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α-FUZZY FIXED POINTS FOR α-FUZZY MONOTONE

MULTIFUNCTIONS

A. STOUTI

Abstract. In this note, we prove the existence of maximal, minimal, greatest and
least α-fuzzy fixed points for α-fuzzy monotone multifunctions.

1. Introduction

Let X be a nonempty set. A fuzzy subset A of X is a function of X into [0, 1] (see
[14]). A fuzzy multifunction is a map T : X → [0, 1]X such that for every x ∈ X,

T (x) is a nonempty fuzzy set. Let α ∈]0, 1] and let T : X → [0, 1]X be a fuzzy
multifunction. We say that an element x of X is an α-fuzzy fixed point of T if
T (x)(x) = α. When α = 1, the element x is called a fixed point of T.

During the last few decades several authors established fixed points theorems
in fuzzy setting, see for example [1] – [12]. Recently, in [9], we introduced the
notion of α-fuzzy ordered sets in which we established some fixed points theorems
for fuzzy monotone multifunctions.

The aim of this note is to study the existence of α-fuzzy fixed points for α-fuzzy
monotone multifunctions. First, we prove the existence of maximal and minimal
α-fuzzy fixed points (see Theorems 3.1 and 3.3). Second, we establish the existence
of greatest and least α-fuzzy fixed points (see Theorems 4.1 and 4.2).

2. Preliminaries

First, we recall the definition of α-fuzzy order.

Definition 2.1. [9] Let X be a nonempty set and α ∈ ]0, 1]. An α-fuzzy order
on X is a fuzzy subset rα of X ×X satisfying the following three properties:

(i) for all x ∈ X, rα(x, x) = α, (α-fuzzy reflexivity);
(ii) for all x, y ∈ X, rα(x, y) + rα(y, x) > α implies x = y. (α-fuzzy antisymme-

try);
(iii) for all x, z ∈ X, rα(x, z) ≥ supy∈X [min{rα(x, y), rα(y, z)}] (α-fuzzy transi-

tivity).
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The pair (X, rα), where rα is a α-fuzzy order on X is called a rα-fuzzy ordered
set. An α-fuzzy order rα is said to be total if for all x 6= y we have either
rα(x, y) > α

2
or rα(y, x) > α

2
. A rα-fuzzy ordered set X on which the order rα is

total is called rα-fuzzy chain.

Let (X, rα) be a nonempty rα-fuzzy ordered set and A be a subset of X.

An element u of X is said to be a rα-upper bound of A if rα(x, u) > α
2

for all
x ∈ A.

If x is a rα-upper bound of A and x ∈ A, then it is called a greatest element
of A.

An element m of A is called a maximal element of A if there is x ∈ A such that
rα(m, x) > α

2
, then x = m.

An element l of X is said to be a rα-lower bound of A if rα(l, x) > α
2

for all
x ∈ A.

If l is a rα-lower bound of A and l ∈ A, then it is called the least element of A.

An element n of A is called a minimal element of A if there is x ∈ A such that
rα(x, n) > α

2
, then x = n. As usual,

suprα

(A) := the least element of rα-upper bounds of A (if it exists),
infrα

(A) := the greatest element of rα-lower bounds of A (if it exists),
maxrα

(A) := the greatest element of A (if it exists),
minrα

(A) := the least element of A (if it exists).

Next, we shall give four examples of α-fuzzy orders.

Examples.

1. Let X = {0, 1, 2} and rα be the α-fuzzy order relation defined on X by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,
{

rα(0, 2) = 0.55α

rα(2, 0) = 0.1α

{

rα(2, 1) = 0.2α

rα(1, 2) = 0.6α

{

rα(1, 0) = 0.7α

rα(0, 1) = 0.15α.

As properties of rα, we have infrα
(X) = 0 and suprα

(X) = 2.

2. Consider the α-fuzzy order relation rα defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,
{

rα(0, 2) = 0.6α

rα(2, 0) = 0.2α

{

rα(2, 1) = 0.2α

rα(1, 2) = 0.3α

{

rα(1, 0) = 0.3α

rα(0, 1) = 0.55α.

In this case, we have infrα
(X) = 0 and suprα

(X) do not exist in X. Note that
1 and 2 are two maximal elements in (X, rα).

3. Let rα be the α-fuzzy order defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,
{

rα(0, 2) = 0.65α

rα(2, 0) = 0.15α

{

rα(2, 1) = 0.1α

rα(1, 2) = 0.7α

{

rα(1, 0) = 0.15α

rα(0, 1) = 0.10α.

Then, suprα

(X) = 2 and infrα
(X) do not exist in X. In addition, 1 and 0 are

two minimal elements in (X, rα).
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4. Let rα be the α-fuzzy order defined on X = {0, 1, 2} by:

rα(0, 0) = rα(1, 1) = rα(2, 2) = α,

{

rα(0, 2) = 0.8α

rα(2, 0) = 0.15α

{

rα(2, 1) = 0.20α

rα(1, 2) = 0.30α

{

rα(1, 0) = 0.30α

rα(0, 1) = 0.20α.

In this case, infrα
(X) and suprα

(X) do not exist in X. Also, 1 is a maximal
and minimal element of (X, rα).
Next, we recall some definitions and results for subsequent use.

Definition 2.2. [9] Let (X, rα) be a nonempty rα-fuzzy ordered set. The
inverse α-fuzzy relation sα of rα is defined by sα(x, y) = rα(y, x), for all x, y ∈ X.

Let us not that by [9, Proposition 3.5], if rα is an α-fuzzy order, then sα is also
an α-fuzzy order.

In [10], we proved the following lemma.

Lemma 2.3. Let (X, rα) be a rα-fuzzy order set and sα be the inverse fuzzy

order relation of rα. Then,

(i) If a nonempty subset A of X has a rα-supremum, then A has a sα-infimum

and infsα
(A) = suprα

(A).
(ii) If a nonempty subset A of X has a rα-infimum, then A has a sα-supremum

and infrα
(A) = supsα

(A).

The following α-fuzzy Zorn’s Lemma is given in [9].

Lemma 2.4. Let (X, rα) be a nonempty α-fuzzy ordered sets. If every nonemty

rα-fuzzy chain in X has a rα-upper bound, then X has a maximal element.

Let T : X → [0, 1]X be a fuzzy multifunction. Then, for every x ∈ X, we define
the following subset of X by setting:

T α
x = {y ∈ X : T (x)(y) = α} .

In this note, we shall use the following definition of α-fuzzy monotonicity.

Definition 2.5. Let (X, rα) be a nonempty rα-fuzzy ordered set. A fuzzy
multifunction T : X → [0, 1]X is said to be rα-fuzzy monotone if the two following
properties are satisfied:

(i) for all x ∈ X, T α
x 6= ∅;

(ii) if rα(x, y) > α
2

and x 6= y, for x, y ∈ X, then for all a ∈ T α
x and b ∈ T α

y , we
have rα(a, b) > α

2
.

We denote by Fα
T the set of all α-fuzzy fixed points of T .

3. Maximal and minimal α-fuzzy fixed points

In this section, we investigate the existence of maximal and minimal α-fuzzy fixed
points of α-fuzzy monotone multifunctions. First, we shall show the following:
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Theorem 3.1. Let (X, rα) be an α-fuzzy ordered set with the property that every

nonempty rα-fuzzy chain in (X, rα) has a rα-supremum. Let T : X → [0, 1]X be

a rα-fuzzy monotone multifunction. If there exist a, b ∈ X such that T (a)(b) = α

and rα(a, b) > α
2
, then the set Fα

T of all α-fuzzy fixed points of T is nonempty and

has a maximal element.

Proof. Let Hα be the fuzzy ordered subset of X defined by

Hα =
{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >
α

2

}

.

Since a ∈ Hα, then the subset Hα is nonempty.
Claim 1. The subset Hα has a maximal element. Indeed, if C is a nonempty
rα-fuzzy chain in Hα and s = suprα

(C), then we distinguish the following two
cases.

First case: s ∈ C, then s ∈ Hα.

Second case: s 6∈ C. Then, for every c ∈ C, rα(c, s) > α
2

and c 6= s. By our
definition T α

s 6= ∅. Then, there exists z ∈ X such that T (s)(z) = α. Since c ∈ Hα,

there exists d ∈ X such that T (c)(d) = α and rα(c, d) > α
2
. As T is rα-fuzzy

monotone, we get rα(d, z) > α
2
. By α-fuzzy transitivity, we obtain rα(c, z) > α

2
.

As c is a general element of C, then z is a rα-upper bound of C. On the other
hand, we know that s = suprα

(C). Hence, rα(s, z) > α
2
. From this we deduce that

s ∈ Hα. Therefore every nonemty rα-fuzzy chain in Hα has a rα-upper bound in
Hα. By Lemma 2.4, Hα has a maximal element, say m.
Claim 2. The element m is a maximal α-fuzzy fixed point of T. Indeed, by Claim 1,
m ∈ Hα. Hence, there exists y ∈ X such that T (m)(y) = α and rα(m, y) > α

2
. On

the other hand, by our hypothesis, T α
y 6= ∅. Therefore, there exists t ∈ X such that

T (y)(t) = α. From rα-fuzzy monotonicity of T we get rα(y, t) > α
2
. So, y ∈ Hα.

By Claim 1, m is a maximal element of Hα. From this and since T (m)(y) = α,

rα(y, m) > α
2

and y ∈ Hα, we deduce that we have y = m. So, T (m)(m) = α.

Thus, m ∈ Fα
T . Now, let x ∈ Fα

T . Then, x ∈ Hα. So, Fα
T ⊆ Hα. As m ∈ Fα

T , then
m is a maximal element of Fα

T . �

In order to establish the existence of a minimal α-fuzzy fixed, we shall need the
following lemma:

Lemma 3.2. Let (X, rα) be a rα-fuzzy order set and sα be the inverse fuzzy

relation of rα. Then, every rα-fuzzy monotone multifunction is also sα-fuzzy mono-

tone.

Proof. Let T : X → [0, 1]X be a rα-fuzzy monotone multifunction. Now, let
x, y ∈ X such that x 6= y and sα(x, y) > α

2
. Then, we have rα(y, x) > α

2
. Since T is

rα-fuzzy monotone, then for all a, b ∈ X such that T (x)(a) = α and T (y)(b) = α,

we get rα(b, a) > α
2
. Therfore, we obtain sα(a, b) > α

2
. �

By using Lemmas 2.3 and 3.2 and Theorem 3.1, we obtain the following result.

Theorem 3.3. Let (X, rα) be a rα-fuzzy ordered set with the property that every

nonempty rα-fuzzy chain has a rα-infimum. Let T : X → [0, 1]X be a rα-fuzzy

monotone multifunction. Assume that there exist a, b ∈ X such that T (a)(b) = α
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and rα(b, a) > α
2
. Then, the set Fα

T of all α-fuzzy fixed points of T is nonempty

and has a minimal element.

Proof. Let sα be the inverse fuzzy order relation of rα. From Lemma 2.3, every
nonempty sα-fuzzy chain has a sα-supremum. On the other hand, by Lemma 3.2,
we know that T is sα-fuzzy monotone. From this and sα(a, b) > α

2
, by Theorem 3.1,

we deduce that T has a maximal α-fuzzy fixed point, l say, in (X, sα). Let x ∈ Fα
T

such that rα(x, l) > α
2
. Then, sα(l, x) > α

2
. Since l is a maximal α-fuzzy fixed

point of T in (X, sα), then l = x. Therefore, l is a minimal α-fuzzy fixed point of
T in (X, rα). �

4. Greatest and least α-fuzzy fixed points

In this section, we shall establish the existence of the greatest and the least α-fuzzy
for α-fuzzy monotone multifunctions. First, we shall prove the following:

Theorem 4.1. Let (X, rα) be a rα-fuzzy ordered set with the property that every

nonempty fuzzy ordered subset of X has a rα-supremum. Let T : X → [0, 1]X be

a rα-fuzzy monotone multifunction. If there exist a, b ∈ X such that T (a)(b) = α

and rα(a, b) > α
2
, then T has the greatest α-fuzzy fixed point. Moreover, we have

max(Fα
T ) = sup

rα

{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >
α

2

}

.

Proof. Let Pα be the fuzzy ordered subset defined by

Pα =
{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(x, y) >
α

2

}

.

As a ∈ Pα, then the subset Pα is nonempty. Let g = suprα

(Pα).
Claim 1. We have: g ∈ Pα. Indeed, assume on the contrary that g 6∈ Pα. Then
for all x ∈ Pα, we have x 6= g. As by our definition T α

g 6= ∅, then there exists
z ∈ T α

g . Let x ∈ Pα. Hence, there exists y ∈ T α
x such that rα(x, y) > α

2
. From

α-fuzzy monotonicity of T, we obtain rα(y, z) > α
2
. By α-fuzzy transitivity, we get

rα(x, z) > α
2
. As x is a general element of Pα, so z is a rα-upper bound of Pα. On

the other hand; by our hypothesis; we have g = suprα

(Pα). Then, rα(g, z) > α
2
.

Thus, g ∈ Pα. That is a contradiction, and our claim is proved.
Claim 2. We have:

{

z ∈ X : T (g)(z) = α and rα(g, z) > α
2

}

= {g}. By absurd,
suppose that there exists z ∈ T α

g such that rα(g, z) > α
2

and z 6= g. As T is
rα-fuzzy monotone and T α

z 6= ∅, then there exists l ∈ T α
z such that rα(z, l) > α

2
.

Therefore, z ∈ P and rα(z, g) > α
2
. Hence, we get rα(z, g) + rα(g, z) > α. From

this and α-fuzzy antisymmetry, we obtain g = z. That is a contradiction with the
fact that z 6= g and our Claim is proved.
Claim 3. The element g is the greatest α-fuzzy fixed point of T. Indeed, as g ∈ Pα,

then there exists z ∈ T α
g such that rα(g, z) > α

2
. Then by Claim 2, we deduce that

z = g and g is a α-fuzzy fixed point of T. On the other hand, let x be an α-fuzzy
fixed point of T. So x ∈ Pα. Thus, Fα

T ⊆ Pα. Hence, g is a rα-upper bound of Fα
T .

As g ∈ Fα
T , therefore, g is the greatest element of Fα

T . �

Combining Lemmas 2.3 and 3.2 and Theorem 4.1, we get the following:
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Theorem 4.2. Let (X, rα) be a rα-fuzzy ordered set with the property that every

nonempty fuzzy ordered subset of X has a rα-infimum. Let T : X → [0, 1]X be a rα-

fuzzy monotone multifunction. Assume that there is a, b ∈ X such that T (a)(b) = α

and rα(b, a) > α
2
. Then, T has a least α-fuzzy fixed point. Furthermore, we have

min(Fα
T ) = inf

rα

{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(y, x) >
α

2

}

.

Proof. Let sα be the inverse α-fuzzy order of rα. From Lemma 2.3, every
nonempty fuzzy ordered subset of X has an infimum in (X, sα). By Lemma 3.2,
T is sα-fuzzy monotone. Since rα(b, a) > α

2
, then sα(a, b) > α

2
. From this and

by Theorem 4.1 we deduce that the fuzzy multifunction T has a greatest α-fuzzy
fixed point in (X, sα), m, say. Therefore, m is the least α-fuzzy fixed point of T in
(X, rα). Since m is the greatest α-fuzzy fixed of T in (X, sα), then by Theorem 4.1,
we have

m = sup
sα

{

x ∈ X : there exists y ∈ X, T (x)(y) = α and sα(x, y) >
α

2

}

.

Therefore, by Lemma 2.3, we conclude that

m = inf
rα

{

x ∈ X : there exists y ∈ X, T (x)(y) = α and rα(y, x) >
α

2

}

.
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