varepsilon} \geq\left(\left(\frac{a_{T}}{T L a_{T}}\right)\left(\frac{L a_{T}}{L T}\right)^{\alpha}\right)^{1-\varepsilon} \\
& \geq\left(\left(\frac{a_{T}}{T L a_{T}}\right)\left(\frac{L a_{T}}{L T}\right)\right)^{1-\varepsilon} \geq\left(\frac{a_{T}}{T L T}\right)^{1-\varepsilon}
\end{aligned}
$$

if T is big enough. We define the sequence $\left\{T_{k}\right\}$ as follows: Let $T_{1}=1$ and define T_{k+1} by

$$
T_{k+1}-a_{T_{k+1}}=T_{k} \quad \text { if } \quad \rho<1
$$

and

$$
T_{k+1}=\theta^{k+1} \quad \text { if } \rho=1
$$

where $\theta>1$ and $\lim _{T \rightarrow \infty} \frac{a_{T}}{T}=\rho$. The conditions (2) and (3) imply that a_{T} is a continuous function of T and that $\rho=1$ if and only if $a_{T}=T$. Moreover $T-a_{T}$
is a strictly increasing function of T if $\rho<1$. In the case $\rho=1$ we refer to the law of the iterated logarithm. So we assume that $\rho<1$, (13) follows from

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{a_{T}}{T_{k}\left(L T_{k}\right)^{1-\varepsilon}}=\infty \tag{17}
\end{equation*}
$$

as was shown in Csáki, Csörgő, Földes and Révész [1, Lemma 3.2], and the r.v. $C\left(T_{k}\right)(k=1,2, \ldots)$ are independent.

Proof of Lemma 2.2. Let $a_{T_{k}}=\theta^{k}, \theta>1$ and $\varepsilon>0$. Using the inequality
(18) $\quad P\left\{\sup _{0 \leq s^{\prime}, s \leq T, 0 \leq s-s^{\prime} \leq h} h^{-\frac{1}{2}}\left|W(s)-W\left(s^{\prime}\right)\right| \geq v\right\} \leq \frac{C T}{h} \exp \left\{\frac{-v^{2}}{2+\varepsilon}\right\}$,
where C is a positive constant depending only on ε (see in $\left[\mathbf{2}\right.$, Lemma $\left.1^{*}\right]$), we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} P\left(B\left(T_{k}, a_{T_{k}}, \alpha\right)\right. & \geq(1+\varepsilon)) \\
& \leq C \sum_{k=1}^{\infty} \frac{T_{k}}{a_{T_{k}}} \exp \left\{-2 \frac{(1+\varepsilon)^{2}}{2+\varepsilon}\left(\log \frac{T_{k}}{a_{T_{k}}}\left(L T_{k}\right)^{\alpha}\left(L a_{T_{k}}\right)^{(1-\alpha)}\right)\right\} \\
& \leq C \sum_{k=1}^{\infty}\left(\frac{a_{T_{k}}}{T_{k}}\right)^{\varepsilon}\left(\frac{1}{\left(L T_{k}\right)^{\alpha}\left(L a_{T_{k}}\right)^{(1-\alpha)}}\right)^{1+\varepsilon} \\
& \leq C \sum_{k=1}^{\infty}\left(\frac{a_{T_{k}}}{T_{k}}\right)^{\varepsilon}\left(\left(\frac{L T_{k}}{L a_{T_{k}}}\right)^{1-\alpha} \frac{1}{L T_{k}}\right)^{1+\varepsilon} \\
& \leq C \sum_{k=1}^{\infty}\left(\frac{a_{T_{k}}}{T_{k}}\right)^{\varepsilon}\left(\left(\frac{L T_{k}}{L a_{T_{k}}}\right) \frac{1}{L T_{k}}\right)^{1+\varepsilon} \\
& =C \sum_{k=1}^{\infty}\left(\frac{a_{T_{k}}}{T_{k}}\right)^{\varepsilon} \frac{1}{\left(L a_{T_{k}}\right)^{1+\varepsilon}}<\infty
\end{aligned}
$$

and an application of Borel-Cantelli Lemma gives

Notice that

$$
\begin{equation*}
\limsup _{k \longrightarrow \infty} B\left(T_{k}, a_{T_{k}}, \alpha\right) \leq 1 \quad \text { a.s. } \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
1 \leq \frac{\lambda_{\left(T_{k}, a_{T_{k}}, \alpha\right)}}{\lambda_{\left(T_{k+1}, a_{T_{k+1}}, \alpha\right)}} \leq \theta \tag{20}
\end{equation*}
$$

if k is big enough. When $T_{k} \leq T \leq T_{k+1}$, we have

$$
\begin{aligned}
\limsup _{T \longrightarrow \infty} B\left(T, a_{T}, \alpha\right) & \leq \limsup _{k \longrightarrow \infty} B\left(T_{k+1}, a_{T_{k+1}}, \alpha\right) \frac{\lambda_{\left(T_{k}, a_{T_{k}}, \alpha\right)}}{\lambda_{\left(T_{k+1}, a_{T_{k+1}}, \alpha\right)}} \\
& \leq \limsup _{k \longrightarrow \infty} B\left(T_{k+1}, a_{T_{k+1}}, \alpha\right) \limsup _{k \longrightarrow \infty} \frac{\lambda_{\left(T_{k}, a_{T_{k}}, \alpha\right)}}{\lambda_{\left(T_{k+1}, a_{T_{k+1}}, \alpha\right)}}
\end{aligned}
$$

Now choosing θ near enough to one, (14) follows from (19) and (20).

Proof of Lemma 2.3. We will set $D_{T}=\left\{A\left(T, a_{T}, \alpha\right) \leq 1-\varepsilon\right\}$. Using inequality (18), for sufficiently large T, we have

$$
\begin{aligned}
P\left(D_{T}\right) & \leq P\left(\max _{0 \leq i \leq\left[\frac{T}{a_{T}}\right]-1} \lambda_{\left(T, a_{T}, \alpha\right)}\left|W(i+1) a_{T}-W\left(i a_{T}\right)\right| \leq 1-\varepsilon\right) \\
& \leq\left(1-\left(\frac{a_{T}}{T(L T)^{\alpha}\left(L a_{T}\right)^{1-\alpha}}\right)^{1-\varepsilon}\right)^{\left[\frac{T}{a_{T}}\right]} \\
& \leq 2 \exp \left\{-\left(\frac{T}{a_{T}}\right)^{\varepsilon} \frac{1}{(L T)^{\alpha(1-\varepsilon)}\left(L a_{T}\right)^{(1-\alpha)(1-\varepsilon)}}\right\} .
\end{aligned}
$$

Now, under condition $(*)$ and for all sufficiently large T,

$$
\frac{T}{a_{T}} \geq\left\{(L T)^{\alpha}\left(L a_{T}\right)^{1-\alpha}\right\}^{\frac{3-\varepsilon}{\varepsilon}}
$$

Define $T_{k}=e^{a_{T_{k}}}=k$.
Therefore

$$
\begin{aligned}
\sum_{k=2}^{\infty} P\left(D_{T_{k}}\right) & \leq 2 \sum_{k=2}^{\infty} \exp \left\{-\left(L T_{k}\right)^{2 \alpha}\left(L a_{T_{k}}\right)^{2(1-\alpha)}\right\} \\
& =2 \sum_{k=2}^{\infty} \exp \left\{-\left(\frac{L T_{k}}{L a_{T_{k}}}\right)^{2 \alpha}\left(L a_{T_{k}}\right)^{2}\right\} \\
& \leq 2 \sum_{k=2}^{\infty} \exp \left\{-\left(L a_{T_{k}}\right)^{2}\right\} \\
& \leq 2 \sum_{k=2}^{\infty} a_{T_{k}}^{-2} \\
& =2 \sum_{k=2}^{\infty}(L k)^{-2} \\
& <\infty
\end{aligned}
$$

which implies by Borel-Cantelli lemma that

$$
\begin{equation*}
\liminf _{k \longrightarrow \infty} A\left(T_{k}, a_{T_{k}}, \alpha\right) \geq 1-\varepsilon, \text { a.s. } \tag{21}
\end{equation*}
$$

When $T_{k} \leq T \leq T_{k+1}$, we have $a_{T}-a_{T_{k}} \geq 0$ and by (3), it is easy to see that $a_{T}-a_{T_{k}} \leq \frac{a_{T_{k}}}{T_{k}} \leq \delta a_{T_{k}}$ for any $\delta>0$. Thus
$\liminf _{T \longrightarrow} A\left(T, a_{T}, \alpha\right) \geq \liminf _{k \longrightarrow \infty} \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \lambda_{\left(T_{k+1}, a_{T_{k+1}}, \alpha\right)}\left|W\left(t+a_{T_{k}}\right)-W(t)\right|$

$$
-\limsup _{T \longrightarrow \infty} \sup _{0 \leq t \leq T-\delta a_{T}} \sup _{0 \leq s \leq \delta a_{T}} \lambda_{\left(T, a_{T}, \alpha\right)}|W(t+s)-W(t)|
$$

$$
=\liminf _{k \longrightarrow \infty} \sup _{0 \leq t \leq T_{k}-a_{T_{k}}} \lambda_{\left(T_{k}, a_{T_{k}}, \alpha\right)}\left|W\left(t+a_{T_{k}}\right)-W(t)\right| \frac{\lambda_{\left(T_{k+1}, a_{T_{k+1}}, \alpha\right)}}{\lambda_{\left(T_{k}, a_{T_{k}}, \alpha\right)}}
$$

$-\limsup _{T \longrightarrow \infty} \sup _{0 \leq t \leq T-\delta a_{T}} \sup _{0 \leq s \leq \delta a_{T}} \lambda_{\left(T, \delta a_{T}, \alpha\right)}|W(t+s)-W(t)| \frac{\lambda_{\left(T, a_{T}, \alpha\right)}}{\lambda_{\left(T, \delta a_{T}, \alpha\right)}}$.

By Lemma 2.2 we have
(22) $\quad \limsup _{T \longrightarrow \infty} \sup _{0 \leq t \leq T-\delta a_{T}} \sup _{0 \leq s \leq \delta a_{T}} \lambda_{\left(T, \delta a_{T}, \alpha\right)}|W(t+s)-W(t)| \leq 1$, a.s.

We notice that

$$
\begin{equation*}
\limsup _{T \longrightarrow \infty} \frac{\lambda_{\left(T, a_{T}, \alpha\right)}}{\lambda_{\left(T, \delta a_{T}, \alpha\right)}}=\delta . \tag{23}
\end{equation*}
$$

The proof of Lemma 2.3 will be completed by combining (21), (22) and (23).

References

1. Csáki E., Csörgő M., Földes A. and Révész, P., How big are the increments of the local time of a Wiener process? Ann. Probability 11 (1983), 593-608.
2. Csörgő M. and Révész P., How big are the increments of a Wiener process? Ann. Probability 7 (1979), 731-737.
3. \qquad , Strong approximation in probability and statistics. Academic Press, New York (1981).
4. Feller W., An introduction to probability theory and its applications. Vol 2, $2^{\text {nd }}$. Willy, New York (1968).
A. Bahram, Laboratoire de Mathématiques, Université Djillali Liabès, BP 89, 22000 Sidi Bel Abbès, Algeria, e-mail: Abdelkader_bahram@yahoo.fr

[^0]: Received June 6, 2003.
 2000 Mathematics Subject Classification. Primary 60J65.
 Key words and phrases. Wiener process, increments of a Wiener process, a law of the iterated logarithm.

