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THE QUADRATIC CONTROL FOR LINEAR DISCRETE-TIME

SYSTEMS WITH INDEPENDENT RANDOM PERTURBATIONS

IN HILBERT SPACES CONNECTED WITH UNIFORM

OBSERVABILITY

V. M. UNGUREANU

Abstract. The optimal control problem for linear discrete-time, time-varying sys-
tems with state dependent noise and quadratic control is considered. The asymp-
totic behavior of the solution of the related discrete-time Riccati equation is in-
vestigated. The existence of an optimal control, under stabilizability and uniform
observability (respectively detectability) conditions, for the given quadratic cost
function is proved.

1. Introduction

We consider the quadratic control problem for linear, time-varying, discrete-time
systems, with control and independent random perturbations in real, separable
Hilbert spaces. The existence of an optimal control is connected with the as-
ymptotic behavior of the solution of the discrete-time Riccati equation associ-
ated with this problem. We will establish that, under stabilizability and uniform
observability (respectively stabilizability and detectability) conditions, this Ric-
cati equation has a unique, uniformly positive (respectively nonnegative) solution,
which is bounded on N∗ and stabilizing for the considered stochastic system with
control. Using this result, we obtained the control, which minimize the given
quadratic cost function. In 1974 J. Zabczyk treated (see [11]) the same problem
for time-homogeneous systems. In connection with this problem, he introduced
a notion of stochastic observability, which is equivalent, in the finite-dimensional
case, with the one considered in this paper. He obtained similar results to those
mentioned above, but the results which involved the uniform observability are ob-
tained only for finite dimensional Hilbert spaces. The case of time-varying systems
in finite dimensions has been investigated by T. Morozan (see [6]). In this paper
we generalize the results of T. Morozan and J. Zabczyk. We also establish that,
in the stochastic case, the uniform observability cannot imply the detectability.
Consequently, the results obtained under detectability conditions (see the results
obtained by J. Zabczyk in[11]) are different to those obtained using the uniform
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observability property (see Theorems 28, 29 in this paper or Corollary 3.4 in [11],
for finite dimensional case and time-homogenous stochastic systems). Moreover,
we note that the uniform observability property is easier to verify than the de-
tectability condition. The results of this paper are the discrete-time versions of
those obtained in [9] for the continuous case.

2. Notations and the statement of the problem

Let H , V , U be separable, real Hilbert spaces and let us denote by L(H, V ) the
Banach space of all bounded linear operators which transform H into V . If H = V
we put L(H, V ) = L (H). We write 〈·, ·〉 for the inner product and ‖·‖ for norms
of elements and operators. If A ∈ L(H) then A∗ is the adjoint operator of A.
The operator A ∈ L(H) is said to be nonnegative and we write A ≥ 0, if A is
self-adjoint and 〈Ax, x〉 ≥ 0 for all x ∈ H .

We denote by H the Banach subspace of L(H) formed by all self-adjoint op-
erators, by K the cone of all nonnegative operators on H and by I the identity
operator on H. N is the set of all natural numbers and N∗ = N− {0}.

The sequence {Ln}n∈N∗ , Ln ∈ L(H, V ), is bounded on N∗ if L̃ = sup
n∈N∗

‖Ln‖

< ∞.
Let (Ω,F , P ) be a probability space and ξ be a real or H- valued random

variable on Ω. We write E(ξ) for mean value (expectation) of ξ. We will use the
notation B(H) for the Borel σ-field of H. We recall that a mapping η : (Ω,F , P ) →
(H,B(H)) is a H valued random variable if and only if, for arbitrary x ∈ H ,
〈η, x〉 : (Ω,F , P ) → R is a real random variable (see [1]). It is easy to see that if
ξ, η : (Ω,F , P ) → (H,B(H)) are two random variables, then 〈ξ, η〉 is a real random
variable.

Let ξn, n ∈ N be real independent random variables, which satisfy the condi-

tions E(ξn) = 0 and E |ξn|
2

= bn < ∞ and let Fn, n ∈ N∗ be the σ− algebra
generated by {ξi, i ≤ n − 1}. We will denote by L2

n(H) = L2(Ω,Fn, P, H) the
space of all equivalence class of H-valued random variables η (i.e. η is a measur-

able mapping from (Ω,Fn) into (H,B(H))) such that E ‖η‖
2

< ∞.
In order to solve the quadratic control problem we need the following hypothesis:

H1: The sequences An, Bn ∈ L(H), Dn ∈ L(U, H), Cn ∈ L(H, V ), Kn ∈ L(U)

and bn = E |ξn|
2

are bounded on N∗ and

Kn ≥ δI, δ > 0, for all n ∈ N∗.(1)

Assume that H1 holds. Under the above notations, we consider the system with
control

{
xn+1 = Anxn + ξnBnxn + Dnun

xk = x, k ∈ N∗,
(2)

denoted {A : D, B}, where the control u = {uk, uk+1, . . .} belongs to the class

Ũk,x, defined by the properties that un, n ≥ k is an U -valued random variable,

Fn-measurable and sup
n≥k

E ‖un‖
2 < ∞.
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To the system (2), we associate the following quadratic cost

Ik(x, u) = E

∞∑

n=k

[‖Cnxn‖
2
+ < Knun, un >],(3)

where xn is the solution of (2), for all n ∈ N∗, n ≥ k and the control u =

{uk, uk+1, ...} belongs to the class Uk,x, formed by all infinite sequences u ∈ Ũk,x

with the property Ik(x, u) < ∞.
We study the following problem: For every k ∈ N∗ and x ∈ H , we look for

an optimal control u, which belongs to the class Uk,x and minimizes the above
quadratic cost. We will prove (Theorem 29) that, under stabilizability and either
uniform observability or detectability conditions, there exists an optimal control,
which minimize the cost function (3).

3. Properties of the solutions of the linear discrete time systems

We consider the stochastic system {A, B} associated with (2)
{

xn+1 = Anxn + ξnBnxn

xk = x, k ∈ N∗,
(4)

where An, Bn ∈ L(H) for all n ∈ N∗, n ≥ k and ξn are introduced above.
The random evolution operator associated to (4) is the operator X(n, k),

n ≥ k > 0, where X(k, k) = I and

X(n, k) = (An−1 + ξn−1Bn−1) . . . (Ak + ξkBk),

for all n > k. If xn = xn(k, x) is a solution of the system (4) with the initial
condition xk = x, k ∈ N∗, then it is unique and xn = X(n, k)x.

Lemma 1. Under the above notations X(n, k), n ≥ k, n, k ∈ N∗ is a linear
and bounded operator from L2

k(H) into L2
n(H), which has the following properties

E ‖X(k, k)(ξ)‖
2

= E ‖ξ‖
2

and

E ‖X(n, k)(ξ)‖
2
≤ (‖An−1‖

2
+ bn−1 ‖Bn−1‖

2
) . . .(5)

‖Ak‖
2 + bk ‖Bk‖

2)E ‖ξ‖2

for all n > k > 0 and ξ ∈ L2
k(H).

Proof. We use the induction to prove that X(n, k) is a bounded linear operator
from L2

k(H) into L2
n(H) for all p = n− k, p ∈ N.

For p = 0 we have n = k and the conclusion follows immediately. We assume
that the statement of the lemma holds for all n ≥ k ≥ 0 such that n− k = p and
we will prove it for all n > k ≥ 0, n− k = p + 1.

Let n, k ∈ N∗ such that n − k = p + 1. If η ∈ L2
k(H), then X(n, k)(η) =

An−1(Y )+ ξn−1Bn−1(Y ), where Y = X(n−1, k)(η) ∈ L2
n−1(H) (by the induction

hypothesis).
For every x ∈ H we have 〈An−1(Y ), x〉 =

〈
Y, A∗n−1x

〉
. Since

〈
Y, A∗n−1x

〉
is a real

Fn−1-measurable random variable, then An−1(Y ) is a H-valued, Fn−1-measurable
random variable.
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Analogously, we deduce that Bn−1(Y ) is a H-valued, Fn−1-measurable ran-
dom variable. Since Fn−1 ⊆ Fn, it is clear that An−1(Y ) + ξn−1Bn−1(Y ) is
Fn-measurable. Hence X(n, k)(η) is Fn- measurable.

Since ξn is Fn-independent, then X(n, k)(η) and ξn are independent for all n−k
= p+1. From the above considerations it follows that {ξn−1, 〈Bn−1(Y ), An−1(Y )〉},
{ξn−1, 〈Bn−1(Y ), Bn−1(Y )〉} are independent. Thus

E ‖X(n, k)(η)‖2 = E ‖An−1(Y )‖2 + bn−1E ‖Bn−1(Y )‖2

≤ (‖An−1‖
2

+ bn−1 ‖Bn−1‖
2
)E ‖Y ‖

2
.

From the induction assumption we get (5) for all η ∈ L2
k(H) and n > k > 0. Since

X(n, k) is linear, we use (5) to obtain the conclusion. The proof is finished. �

Corollary 2. If An, Bn and bn are bounded on N∗ and we use the notations

Ã, B̃, b̃ introduced in the last section, then

‖X(n, k)‖ ≤ max{1, (Ã2 + b̃B̃2)(n−k)/2},

where ‖X(n, k)‖
2

= sup
η∈L2

k
(H)

E ‖X(n, k)η‖
2

for all n ≥ k > 0.

Remark 3. If xn = X(n, k)x is the solution of (4), with the initial condi-

tion xk = x, k ∈ N∗, then it follows from Lemma 1 that E ‖xn‖
2 < ∞, xn is

Fn-measurable and xn, ξn (or equivalently, X(n, k)x, ξn) are independent for all
n ≥ k > 0. It is obviously true that xn is F-measurable for all n ≥ k > 0.

If S ∈ H and An, Bn, respectively bn = E |ξn|
2

< ∞, n ∈ N∗ are introduced as
above, then we define the operators Qn, T (n, k) : H → H

Qn(S) = A∗nSAn + bnB∗nSBn,(6)

T (n, k)(S) = Qk (Qk+1 (. . . (Qn−1(S)))), for all n−1 ≥ k and T (k, k)(S) = S. It is
clear that Qn and T (n, k) are linear and bounded operators (see [7] for the finite
dimensional case).

Lemma 4. [13] Let X ∈ L(H). If X(K) ⊂ K then ‖X‖ = ‖X(I)‖, where I is
the identity operator, I ∈ H.

The following proposition is known (see [10]), but I present the proof for the
readers’ convenience.

Theorem 5. If X(n, k) is the random evolution operator associated to (4),
then T (n, k)(K) ⊂ K (that is T (n, k) satisfies the hypotheses of the above Lemma)
and we have

〈T (n, k)(S)x, y〉 = E 〈SX(n, k)x, X(n, k)y〉(7)

for all S ∈ H and x, y ∈ H.

Proof. Let S ∈ H and x, y ∈ H . Since ξn−1 is Fn−1− independent, we deduce
by Lemma 1 that ξn−1 and 〈AX(n− 1, k)x, BX(n− 1, k)y〉 (respectively ξ2

n−1
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and 〈AX(n− 1, k)x, BX(n− 1, k)y〉) are independent on (Ω,F , P ) for all A, B ∈
L(H). Using the relation X(n, k) = (An−1 + ξn−1Bn−1)X(n− 1, k), we get

E 〈SX(n, k)x, X(n, k)y〉 =E
〈
A∗n−1SAn−1X(n− 1, k)x, X(n− 1, k)y

〉

+ bn−1E
〈
B∗n−1SBn−1X(n− 1, k)x, X(n− 1, k)y

〉

and

E 〈SX(n, k)x, X(n, k)y〉 = E 〈Qn−1(S)X(n− 1, k)x, X(n− 1, k)y〉(8)

for all x, y ∈ H . Let us consider the operator V (n, k) : H → H,

〈V (n, k)(S)x, y〉 = E 〈SX(n, k)x, X(n, k)y〉(9)

for all S ∈ H and x, y ∈ H . It is easy to see that V (n, k) is well defined because
the right member of this equality is a symmetric bilinear form, which also defines
a unique linear, bounded and self-adjoint operator on H .

From (8) and (9) we obtain V (n, k)(S) = V (n− 1, k)Qn−1(S) if n− 1 ≥ k and
V (k, k) = I, where I is the identity operator from L(H). Now, it is easy to see
that V (n, k) = T (n, k) and it follows (7).

Since Qp(K) ⊂ K for all p ∈ N∗ we deduce that T (n, k)(K) ⊂ K. �

Remark 6. Since the set of all simple random variables (see [1]), which be-
longs to L2

k(H) is dense in L2
k(H) and {ξ, X(n, k)x} are independent random vari-

ables for all ξ ∈ L2
k(H), x ∈ H, it is not difficult to see that E 〈T (n, k)(S)ξ, ξ〉 =

E 〈SX(n, k)ξ, X(n, k)ξ〉 for all S ∈ H and ξ ∈ L2
k(H).

Lemma 7. The solution xj = xj(x, k; u) of (2) satisfies the equation

xj(x, k; u) = X(j, k)x +

j−1∑

i=k

X(j, i + 1)Diui(10)

for j ≥ k + 1. Moreover, xj is Fj− measurable and ξj− independent.

Proof. It is not difficult to verify, by induction, that (10) holds.
Indeed, for j = k + 1, (10) is obviously true. Suppose that (10) holds for j = n,

n > k and let us prove the statement for j = n + 1.

Then xn = X(n, k)x +
n−1∑
i=k

X(n, i + 1)Diui and we have

xn+1 = (An + ξnBn)

[
X(n, k)x +

n−1∑

i=k

X(n, i + 1)Diui

]
+ Dnun

= X(n + 1, k)x +

n∑

i=k

X(n + 1, i + 1)Diui.

Hence (10) holds for j = n + 1. The induction is complete. By the hypothesis, ui

is Fi-measurable. Using Lemma 1, we deduce that X(j, i+1)Diui, i = k, . . . , j−1
and X(j, k)x are Fj-measurable. Consequently xj is Fj-measurable. Since ξj is
Fj− independent we see that xj and ξj are independent. The proof is finished. �
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4. Uniform exponential stability, uniform observability

and detectability

4.1. Mean square stability

Definition 8. We say that the stochastic system {A, B} is uniformly exponen-
tially stable iff there exist β ≥ 1, a ∈ (0, 1) and n0 ∈ N∗ such that we have

E ‖X(n, k)x‖
2
≤ βan−k ‖x‖

2
(11)

for all n ≥ k ≥ n0 and x ∈ H .

It is not difficult to see that if the stochastic system {A, B} is uniformly ex-
ponentially stable, then there exist β ≥ 1, a ∈ (0, 1) such that (11) holds for all
n ≥ k > 0.

Using the Theorem 5 and Lemma 4 we obtain the following result:

Proposition 9. [10] The following statements are equivalent:

a) the system (4) is uniformly exponentially stable;
b) there exist β ≥ 1, a ∈ (0, 1) and n0 ∈ N∗ such that we have

‖T (n, k) (I)‖ = ‖T (n, k)‖ ≤ βan−k(12)

for all n ≥ k ≥ n0, where I is the identity operator on H.

Corollary 10. Assume that An = A, Bn = B, bn = b for all n ∈ N∗ and H has
a finite dimension. The stochastic system {A, B} is uniformly exponentially stable
if and only if the stochastic system {A∗, B∗} is uniformly exponentially stable.

Proof. By the above proposition it follows that the stochastic system {A, B}
(respectively {A∗, B∗}) is uniformly exponentially stable if and only if there exist
β ≥ 1, a ∈ (0, 1) (respectively β1 ≥ 1, a1 ∈ (0, 1)) such that we have ‖Qn(I)‖ ≤

βan (respectively
∥∥∥Q̂n(I)

∥∥∥ ≤ β1a
n
1 ) for all n ∈ N, where Qn = Q is given by (6)

(respectively Q̂(S) = ASA∗ + bBSB∗). Since TrQn(I) = TrQ̂n(I) and, for all
S ∈ K, we have ‖S‖ ≤ TrS ≤ Tr (I) ‖S‖ (I is the identity operator on H and

Tr(I) < ∞) it is clear that ‖Qn(I)‖ ≤ βan if and only if
∥∥∥Q̂n(I)

∥∥∥ ≤ β1a
n
1 for all

n ∈ N. �

4.2. Uniform observability, detectability and stabilizability

We consider the discrete-time stochastic system {A, B; C} formed by the system
(4) and the observation relation zn = Cnxn, where Cn ∈ L(H, V ), n ∈ N∗ is a
bounded sequence on N∗.

Definition 11. [6, Definition 6] We say that {A, B; C} is uniformly observable
if there exist n0 ∈ N∗ and ρ > 0 such that

k+n0∑

n=k

E ‖CnX(n, k)x‖
2
≥ ρ ‖x‖

2
(13)

for all k ∈ N∗ and x ∈ H.
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If the stochastic perturbation is missing, that is Bn = 0 for all n ∈ N∗, we will
use the notation {A, ; C} for the observed, deterministic system. We have the
following definition of the deterministic uniform observability (see [3] and [4]).

Definition 12. We say that {A, ; C} is uniformly observable iff there exist

n0 ∈ N and ρ > 0 such that
k+n0∑

n=k+1

‖CnAn−1An−2 . . . Akx‖
2
+‖Ckx‖

2
≥ ρ ‖x‖

2
for

all k ∈ N∗ and x ∈ H .

Remark 13. [3] It is known that, in the time-invariant case and for finite
dimensional spaces, the deterministic system {A, ; C} is uniformly observable iff

rank(C∗, A∗C∗, . . . , (A∗)n−1 C∗) = n, where n is dimension of H .

The following proposition is a consequence of the Theorem 5.

Proposition 14. The stochastic system {A, B; C} is uniformly observable if
and only if there exist n0 ∈ N and ρ > 0 such that, for all k ∈ N∗,

k+n0∑

n=k

T (n, k)(C∗nCn) ≥ ρI,(14)

where I is the identic operator on H.

Conclusion 15. From the above proposition it follows that if the deterministic
system {A, ; C} is uniformly observable, then the stochastic system {A, B; C} is
uniformly observable.

Definition 16. The system {A, B, C} is detectable if there exists a bounded
on N∗ sequence P = {Pn}n∈N∗ , Pn ∈ L(U, H) such that the stochastic system
{A + PC, B} is uniformly exponentially stable.

Definition 17. [6] The system (2) is stabilizable if there exists a bounded
on N∗ sequence F = {Fn}n∈N∗ , Fn ∈ L(H, U) such that the stochastic system
{A + DF, B} is uniformly exponentially stable.

Using Corollary 10 and the above definition we deduce the following:

Remark 18. In the time invariant case and for finite dimensional spaces, the
system {A, B, C} is detectable if and only if the stochastic system with control
{A∗ : C∗, B∗} is stabilizable.

4.3. The stochastic observability doesn’t imply detectability

Let us consider the time invariant case, when An = A, Bn = B, bn = b and
Cn = C. We introduce the Riccati equation

Rn = A(Rn+1)(15)

associated to the system {A, B, C}, where A : K → K,

A(S) = ASA∗ + bBSB∗ + I −ASC∗(I + CSC∗)−1CSA∗.

It is not difficult to see [12, Lemma 3.1] that, since I+CSC∗ is invertible, I+C∗CS
is invertible and C∗(I+CSC∗)−1=(I+C∗CS)−1C∗.MoreoverS(I + C∗CS)−1≥ 0.
Thus A(S) = bBSB∗+I +AS(I +C∗CS)−1A∗and the mapping A is well defined.
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Lemma 19. If the Riccati equation (15) has a bounded on N∗, nonnegative
solution then the algebraic Riccati equation

R = A(R)(16)

has a nonnegative solution.

Proof. From Theorem 3.1 in [11] we deduce that
a) A is monotonic (that is A(S1) ≥ A(S2) for all S1 ≥ S2, S1, S2 ∈ K.
b) if Sn ↗ S (strongly) then A(Sn) ↗ A(S) (strongly).

Therefore, if Rn is a nonnegative, bounded on N∗ solution of (15), then there
exists α > 0 such as αI ≥ Rn ≥ Ap(Rn+p) ≥ Ap(0) ≥ 0 for all n, p ∈ N∗. Then

An(0) ↗ A (strongly) and it is clear that A is a solution of the Riccati equation
(16). �

Remark 20. Let us consider the finite dimensional case. Assume that the
system {A, B, C} is detectable. Using Remark 18 we deduce that the stochastic
system with control {A∗ : C∗, B∗} is stabilizable. Thus, it follows by Proposi-
tion 25 that the Riccati equation (17), where we replace the operators A with
A∗, B with B∗, C with I (I is the identic operator on H), and D with C∗ admits
a nonnegative bounded on N∗ solution (that is the Riccati equation (15)) has
a nonnegative bounded on N∗ solution.

The following counter-example prove that the stochastic observability doesn’t
imply detectability.

Counter-example Let us consider H = R2, V = R (R2 is the real

2-dimensional space), An = A =

(
1 0
0 2

)
, Cn = C =

(
1 1

)
, bn = 1 and

Bn = B =

(
1 0
0 0

)
for all n ∈N∗. Since rank(C∗, A∗C∗) = 2, then the determin-

istic system {A, ; C} (see Remark 13) is observable. Therefore (see Conclusion 15)
the stochastic system {A, B; C} is uniformly observable. We will prove that the
equation (16) has not a nonnegative solution and consequently the equation (15)
cannot have a nonnegative bounded on N∗ solution. Then, from Remark 20, we
deduce that the system {A, B, C} cannot be detectable.

If we seek a solution K =

(
x1 x2

x2 x3

)
of (16) which satisfies the condition

x1x3 ≥ x2
2, x1 ≥ 0, then (16) is equivalent with the following system





(x1 + x2)
(x2

2
− 1

)
= x1 + 1

x1 + x2)

(
x2

2
+

x3 − 1

4

)
=

x2

2

(x2 + x3)
(x2

2
− 1

)
=

x2

2

(x2 + x3)(
x2

2
+

x3 − 1

4
) =

3x3 + 1

4
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We deduce
(

x2

2

)2
= (x1 + 1)

(
3x3+1

4

)
. Then x2

2 = 3x3x1+3x3+x1+1 ≥ 3x2
2+1,

that is impossible. The conclusion follows.

5. The discrete-time Riccati equation of stochastic control

Throughout this section we suppose that H1 holds. We define the transformation

Gn : K → K,Gn(S) = A∗nSDn(Kn + D∗nSDn)−1D∗nSAn.

It is easy to see that D∗nSDn ∈ K for all S ∈ K and from (1) we have
Kn+D∗nSDn≥Kn≥δI . Thus Kn+D∗nSDn is invertible and (Kn+ D∗nSDn)−1 ≥ 0.
Therefore Gn is well defined. We consider the following Riccati equation

Rn = A∗nRn+1An + bnB∗nRn+1Bn + C∗nCn − Gn(Rn+1)(17)

on K, connected with the quadratic cost (3).

Definition 21. A sequence Rn ∈ K, n ∈ N∗ such that (17) holds is said to be
a solution of the Riccati equation (17).

Definition 22. [6] A solution (Rn)n∈N∗ of (17) is said to be stabilizing for (2)
if the stochastic system {A + DF, B} with

Fn = −(Kn + D∗nRn+1Dn)−1D∗nRn+1An, n ∈ N∗(18)

is uniformly exponentially stable.

Proposition 23. The Riccati equation (17) has at most one stabilizing and
bounded on N∗ solution.

Proof. Let Rn,1 and Rn,2 be two stabilizing and bounded on N∗ solutions of
equation (17). We introduce the systems

{
xn+1,i = (An + DnFn,i)xn,i + ξnBnxn,i

xk,i = x ∈ H
(19)

for all n ≥ k, n, k ∈ N∗, where Fn,i = −(Kn + D∗nRn+1,iDn)−1D∗nRn+1,iAn,
i = 1, 2. We see that Qn = Rn,1 −Rn,2 is the solution of the equation

Qn = A∗nQn+1An + bnB∗nQn+1Bn + A∗nRn+1,1DnFn,1(20)

− F ∗n,2D
∗
nRn+1,2An.

Since xn,i and ξn, i = 1, 2 are independent random variables for all n ∈ N∗ (see
Lemma 1), it follows that

E 〈Qn+1xn+1,1, xn+1,2〉

= bnE 〈B∗nQn+1Bnxn,1, xn,2〉

+ E 〈(An + DnFn,2)
∗Qn+1(An + DnFn,1)xn,1, xn,2〉

= E 〈A∗nQn+1Anxn,1, xn,2〉+ bnE 〈B∗nQn+1Bnxn,1, xn,2〉

+ E
〈
F ∗n,2D

∗
nQn+1Anxn,1, xn,2

〉
+ E 〈A∗nQn+1DnFn,1xn,1, xn,2〉

+ E
〈
F ∗n,2D

∗
nQn+1DnFn,1xn,1, xn,2

〉
.



116 V. M. UNGUREANU

From (20) we deduce that

E 〈Qn+1xn+1,1, xn+1,2〉

= E 〈Qnxn,1, xn,2〉 −E 〈A∗nRn+1,1DnFn,1xn,1, xn,2〉

+ E
〈
F ∗n,2D

∗
nRn+1,2Anxn,1, xn,2

〉
+ E

〈
F ∗n,2D

∗
nQn+1Anxn,1, xn,2

〉

+ E 〈A∗nQn+1DnFn,1xn,1, xn,2〉+ E
〈
F ∗n,2D

∗
nQn+1DnFn,1xn,1, xn,2

〉
.

Now we obtain

E 〈Qn+1xn+1,1, xn+1,2〉

= E 〈Qnxn,1, xn,2〉 −E 〈A∗nRn+1,2DnFn,1xn,1, xn,2〉

+ E
〈
F ∗n,2D

∗
nRn+1,1Anxn,1, xn,2

〉
+ E

〈
F ∗n,2D

∗
nQn+1DnFn,1xn,1, xn,2

〉
.

Since

E
〈
F ∗n,2D

∗
nQn+1DnFn,1xn,1, xn,2

〉

= E
〈
F ∗n,2D

∗
nRn+1,1DnFn,1xn,1, xn,2

〉
−E

〈
F ∗n,2D

∗
nRn+1,2DnFn,1xn,1, xn,2

〉

= −E
〈
F ∗n,2D

∗
nRn+1,1Anxn,1, xn,2

〉
− E

〈
F ∗n,2KnFn,1xn,1, xn,2

〉

+ E 〈A∗nRn+1,2DnFn,1xn,1, xn,2〉+ E
〈
F ∗n,2KnFn,1xn,1, xn,2

〉
,

we get E 〈Qn+1xn+1,1, xn+1,2〉 = E 〈Qnxn,1, xn,2〉 for all n ≥ k.
It is easy to see that for all n ≥ k, x ∈ H , we have

E 〈Qn+1xn+1,1, xn+1,2〉 = E 〈Qkxk,1, xk,2〉 = 〈Qkx, x〉 .

Let Mi > 0, i = 1, 2 be such as ‖Rn+1,i‖ ≤ Mi, for all n ∈ N. Thus,

0 ≤ |〈Qkx, x〉| ≤ ‖Qn+1‖E(‖xn+1,1‖ ‖xn+1,2‖)

≤ (M1 + M2)

√
E ‖xn+1,1‖

2
E ‖xn+1,2‖

2
.

From the hypothesis and from the Definition 17, it follows that the systems (19)

are uniformly exponentially stable and E ‖xn+1,i‖
2 →

n→∞
0, i = 1, 2.

As n →∞ in the last inequality, we obtain 〈Qkx, x〉 = 0 for all x ∈ H . Therefore
Qk = 0 and Rk,1 = Rk,2 for all k ∈ N∗. The proof is complete. �

By Uk,M , M , k ∈ N∗, M > k we denote the set of all finite sequences
uM

k = {uk, uk+1, . . . uM−1} of U -valued and Fi-measurable random variables ui,

i = k, . . . , M − 1 with the property E ‖ui‖
2

< ∞.
Let xn, n < M be the solution of system (2) with the control uM

k . We introduce
the performance

V (M, k, x, uM
k ) = E

M−1∑

n=k

[‖Cnxn‖
2
+ < Knun, un >].

Let us consider the sequence R(M, M) = 0 ∈ K,

R(M, n) = A∗nR(M, n + 1)An + bnB∗nR(M, n + 1)Bn

+ C∗nCn − Gn(R(M, n + 1))

for all n ≤ M − 1.
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Lemma 24. The sequence R(M, n) ∈ K for all 0 < n ≤ M and

0 ≤ R(M − 1, n) ≤ R(M, n) for all 0 < n ≤ M − 1.

Proof. We will prove the first assertion by induction. For n = M , R(M, n) =
0 ∈ K. Let us assume that R(M, n) ∈ K for all n ∈ N∗, k < n ≤ M, k ∈ N∗.

We prove that R(M, k) ∈ K. Let xn be the solution of system (2) with the initial
condition xk = x and with the control uM

k , introduced above. Using Lemma 7 we
get, for all k ≤ n ≤ M − 1.

E 〈R(M, n + 1)xn+1, xn+1〉

= E 〈R(M, n + 1)(Anxn + ξnBnxn + Dnun), (Anxn + ξnBnxn + Dnun)〉

= E 〈A∗nR(M, n + 1)Anxn, xn〉+ bn 〈B
∗
nR(M, n + 1)Bnxn, xn〉

+ E 〈D∗nR(M, n + 1)Anxn, un〉+ E 〈A∗nR(M, n + 1)Dnun, xn〉

+ E 〈D∗nR(M, n + 1)Dnun, un〉 .

Further, we obtain by the definition of R(M, n)

E 〈R(M, n + 1)xn+1, xn+1〉

= E(〈R(M, n)xn, xn〉 − 〈C
∗
nCnxn, xn〉+ 〈Gn(R(M, n + 1))xn, xn〉)

+ 2E 〈D∗nR(M, n + 1)Anxn, un〉+ E 〈D∗nR(M, n + 1)Dnun, un〉 .

If zn = un + (Kn + D∗nR(M, n + 1)Dn)−1D∗nR(M, n + 1)Anxn we get

E 〈[Kn + D∗nR(M, n + 1)Dn]zn, zn〉

= E 〈[Kn + D∗nR(M, n + 1)Dn]un, un〉+ 2E 〈un, D∗nR(M, n + 1)Anxn〉

+ E 〈Gn(R(M, n + 1))xn, xn〉 .

Thus we may write

E 〈R(M, n + 1)xn+1, xn+1〉

= E 〈R(M, n)xn, xn〉 −E 〈C∗nCnxn, xn〉 −E 〈Knun, un〉

+ E 〈(Kn + D∗nR(M, n + 1)Dn)zn, zn〉

Now, we consider the last equality for n = k, k + 1, . . . , M − 1 and, summing, we
obtain

E 〈R(M, M)xM , xM 〉 = E 〈R(M, k)xk, xk〉 − V (M, k, x, uM
k )

+ E
M−1∑

n=k

〈(Kn + D∗nR(M, n + 1)Dn)zn, zn〉 .

Since R(M, M) = 0 and xk = x we have:

V (M, k, x, uM
k ) = 〈R(M, k)x, x〉

+ E

M−1∑

n=k

〈(Kn + D∗nR(M, n + 1)Dn)zn, zn〉
(21)
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Let x̃n be the solution of system
{

xn+1 = (An + DnFn)xn + ξnBnxn

xk = x ∈ H
,(22)

where Fn = −[Kn + D∗nR(M, n + 1)Dn]−1D∗nR(M, n + 1)An, n ≤ M − 1.
It is clear that x̃n is also the solution of (2) with ũn = Fnx̃n, k ≤ n ≤ M − 1.

From Lemma 1 it follows that x̃n is Fn-measurable, {x̃n, ξn} are independent and

E ‖x̃n‖
2

< ∞, k ≤ n ≤ M − 1. Therefore, we deduce that ũM
k = {ũn, k ≤ n ≤

M − 1} ∈ Uk,M . If we denote

Sk,M (uM
k ) = E

M−1∑

n=k

〈(Kn + D∗nR(M, n + 1)Dn)zn, zn〉 ,

it is clear that Sk,M (uM
k ) ≥ 0 and Sk,M (ũM

k ) = 0. Thus,

min
uM

k
∈Uk,M

V (M, k, x, uM
k ) = min

uM
k
∈Uk,M

{〈R(M, k)x, x〉+ Sk,M (uM
k )}

= 〈R(M, k)x, x〉+ min
uM

k
∈Uk,M

Sk,M (uM
k ).

Since min
uM

k
∈Uk,M

Sk,M (uM
k ) = Sk,M (ũM

k ) = 0 we deduce

〈R(M, k)x, x〉 = min
uM

k
∈Uk,M

V (M, k, x, uM
k ) ≥ 0.

We obtain R(M, k) ≥ 0 and the induction is complete. Thus the sequence
R(M, n) is well defined for all 0 < n ≤ M and is called solution of the Riccati
equation (17) with the final condition R(M, M) = 0.

Now, we obtain, for all 0 < k < M

min
uM

k
∈Uk,M

V (M, k, x, uM
k ) = V (M, k, x, ũM

k ) = 〈R(M, k)x, x〉 .(23)

Let ũM−1
k = {ũk, ũk+1, . . . , ũM−2}. It is clear that ũM−1

k ∈ Uk,M−1 and

V (M − 1, k, x, ũM−1
k ) ≤ V (M, k, x, ũM

k ).

Using the above inequality and (23), we get R(M, k) ≥ R(M − 1, k) ≥ 0 for all
M − 1 ≥ k > 0. �

Proposition 25. Suppose (2) is stabilizable. Then the Riccati equation (17)
admits a nonnegative bounded on N∗ solution.

Proof. Since (2) is stabilizable it follows that there exists a bounded on N∗

sequence F = {Fn}n∈N∗ , Fn ∈ L(H, U) such that {A+DF, B} is uniformly expo-

nentially stable. Then, there exist a ∈ (0, 1) and β ≥ 1 such that E ‖xn(k, x)‖
2
≤

βan−k ‖x‖2 , for all n ≥ k > 0 and x ∈ H .
Let us consider u = {un = Fnxn, n ≥ k}, where xn is the solution of {A +

DF, B} with the initial condition xk = x . Since Fn is bounded on N∗, it is not
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difficult to see that u ∈ Ũk,x. If uM
k = {un, M − 1 ≥ n ≥ k}, we have

V (M, k, x, uM
k ) = E

M−1∑

n=k

[‖Cnxn‖
2
+ 〈Knun, un〉]

= E
M−1∑

n=k

[‖Cnxn‖
2 + 〈KnFnxn, Fnxn〉]

≤

M−1∑

n=k

(C̃2 + K̃F̃ 2)E ‖xn‖
2
≤

∞∑

n=k

ηE ‖xn‖
2

for all M > k, where η = C̃2 + K̃F̃ 2 and L̃ = sup
n∈N∗

‖Ln‖, L = C, K, F. For all

M > k > 0, we get

V (M, k, x, uM
k ) ≤ η

∞∑

n=k

βan−k ‖x‖
2

= λ ‖x‖
2
.

Let R(M, n) be the solution of the Riccati equation (17) with the final condition
R(M, M) = 0. Using (23), we deduce that, for all M > k > 0

λ ‖x‖
2
≥ V (M, k, x, uM

k ) ≥ 〈R(M, k)x, x〉 .

From Lemma 24 and the last inequality, it follows

0 ≤ R(M − 1, k) ≤ R(M, k) ≤ λI

for all M − 1 ≥ k > 0.
Thus, there exists R(k) ∈ L(H) such that 0 ≤ R(M, k) ≤ R(k) ≤ λI for

M ∈ N∗, M ≥ k > 0 and R(M, k) →
M→∞

R(k), in the strong operator topology.

We denote L = lim
M→∞

(< Gn(R(M, n + 1))x, x > − < Gn(R(n + 1))x, x >),

PM,n = Kn + D∗nR(M, n + 1)Dn and Pn = Kn + D∗nR(n + 1)Dn. From the
definition of Gn we get

L = lim
M→∞

(〈
P−1

M,nD∗nR(M, n + 1)Anx, D∗nR(M, n + 1)Anx
〉

−
〈
P−1

n D∗nR(n + 1)Anx, D∗nR(n + 1)Anx
〉)

= lim
M→∞

(〈(
P−1

M,n − P−1
n

)
D∗nR(n + 1)Anx, D∗nR(n + 1)Anx

〉

+
〈
P−1

M,nD∗n [R(M, n + 1)−R(n + 1)] Anx, yM,n

〉)
,

where we denote yM,n = D∗n [R(M, n + 1) + R(n + 1)]Anx. Thus,

|L| ≤ lim
M→∞

(∥∥∥P−1
M,n

∥∥∥ ‖D∗n [R(M, n + 1)−R(n + 1)] Anx‖

· ‖D∗n [R(M, n + 1) + R(n + 1)] Anx‖

+
〈(

P−1
M,n − P−1

n

)
D∗nR(n + 1)Anx, D∗nR(n + 1)Anx

〉)
.
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We put

L1 = lim
M→∞

∥∥∥P−1
M,n

∥∥∥ ‖D∗n [R(M, n + 1)−R(n + 1)]Anx‖

· ‖D∗n [R(M, n + 1) + R(n + 1)] Anx‖

and

L2 = lim
M→∞

〈(
P−1

M,n − P−1
n

)
D∗nR(n + 1)Anx, D∗nR(n + 1)Anx

〉
.

Since PM,n ≥ Kn ≥ δI , δ > 0 we deduce that
∥∥∥P−1

M,n

∥∥∥ ≤ 1
δ for all M ≥ n + 1 ≥ k.

From the strong convergence of {R(M, n + 1)}M∈N∗, M≥n+1 to Rn+1 it follows
L1 = 0.

We see that
∥∥∥P−1

M,nx− P−1
n x

∥∥∥ ≤
∥∥∥P−1

M,n

∥∥∥ ‖PM,ny − Pny‖, where y = P−1
n x.

Since lim
M→∞

‖PM,ny − Pny‖ = 0 we get lim
M→∞

∥∥∥P−1
M,nx− P−1

n x
∥∥∥ = 0.

Now, it is clear that L2 = 0. Hence L = 0 and

lim
M→∞

〈Gn(R(M, n + 1))x, x〉 = 〈Gn(R(n + 1))x, x〉 .

From the definition of R(M, n) and the above result, we deduce that R(n) is
a solution of (17). The proof is complete. �

The next result is the infinite dimensional version of Proposition 9 in [7], where
we replace the Markov perturbations with independent random perturbations.

Proposition 26. If the system {A, B, C} is detectable, then every nonnegative
bounded solution of (17) is stabilizing.

Proof. Let us consider the bounded on N∗ sequence P = {Pn}n∈N∗ , Pn ∈
L(V, H) such that the stochastic system {A + PC, B} is uniformly exponentially
stable. Let Rn be a nonnegative, bounded on N∗ solution of (17).

We will prove, according Definition 22, that the stochastic system {A+DF, B},
where F is given by (18), is uniformly exponentially stable. If the control sequence

u ∈ Ũk,x is defined as in the previous proposition, we get

E 〈Rnxn, xn〉 = 〈Rkx, x〉 − V (n, k, x, un
k )

and V (n, k, x, un
k ) ≤ 〈Rkx, x〉 ≤ M ‖x‖2 , where M > 0 is the positive constant

such as Rn ≤ MI for all n ∈ N∗. Consequently lim
n→∞

V (n, k, x, un
k ) ≤ M ‖x‖

2
. The

system {A + DF, B} can be written
{

xn+1 = (An + PnCn)xn + ξnBnxn + νn

xk = x ∈ H

with νn = (DnFn − PnCn)xn. Using (1), and H1 we obtain successively

E ‖νn‖
2
≤

2D̃2

δ
δE ‖un‖

2
+ 2P̃ 2E ‖Cnxn‖

2

and
E ‖νn‖

2
≤ κ(E 〈Knun, un〉+ E ‖Cnxn‖

2
),
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where κ = max{ 2D̃2

δ , 2P̃ 2} and L̃ = sup
n∈N∗

‖Ln‖ for L = D, P. Hence

∞∑

n=k

E ‖νn‖
2
≤ κ lim

n→∞
V (n, k, x, un

k ) ≤ M̃ ‖x‖
2
, M̃ = κM.

We denote by X(n, k), respectively X̂(n, k), the random evolution operators
associated with the systems {A + DF, B} and {A + PC, B}. It is not difficult to

see that X(n, k)x = X̂(n, k)x +
n−1∑
p=k

X̂(n, p + 1)νp, n ≥ k + 1.

Let T̂ (n, k) be the operator defined by the Theorem 5, for the uniformly expo-
nentially stable system {A + PC, B}, and let β ≥ 1 and a ∈ (0, 1) be such that

E
∥∥∥X̂(n, k)x

∥∥∥
2

≤ βan−k for all n ≥ k > 0. Taking expectations we have

E
∥∥X(n, k)x

∥∥2

≤ 2E
∥∥∥X̂(n, k)x

∥∥∥
2

+ 2E




n−1∑

p=k

a
n−p−1

4 a
p−n+1

4

∥∥∥X̂(n, p + 1)νp

∥∥∥




2

≤ 2E
∥∥∥X̂(n, k)x

∥∥∥
2

+ 2
n−1∑

p=k

a
n−p−1

2

n−1∑

p=k

a
p−n+1

2 E
〈
T̂ (n, p + 1)(I)νp, νp

〉

≤ 2[βan−k ‖x‖
2

+
a

n−k
2 − 1

a
1
2 − 1

n−1∑

p=k

a
p−n+1

2

∥∥∥T̂ (n, p + 1)
∥∥∥ E ‖νp‖

2
]

≤ 2[βan−k ‖x‖
2

+
β

1− a
1
2

n−1∑

p=k

a
n−p−1

2 E ‖νp‖
2
].

Now it is not difficult to deduce that
∞∑

n=k+1

〈
T (n, k)(I)x, x

〉
=

∞∑

n=k+1

E
∥∥X(n, k)x

∥∥2
≤ 2β(

1

1− a
+

M̃

(1− a
1
2 )2

) ‖x‖
2
.

By the proof of Theorem 13 in [8], it follows the uniform exponential stability of
the system {A + DF, B}. The proof is complete. �

Theorem 27. Assume that the system {A, B; C} is uniformly observable. If
Rn is a nonnegative, bounded on N∗ solution of (17), then:

a) there exists m > 0 such that Rn ≥ mI, for all n ∈ N∗ (Rn is uniformly
positive on N∗).

b) Rn is stabilizing for (2).

Proof. The main idea is the one of [6]. Let Rn be a nonnegative, bounded on

N∗ solution of (17) and let X̃(n, k) be the random evolution operator associated
to the stochastic system {A + DF, B} with Fn given by (18). Let n0 and ρ be the
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numbers introduced by the Definition 11. We consider the operator Tn ∈ H given
by

〈Tnx, x〉 =

n+n0∑

j=n

(
E

∥∥∥CjX̃(j, n)x
∥∥∥

2

+ E
〈
KjFjX̃(j, n)x, FjX̃(j, n)x

〉)
.

We will prove that inf{〈Tnx, x〉 , n ∈N∗, ‖x‖ = 1} > 0.
Assume, by contradiction, that inf{〈Tnx, x〉 , n ∈N∗, ‖x‖ = 1} = 0. Then for

every ε > 0 there exist nε ∈ N∗, xε ∈ H, ‖xε‖ = 1 such that 〈Tnε
xε, xε〉 < ε. Let

us denote x̂ε
j = X̃(j, nε)xε, uε

j = Fj x̂
ε
j . From (1) it follows

ε > 〈Tnε
xε, xε〉 ≥ δE

nε+n0∑

j=nε

∥∥uε
j

∥∥2
.(24)

On the other hand, ε > 〈Tnε
xε, xε〉 ≥

nε+n0∑
j=nε

E
∥∥∥CjX̃(j, nε)xε

∥∥∥
2

.

From Lemma 7, we deduce that for all j ≥ nε + 1 we have

X̃(j, nε)xε = X(j, nε)xε +

j−1∑

i=nε

X(j, i + 1)Diu
ε
i .

So, we obtain

ε >

nε+n0∑

j=nε+1

E
∥∥∥CjX̃(j, nε)xε

∥∥∥
2

+ E ‖Cnε
xε‖

2

≥

nε+n0∑

j=nε+1

E

∥∥∥∥∥CjX(j, nε)xε + Cj

j−1∑

i=nε

X(j, i + 1)Diu
ε
i

∥∥∥∥∥

2

+
1

2
E ‖Cnε

xε‖
2

≥
1

2







nε+n0∑

j=nε+1

E ‖CjX(j, nε)xε‖
2 + E ‖Cnε

xε‖
2




− 2C̃2
nε+n0∑

j=nε+1

E

∥∥∥∥∥

j−1∑

i=nε

X(j, i + 1)Diu
ε
i

∥∥∥∥∥

2

 .

From H1 and Corollary 2, it follows that

E ‖X(n, k)η‖2 ≤ max{1, (Ã2 + b̃B̃2)n−k}E ‖η‖2

for all n ≥ k and η ∈ L2
k(H). Since Di is bounded on N∗ we can use the above

results and (24) to deduce

E

∥∥∥∥∥

j−1∑

i=nε

X(j, i + 1)Diu
ε
i

∥∥∥∥∥

2

≤ n0D̃
2µn0

nε+n0∑

i=nε

E ‖uε
i‖

2
≤ cε,

where µn0
= max{1, (Ã2 + b̃ B̃2)n0}, D̃ = sup

n∈N∗

‖Dn‖ and c =
n0D̃2µn0

δ .
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Now we have ε > 1
2 (

nε+n0∑
j=nε

E ‖Cnε
X(j, nε)xε‖

2
− 2C̃2n0cε) and, from Defini-

tion 11, we obtain ε > 1
2 (ρ− 2C2n0cε).

We get a contradiction because ε > 0 is arbitrary. Hence there exists m > 0
such that

〈Tnx, x〉 ≥ m ‖x‖
2

(25)

for all n ∈ N∗ and x ∈ H . We have (see the proof of Lemma 24)

E
〈
Rn0+n+1X̃(n0 + n + 1, n)x, X̃(n0 + n + 1, n)x

〉
− 〈Rnx, x〉 = −〈Tnx, x〉 .

From the last equality and from the hypothesis (Rnis bounded on N∗, that is
there exists M > m such that Rn ≤ MI), we have

m ‖x‖
2
≤ 〈Tnx, x〉 ≤ 〈Rnx, x〉 ≤ M ‖x‖

2
.(26)

Now, we obtain from (25)

E
〈
Rn0+n+1X̃(n0 + n + 1, n)x, X̃(n0 + n + 1, n)x

〉
− 〈Rnx, x〉 ≤ −m ‖x‖

2

≤ −m/M 〈Rnx, x〉 .

Thus E
〈
Rn0+n+1X̃(n0 + n + 1, n)x, X̃(n0 + n + 1, n)x

〉
≤ q 〈Rnx, x〉 for all

n ∈ N∗ and x ∈ H , where q = 1−m/M, q ∈ (0, 1).

Let T̃ (n, k) be the operator introduced by Theorem 5 for the random evolution

operator X̃(n, k). The previous inequality is equivalent with

T̃ (n0 + n + 1, n) (Rn0+n+1) ≤ qRn.

Since T̃ (n, k) is monotone (that is T̃ (n, k)(P ) ≤ T̃ (n, k)(R) for P ≤ R, n ≥ k)
we deduce

T̃ (n, k)
(
T̃ (n0 + n + 1, n) (Rn0+n+1)

)
≤ qT̃ (n, k)(Rn)

and

T̃ (n0 + n + 1, k)Rn0+n+1 ≤ qT̃ (n, k)(Rn)

for all n ≥ k.
Let n ≥ k be arbitrary. Then there exists c, r ∈ N such that n−k = (n0+1)c+r

and 0 ≤ r ≤ n0. We obtain by induction:

T̃ (n, k)(Rn) ≤ qcT̃ (r + k, k)(Rr).

From (26) and Theorem 5 we get mT̃ (n, k)(I) ≤ Mqc
∥∥∥X̃(r + k, k)

∥∥∥
2

I.

Using Corollary 2, we put G = M max
0≤ r≤n0

{(Ã2 + b̃B̃2)r} and we get

mT̃ (n, k)(I) ≤ qcGI.

We take a = q1/(n0+1), β = q−n0/(n0+1)(G/m) ≥ 1 and it follows

T̃ (n, k)(I) ≤ βan−kI.
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From Theorem 5 we deduce

E
∥∥∥X̃(n, k)x

∥∥∥
2

≤ βan−k ‖x‖
2

for all x ∈ H and 0 < k ≤ n, k, n ∈N∗. Therefore Rn is stabilizing for (2). The
proof is complete. �

Now, we can state the main result of this section.

Theorem 28. Assume that:

1) System (2) is stabilizable;
2) System {A, B; C} is either uniformly observable or detectable;

Then the Riccati equation (17) admits a unique nonnegative, bounded on N∗ and
stabilizing solution.

Proof. From the Proposition 25 and the assumption 1) we deduce that (17)
admits a nonnegative, bounded on N∗ solution. Now, we use the above theorem
or Proposition 26 and 2) to deduce that this solution is stabilizing. A stabilizing
and bounded on N∗ solution of the Riccati equation is unique, by Proposition 23.
The proof is complete. �

The above theorem is proved in [6] for the discrete time stochastic systems in
finite dimensional spaces. The continuous case for stochastic systems on infinite
dimensional spaces is treated in [9].

6. Quadratic control

The theorem below gives a solution to the control problem (2), (3).

Theorem 29. Assume H1 holds. If the hypotheses of the Theorem 28 hold,
then

min
u∈Uk,x

Ik(x, u) = Ik(x, ũ) = 〈Rkx, x〉 ,

where Rn, n ∈ N∗ is the solution of (17), ũ = {ũn = Fnx̃n, n ≥ k > 0}, Fn

is given by (18) and x̃n is the solution of the stochastic system {A + DF, B},
F = {Fn}n∈N∗ .

Proof. Let xn be the solution of system (2) and Rn be the unique solution of
(17). Arguing as in the proof of Lemma 24 we have

E 〈Rnxn, xn〉 = 〈Rkx, x〉 −E

n−1∑

i=k

[‖Cixi‖
2

+ 〈Kiui, ui〉]

+ E

n−1∑

i=k

〈(Ki + D∗i Ri+1Di) (ui − Fixi) , (ui − Fixi)〉

(27)

Let ũ = {ũn = Fnx̃n, n ≥ k > 0}, where Fn is given by (18) and x̃n is the

solution of the stochastic system {A + DF ; B}. It is easy to see that ũ ∈ Ũk,x.
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Then (27) becomes

E 〈Rnx̃n, x̃n〉 = 〈Rkx, x〉 − E

n−1∑

i=k

[‖Cix̃i‖
2
+ 〈Kiũi, ũi〉].(28)

Since Rn is bounded on N∗ (there exists M > 0 such that 〈Rnx, x〉 ≤ M ‖x‖
2

for all x ∈ H and n ∈ N∗) and stabilizing, we get

E 〈Rnx̃n, x̃n〉 ≤ ME ‖x̃n‖ →
n→∞

0.

As n →∞ in (28) and by using the Monotone Convergence Theorem, it follows
〈Rkx, x〉 = Ik(x, ũ) and consequently ũ ∈ Uk,x. Thus

min
u∈Ui,x

Ik(x, u) ≤ Ik(x, ũ) = 〈Rkx, x〉 .

Let R(M, k) be the solution of (17) with R(M, M) = 0. If u ∈ Uk,x it is clear
that the sequence uM

k = {uk, uk+1, . . . , uM−1} belongs to Uk,M . From Lemma 24
we have:

〈R(M, k)x, x〉 ≤ V (M, k, x, uM
k ) ≤ Ik(x, u),

for all M > k. As M →∞, it follows

〈Rkx, x〉 ≤ Ik(x, u)

for all u ∈ Uk,x. The conclusion follows. �
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