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LIMIT OF APPROXIMATE INVERSE SYSTEM OF TOTALLY

REGULAR CONTINUA IS TOTALLY REGULAR

I. LONČAR

Abstract. It is known that the limit of an inverse system of totally regular continua
is a totally regular continuum. In this paper we shall prove that this is true for
approximate limit of an approximate inverse system in the sense of S. Mardešić
(Theorem 14).

1. Introduction

In this paper we shall use the notion of inverse systems X = {Xa, pab, A} and
their limits in the usual sense [1, p. 135].

The cardinality of a set X will be denoted by card(X). The cofinality of a cardi-
nal number m will be denoted by cf(m). Cov(X) is the set of all normal coverings
of a topological space X . If U , V ∈ Cov(X) and V refines U , we write V ≤ U .
For two mappings f, g : Y → X which are U-near (for every y ∈ Y there exists
a U ∈ U with f(y), g(y) ∈ U), we write (f, g) ≤ U . A basis of (open) normal
coverings of a space X is a collection C of normal coverings such that every normal
covering U ∈ Cov(X) admits a refinement V ∈ C. We denote by cw(X) (covering
weight) the minimal cardinal of a basis of normal coverings of X [9, p. 181].

Lemma 1. [9, Example 2.2]. If X is a compact Hausdorff space, then
cw(X) = w(X).

The notion of approximate inverse system X = {Xa, pab, A} will be used in the
sense of S. Mardešić [11].

Definition 1. An approximate inverse system is a collection X = {Xa, pab, A},
where (A,≤) is a directed preordered set, Xa, a ∈ A, is a topological space and
pab : Xb → Xa, a ≤ b, are mappings such that paa = id and the following condition
(A2) is satisfied:

For each a ∈ A and each normal cover U ∈ Cov(Xa) there is an index(A2)

b ≥ a such that (pacpcd, pad) ≤ U whenever a ≤ b ≤ c ≤ d.
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An approximate map p = {pa : a ∈ A} : X → X into an approximate system
X = {Xa, pab, A} is a collection of maps pa : X → Xa, a ∈ A, such that the
following condition holds

For any a ∈ A and any U ∈ Cov(Xa) there is b ≥ a such that(AS)

(pacpc, pa) ≤ U for each c ≥ b. (See [10]).

Let X = {Xa, pab, A} be an approximate system and let p ={pa : a ∈ A} : X → X

be an approximate map. We say that p is a limit of X provided it has the following
universal property:

For any approximate map q = {qa : a ∈ A} : Y → X of a space Y(UL)

there exists a unique map g : Y → X such that pag = qa.

Let X = {Xa, pab, A} be an approximate system. A point x = (xa) ∈
∏

{Xa :
a ∈ A} is called a thread of X provided it satisfies the following condition:

(∀a ∈ A)(∀U ∈ Cov(Xa))(∃b ≥ a)(∀c ≥ b)pac(xc) ∈ st(xa, U).(L)

If Xa is a T3.5 space, then the sets st(xa,U), U ∈ Cov(Xa), form a basis of the
topology at the point xa. Therefore, for an approximate system of Tychonoff
spaces condition (L) is equivalent to the following condition:

(∀a ∈ A) lim{pac(xc) : c ≥ a} = xa.(L*)

Some other properties of approximate systems and their subsystems are given
in Appendix.

Let τ be an infinite cardinal. We say that a partially ordered set A is τ -directed
if for each B ⊆ A with card(B) ≤ τ there is an a ∈ A such that a ≥ b for each
b ∈ B. If A is ℵ0-directed, then we will say that A is σ-directed. An inverse system
X = {Xa, pab, A} is said to be τ -directed if A is τ -directed. An inverse system
X = {Xa, pab, A} is said to be σ-directed if A is σ-directed.

The proof of the following theorem is similar to the proof of Theorem 1.1 of [4].

Theorem 1. Let X = {Xa, pab, A} be a σ-directed approximate inverse system
of compact spaces with surjective bonding mappings and limit X. Let Y be a metric
compact space. For each surjective mapping f : X → Y there exists an a ∈ A such
that for each b ≥ a there exists a mapping gb : Xb → Y such that f = gbpb.

Theorem 2. Let X be a compact spaces. There exists a σ-directed inverse
system X = {Xa, pab, A} of compact metric spaces Xa and surjective bonding
mappings pab such that X is homeomorphic to limX.

Theorem 3. [8, p. 163, Theorem 2.]. If X is a locally connected compact
space, then there exists an inverse system X = {Xa, pab, A} such that each Xa is a
metric locally connected compact space, each pab is a monotone surjection and X

is homeomorphic to limX. Conversely, the inverse limit of such system is always
a locally connected compact space.

Remark 1. We may assume that X = {Xa, pab, A} in Theorem 3 is σ-directed
[12, Theorem 9.5].
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Theorem 4. [13, Corollary 2.9]. If X is a hereditarily locally connected contin-
uum, then there exists a σ-directed inverse system X = {Xa, pab, A} such that each
Xa is a metrizable hereditarily locally connected continuum, each pab is a monotone
surjection and X is homeomorphic to limX.

Theorem 5. [3, Corollary 3]. Let X = {Xa, pab, A} be a σ-directed inverse
system of hereditarily locally connected continua Xa. Then X = limX is hereditarily
locally connected.

The following theorem is Theorem 1.7 from [5].

Theorem 6. Let X = {Xa, pab, A} be a σ-directed inverse system of compact
metrizable spaces and surjective bonding mappings. Then X = limX is metrizable
if and only if there exists an a ∈ A such that pb : X → Xb is a homeomorphism
for each b ≥ a.

2. Limit of approximate inverse system of totally regular continua

We shall say that a non-empty compact space is perfect if it has no isolated point.
A continuum is said to be totally regular [12, p. 47] if for each x 6= y in X there

is a positive integer n and perfect subsets A1, . . . , An, . . . of X such that xi ∈ Ai

for i = 1, . . . , n implies that {x1, . . . , xn} separates x from y in X .

Lemma 2. [12, Proposition 7.4]. Each totally regular continuum is hereditarily
locally connected and rim-finite.

The following theorem is a part of [12, Theorem 7.15].

Theorem 7. If X is a continuum then the following conditions are equivalent:

(1) X is totally regular,
(2) X is homeomorphic to lim{Xa, fab, Γ} such that each Xa is a totally regular

continuum and each fab is a monotone surjection.

Theorem 8. [12, Theorem 7.7]. Let X = {Xa, pab, A} be an inverse system
of totally regular continua Xa and monotone surjective mappings pab. Then X =
limX is totally regular.

Theorem 9. Let X be a non-metric totally regular continuum. There exists
a σ-directed inverse system X = {Xa, pab, A} such that each Xa is totally regular,
each fab is a monotone surjection and X is homeomorphic to limX.

Proof. Apply [12, Theorem 9.4], Theorem 8 and Lemma 3.5 of [14]. �

Now we consider approximate inverse systems of totally regular continua. We
start with the following theorem.

Theorem 10. Let X = {Xn, pnm, N} be an approximate inverse sequence of
totally regular metric continua. If the bonding mappings are monotone and sur-
jective, then X = limX is totally regular.
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Proof. There exists a usual inverse sequence Y = {Yi, qij , M} such that Yi =
Xni

, qij = pnini+1pni+1ni+2 . . . pnj−1nj
for each i, j ∈ N and a homeomorphism

H : limX→ limY [2, Proposition 8]. Each mapping qij as a composition of the
monotone mappings is monotone. This means that Y is a usual inverse sequence
of totally regular continua with monotone bonding mappings qij . By virtue of
Theorem 8 limY is totally regular. We infer that X = lim X is totally regular
since there exists a homeomorphism H : lim X→ limY. �

Theorem 11. Let X = {Xa, pab, A} be an approximate inverse system of totally
regular continua such that card(A) = ℵ0. Then X = lim X is totally regular.

Proof. By virtue of Lemma 6 of Appendix there exists a countable well-ordered
subset B of A such that the collection {Xb, pbc, B} is an approximate inverse
sequence and limX is homeomorphic to lim{Xb, pbc, B}. From Theorem 10 it
follows that lim{Xb, pbc, B} is totally regular. Hence X = limX is totally regular.

�

Theorem 12. Let X = {Xa, pab, A} be an approximate inverse system of totally
regular continua and monotone bonding mappings. If w(Xa) ≤ τ < card(A) for
each a ∈ A, then X = limX is totally regular continuum.

Proof. By virtue of Theorem 15 (for λ = ℵ0) of Appendix there exists a σ-
directed inverse system {Xα, qαβ , T}, where each Xα is a limit of an approximate
inverse subsystem {Xγ , pαβ , Φ}, card(Φ) = ℵ0. From Theorem11 it follows that
every Xα is totally regular. Theorem 8 completes the proof. �

Theorem 13. Let X = {Xa, pab, A} be an approximate inverse system of totally
regular metric continua and monotone bonding mappings. Then X = lim X is
totally regular continuum.

Proof. If card(A) = ℵ0, then we apply Theorem 11. If card(A) ≥ ℵ1, then from
Theorem 12 it follows that X is totally regular. �

A directed preordered set (A,≤) is said to be cofinite provided each a ∈ A has
only finitely many predecessors. If a ∈ A has exactly n predecessors, we shall write
p(a) = n + 1. Hence, a ∈ A is the first element of (A,≤) if and only if p(a) = 1.

Lemma 3. If (A,≤) is cofinite, then it satisfies the following principle of in-
duction:

Let B ⊂ A be a set such that:

(i) B contains all the first elements of A,
(ii) if B contains all the predecessors of a ∈ A, then a ∈ B.

Then B = A.

Lemma 4. [15, Lemma 1]. Let q = (qa) : Y → Y = {Yb,Vb, qab
′ , B} be an

approximate map (approximate resolution) of a space Y . Then there exists an

approximate map (approximate resolution) q = (qa) : Y → Y = {Y
′

c ,V
′

c, qcc
′ , C}

of the space Y and an increasing surjection t : C → B satisfying the following
conditions:
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(i) C is directed, unbounded, antisymmetric and cofinite set,
(ii) (∀c ∈ C)(∀b ∈ B)(∃c′ > c) t(c′) > b;
(iii) (∀c ∈ C) Y ′

c = Yt(c), V
′

c = Vt(c), q′c = qt(c) and q′cc′ = qt(c)t(c′), whenever
c < c′.

Corollary 1. Let X = {Xa, pab, A} be an approximate inverse system of com-
pact spaces. Then there exists an approximate inverse system Y = {Yc, pcc′ , C}
such that: a) each Yc is some Xa, b) each pcc′ is some pab, c) C is directed,
unbounded, antisymmetric and cofinite set and limX is homeomorphic to limY.

Proof. By virtue of Theorem 4.2 of [10] an approximate map p : X → X is
an approximate resolution if and only if it is a limit of X = {Xa, pab, A}. Apply
Lemma 4. �

Now we shall prove the main theorem of this paper.

Theorem 14. Let X = {Xa, pab, A} be an approximate inverse system of
totally regular continua with monotone surjective bonding mappings pab. Then
X = lim X is totally regular.

Proof. If every Xa is a metric totally regular continuum, then we apply Theorem
13. Now, suppose that each Xa is a non-metric totally regular continuum. The
proof consists of several steps. In the Steps 0 – 11 we shall define a usual inverse
system XD = {Xd, Fde, D} whose inverse limit XD is homeomorphic to X = limX.
In Step 12 we shall use Theorem 8 which completes the proof.

Step 0.
From Corollary 1 it follows that we may assume that A is cofinite.

Step 1.
By virtue of Theorem 9 for each Xa there exists a σ directed inverse system

(2.1) X(a) = {X(a,γ), f(a,γ)(a,δ), Γa}

such that each X(a,γ) is a totally regular metric continuum, each f(a,γ)(a,δ) is
monotone and surjective and Xa is homeomorphic to limX(a). Now we have the
following diagram

(2.2)

Xa
pab←− Xb

pbc←− Xc
pd←− X





y

f(a,γa)





y

f(b,γc)





y

f(c,γc)

X(a,γa) X(b,γb) X(c,γc)




y

f(a,γa)(a,δa)





y

f(b,γb)(b,δb)





y

f(c,γc)(c,δc)

X(a,δa) X(b,δb) X(c,δc)




y





y





y

Step 2.
Put B = {(a , γa ) : a ∈ A, γa ∈ Γa} and put C to be the set of all subsets c

of B of the form

(2.3) c = {(a, γa) : a ∈ A},
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where every γa is the fixed element of Γa.
Step 3.

Let D be a subset of C containing all c ∈ C for which there exist the mappings

(2.4) g(a,γa)(b,γb) : X(b,γb) → X(a,γa), b ≥ a,

such that

(2.5) {X(a,γa), g(a,γa)(b,γb), A}

is an approximate inverse system and each diagram

(2.6)

Xa
pab←− Xb





y

f(a,γa)





y

f(b,γb)

X(a,γa)

g(a,γa)(b,γb)

←− X(b,γb)

commutes, where f(a,γa) : Xa → X(a,γa) is the canonical projection.

Step 4.
The set D is non empty. Moreover, for each countable subset Sa ⊂ Γa, a ∈ A,

there exists a d ∈ D such that d = {(a, γa) : a ∈ A}, γa ≥ γ for every γ ∈ Sa.
Let a ∈ A be some first element of A and let γa ∈ Γa such that γa ≥ γ for
every γ ∈ Sa. The space X(a,γa) is a metric compact space and there exist the
mappings f(a,γa)pab : Xb → X(a,γa), b ≥ a. By virtue of Theorem 1 for each b ≥ a

there exist a γ1
b ∈ Γb such that for each γb ≥ γ1

b , γ, where γ ∈ Sb, there exists
a monotone surjective mapping g(a,γa)(b,γb) : X(b,γb) → X(a,γa) with f(a,γa)pab =
g(a,γa)(b,γb)f(b,γb), i.e., the diagram

(2.7)

Xa
pab←− Xb





y

f(a,γa)





y

f(b,γb)

X(a,γa)

g(a,γa)(b,γb)

←− X(b,γb)

commutes. Suppose that (a, γ1
b ), (a, γ2

b ), . . . , (a, γn−1
b ) are defined for each a ∈

A with p(a) ≤ n − 1 such that the each diagram (2.6) commutes. Let a ∈ A

be a member of A with p(a) = n. This means that (a, γ1
b ), (a, γ2

b ), . . . , (a, γn−1
b )

are defined. From the cofinitness of A it follows that the set of γj
a which are

defined in Γa is finite. Hence there exists γn
a ≥ γn−1

a , . . . , γ1
a. We define γn

b ∈ Γb

considering the space X(a,γn
a ) and the mappings f(a,γn

a )pab : Xb → X(a,γn
a ). Again,

by Theorem 1 for each b ≥ a there exists an γn
b ∈ Γb such that for each γb ≥

γn
b , γn−1

b , . . . , γ1
b and there is a mapping g(a,γb)(b,γb) : X(b,γb) → X(a,γn

a ) with
f(a,γn

a )pab = g(a,γb)(b,γb)f(b,γb), i.e., the diagram

(2.8)

Xa
pab←− Xb





y

f(a,γn
a )





y

f(b,γb)

X(a,γn
a )

g(a,γn
a )(b,γb)

←− X(b,γb)

commutes. By induction on A (Lemma 3) the set D is defined. It remains to prove
that {X(a,γa), g(a,γa)(b,γb), A} is an approximate inverse system. Let U be a normal

cover of X(a,γa). Then V = f−1
(a,γa)( U) is a normal cover of Xa. By virtue of (A2)



LIMIT OF APPROXIMATE INVERSE SYSTEM 7

there exists a b ≥ a such that for each c ≥ d ≥ b we have (pad, pcapcd) ≤ V . By
virtue of the commutativity of the diagrams of the form (2.8) it follows that

(2.9) (g(a,γa)(d,γd), g(a,γa)(c,γc)g(c,γc)(d,γd)) ≤ V .

Thus, {X(a,γa), g(a,γa)(b,γb), A} is an approximate inverse system.

Step 5.
We define a partial order on D as follows. Let d1, d2 be a pair of members of

D such that d1 = {(a, γa) : a ∈ A, γa ∈ Γa} and d2 = {(a, δa) : a ∈ A, δa ∈ Γa}.
We write d2 ≤ d1 if and only if δa ≤ γa for each a ∈ A. From Step 4 it follows
that (D,≤) is σ-directed.

Step 6.
For each d ∈ D a limit space Xd of the inverse system (2.5) is a totally regular

continuum (Theorem 13). Moreover, there exists a mapping Fd : X → Xd. The
existence of Fd follows from the commutativity of the diagram (2.6). The following
diagram illustrates the construction of d ∈ D and the space Xd.

(2.10)

Xa
pab←− Xb

pbc←− Xc
pd←− X





y

f(a,δa)





y

f(b,δc)





y

f(c,δc)

X(a,δa) X(b,δb) X(c,δc)




y

f(a,γa)(a,δa)





y

f(b,γb)(b,δb)





y

f(c,γc)(c,δc)

X(a,γa)

g(a,γa)(b,γb)

←− X(b,γb)

g(b,γb)(c,γc)

←− X(c,γc)

g(c,γc)
←− Xd





y





y





y

Step 7.
If d1, d2 is a pair of members of D such that d1 = {(a, γa) : a ∈ A, γa ∈ Γa},

d2 = {(a, δa) : a ∈ A, δa ∈ Γa} and d2 ≥ d1, then for each a ∈ A the following
diagram commutes

(2.11)

X(a,δa)

g(a,δa)(b,δb)

←− X(b,δb)




y

f(a,γa)(a,δa)





y

f(b,γb)(b,δb)

X(a,γa)

g(a,γa)(b,γb)

←− X(b,γb)

This follows from the commutativity of the diagrams of the form (2.6) for d1 and
d2, i.e., from the commutativity of the diagrams

(2.12)

Xa
pab←− Xb





y

f(a,γa)





y

f(b,γb)

X(a,γa)

g(a,γa)(b,γb)

←− X(b,γb)

and

(2.13)

Xa
pab←− Xb





y

f(a,δa)





y

f(b,δb)

X(a,δa)

g(a,δa)(b,δb)

←− X(b,δb)
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Step 8.
From Step 7 it follows that for d1, d2 ∈ D with d2 ≥ d1 there exists a mapping

Fd1d2 : Xd2 → Xd1 (see [1, p. 138]) such that Fd1 = Fd1d2Fd2 .
Proof of Step 8. Let d1, d2, d3 ∈ D and let d1 ≤ d2 ≤ d3. Then Fd1d3 = Fd1d2Fd2d3 .
This follows from Step 7 and the commutativity condition in each inverse system
X(a) = {X(a,γ), f(a,γ)(a,δ), Γa} (see (2.1) of Step 1).

Step 9.
The collection {Xd, Fde, D} is a usual inverse system of totally regular metric

continua.
Apply Steps 1 – 8.

Step 10.
There is a mapping F : X → XD which is 1− 1.
By Step 6 and Step 8 for each d ∈ D there is a mapping Fd : X → Xd such that

Fd1 = Fd1d2Fd2 for d2 ≥ d1. This means that there exists a mapping F : X → XD

[1, p. 138]. Let us prove that F is 1− 1. Take a pair x, y of distinct points of X .
There exists an a ∈ A such that xa = pa(x) and ya = pa(y) are distinct points of
Xa. Now, there exists an (a, γa) such that f(a,γa)(xa) and f(a,γa)(ya) are distinct
points of X(a,γa). From Step 4 it follows that there is a d ∈ D such that Fd(x)
and Fd(y) are distinct points of Xd. Thus, F is 1− 1.

Step 11.
The mapping F is a homeomorphism onto XD. Let y be a point of XD. Let us

prove that there exists a point x ∈ X such that F (x) = y. For each d ∈ D we have
a point yd = Fd(y). Now, we have the points g(a,γa)Fd(y) in X(a,γa) and the subsets

Ya = f−1
(a,γa)(g(a,γa)Fd(y)) of Xa. Let U be an open neighborhood Ya. There exists

an open neighborhood V of g(a,γa)Fd(y) such that f−1
(a,γa)(V ) ⊆ U . We infer that

Ls{g(b,γb)(Yb) : b ≥ a} ⊆ Ya since g(a,γa)Fd(y) = lim{g(a,γa)(b,γb)g(b,γb)Fd(y) : b ≥
a} and the diagrams (2.6) commute. By virtue of [6, Lemma 2.1] it follows that
there exists a non-empty closed subset Cd of limX such that pb(Cd) ⊆ Yb. The
family {Cd : d ∈ D} has the finite intersection property. This means that X ′ =
⋂

{Cd : d ∈ D} is non-empty. For each x ∈ X ′ we have Fd(x) = Fd(y), d ∈ D.
Thus, F (y) = x. The proof of this Step is completed.

Step 12.
By virtue of Theorem 8 it follows that XD = lim{Xd, Fde, D} is totally regular.

We infer that X is totally regular since the mapping F is a homeomorphism of X

onto XD (Step 11). �

3. Appendix

In this Appendix we investigate the approximate subsystem of an approximate
system X = {Xa, pab, A}. We start with the following definition.

Definition 2. Let X = {Xa, pab, A} be an approximate inverse system and
let B be a directed subset of A such that {Xb, pbc, B} is an approximate inverse
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system. We say that {Xb, pbc, B} is an approximate subsystem of X = {Xa, pab, A}
if there exists a mapping q : lim X→ lim{Xb, pbc, B} such that

pbq = Pb, b ∈ B,

where pb : lim{Xb, pbc, B} → Xb and Pb : limX → Xb, b ∈ B, are natural projec-
tions.

We say that an approximate system X = {Xa, pab, A} is irreducible if for each
B ⊂ A with card(B) < card(A) it follows that B is not cofinal in A.

Lemma 5. Let X = {Xa, pab, A} be an approximate inverse system. There
exists a cofinal subset B of A such that X = {Xa, pab, B} is irreducible.

Proof. Consider the family B of all cofinal subset of B of A. The set {card(B) :
B ∈ B} has a minimal element b since each card(B) is some initial ordinal number.
Let B ∈ B be such that card(B) = b. It is clear that {Xa, pab, B} is irreducible. �

In the sequel we will assume that X = {Xa, pab, A} is irreducible.

Lemma 6. Let X = {Xa, pab, A} be an approximate inverse system of compact
spaces such that card(A) = ℵ0. Then there exists a countable well-ordered subset
B of A such that the collection {Xb, pbc, B} is an approximate inverse sequence
and limX is homeomorphic to lim{Xb, pbc, B}.

Proof. Let ν be any finite subset of A. There exists a δ(ν) ∈ A such that
δ ≤ δ(ν) for each δ ∈ ν. Since A is infinite, there exists a sequence {νn : n ∈ N}
such that ν1 ⊆ . . . νn ⊆ . . . and A =

⋃

{νn : n ∈ N}. Recursively, we define the
sets A1, . . . , An, . . . by

A1 = ν1

⋃

{δ(ν1)},

and

An+1 = An

⋃

νn+1

⋃

{δ(An

⋃

νn+1)}.

It follows that there exists a sequence

A1 ⊆ A2 ⊆ . . . ⊆ An . . .

of finite sets An such that A =
⋃

{An : n ∈ N}. Using a δ(An) for each An, we
obtain a sequence B = {bn : n ∈ N} such that B is cofinal in A. Let us prove
that {Xb, pbc, B} is an approximate inverse system, i.e., that (A2) is satisfied for
{Xb, pbc, B}. For each Xb and each normal cover of Xb there exists an a′ ∈ A such
that (A2) is satisfied for b ≤ a′ ≤ c ≤ d since (A2) is satisfied for X = {Xa, pab, A}.
There exists a b′ such that b′ ∈ B, b′ ≥ a′, since B is cofinal in A. It is obvious
that (A2) is satisfied for each c, d ∈ B such that b ≤ b′ ≤ c ≤ d. By virtue of [10,
Theorem 1.19] it follows that limX is homeomorphic to lim{Xb, pbc, B}. �

Now we consider irreducible approximate inverse systems X = {Xa, pab, A}
with card(A) ≥ ℵ1.

Lemma 7. Let A be a directed set. For each subset B of A there exists a directed
set F∞(B) such that card(F∞(B)) = card(B).
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Proof. For each B ⊆ A there exists a set F1(B) = B
⋃

{δ(ν) : ν ∈ B}, where ν

is a finite subset of B and δ(ν) is defined as in the proof of Lemma 6. Put

Fn+1 = F1(Fn(B),

and
F∞(B) =

⋃

{Fn(B) : n ∈ N}.

It is clear that
F1(B) ⊆ F2(B) ⊆ . . . ⊆ Fn(B) ⊆ . . .

The set F∞(B) is directed since each finite subset ν of F∞(B) is contained in some
Fn(B) and, consequently, δ(ν) is contained in F∞(B).

If B is finite, then card(F∞(B)) = ℵ0. If card(B) ≥ ℵ0, then we have

card({δ(ν) : ν ∈ B}) ≤ card(B)ℵ0.

We infer that card(F1(B)) ≤ card(B)ℵ0. Similarly, card(Fn(B)) ≤ card(B)ℵ0.
This means that card(F∞(B)) ≤ card(B)ℵ0. Thus

card(F∞(B)) ≤ card(B)ℵ0, if card(B) < card(A).

The proof is completed. �

Lemma 8. Let {Xa, pab , A} be an approximate inverse system such that
cw(Xa) < card(A), a ∈ A. For each subset B of A with card(B) < card(A), there
exists a directed set G∞(B) ⊇ B such that the collection {Xa, pab ,G∞(B)} is an
approximate system and card(G∞(B)) = card(B).

Proof. Let Ba be a base of normal coverings of Xa. Let Ua be a normal covering
of Ba. By virtue of (A2) there exists an a(Ua) ∈ A such that (pad, pacpcd) ≤ Ua,
a ≤ a(Ua) ≤ c ≤ d. For each subset B of A we define G∞(B) by induction as
follows:
a) Let G1(B) = F∞(B). From Lemma 7 it follows that card(G1(B)) =

card(F∞(B)) = card(B).
b) For each n > 1 we define Gn(B) as follows:

1) If n is odd then Gn(B) = F∞(Gn−1(B)),
2) If n is even, then Gn(B) = Gn−1(B) ∪ {a(Ua) : Ua ∈ Ba, a ∈ Gn−1(B)}.

Since card(Ba) < card(A) the set Gn(B) has the cardinality < card(A).
Now we define G∞(B) = ∪{Gn(B) : n ∈ N}. It is obvious that
card(G∞(B)) < card(A).

The set G∞(B) is directed. Let a, b be a pair of the elements of G∞(B). There
exists a n ∈ N such that a, b ∈ Gn(B). We may assume that n is odd. Then
a, b ∈ F∞(Gn−1(B)). Thus there exists a c ∈ F∞(Gn−1(B)) such that c ≥ a, b. It
is clear that c ∈ G∞(B). The proof of directedness of G∞(B) is completed.

The collection {Xa, pab , G∞(B)} is an approximate system. It suffices to prove
that the condition (A2) is satisfied. Let a be any member of G∞(B). There exists
a n ∈ N such that a ∈ Gn(B). We have two cases.

1) If n is odd then Gn(B)=F∞(Gn−1(B)). Thismeans that a ∈ F∞(Gn−1(B)).
By definition of F∞(Gn−1(B)) we infer that a(Ua) ∈ F∞(Gn−1(B)). Thus
(A2) is satisfied.
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2) If n is even, then Gn(B) = Gn−1(B) ∪ {a(Ua) : Ua ∈ Cov(Xa), a ∈
Gn−1(B)}. In this case a ∈ Gn+1(B) ⊆ G∞(B). Arguing as in the case 1,
we infer that (A2) is satisfied.

�

Theorem 15. Let X = {Xa, pab, A} be an approximate inverse system of com-
pact spaces. If λ ≤ w(Xa) ≤ τ <card(A) for each a ∈ A, then limX is homeo-
morphic to a limit of a λ-directed usual inverse system {Xα, qαβ , T}, where each
Xα is a limit of an approximate inverse subsystem {Xγ, pαβ , Φ}, card(Φ) = λ.

Proof. The proof consists of several steps.
Step 1.

Let B = {Bµ : µ ∈ M} be a family of all subsets Ba of A with card(Bα) = λ.
Put Aµ = G∞(Bµ) (Lemma 8) and let ∆ = {Aµ : µ ∈ M} be ordered by inclu-
sion ⊆.

Step 2.
If Φ and Ψ are in ∆ such that Φ ⊂ Ψ, then there exists a mapping qΦΨ :

lim{Xα, pαβ, Ψ} → lim{Xγ , pαβ , Φ}.
Namely, if x = (xα, α ∈ Ψ) ∈ lim{Xα, pαβ, Ψ}, then by definition of the

threads of {Xα, pαβ, Ψ} the condition (L) is satisfied. If (L) is satisfied for x =
(xα, α ∈ Ψ) ∈ lim{Xα, pαβ, Ψ}, then it is satisfied for (xγ , γ ∈ Φ) since the re-
quired a′ in (L) lies – by definition of the set Φ – in the set Φ. This means that
(xγ , γ ∈ Φ) ∈ lim{Xγ , pαβ , Φ}. Now we define qΦΨ(x) = (xγ , γ ∈ Φ).

Step 3.
The collection {XΦ, qΦΨ, ∆} is a usual inverse system. It suffices to prove the

transitivity, i.e., if Φ ⊆ Ψ ⊆ Ω , then qΦΨqΨΩ = qΦΩ. This easily follows from the
definition of qΦΨ.

Step 4.
The space limX is homeomorphic to lim{XΨ, qΦΨ, ∆}, where XΦ =

lim{Xγ , pαβ , Φ}. We shall define a homeomorphism H : lim X → lim{XΨ, qΦΨ, ∆}.
Let x = (xa : a ∈ A) be any point of limX. Each collection {xa : a ∈ Φ ∈ ∆} is a
point xΦ of XΦ since XΦ = lim{Xa, pab, Φ}. Moreover, from the definition of qΦΨ

(Step 2) it follows that qΦΨ(xΨ) = xΦ, Ψ ⊇ Φ. Thus, the collection {xΦ : Φ ∈ ∆}
is a point of lim{XΦ, qΦΨ, ∆}. Let H(x) = {xΦ, Φ ∈∈ ∆}. Thus, H is a continuous
mapping of limX to lim{XΨ, qΦΨ, ∆}. In order to complete the proof it suffices to
prove that H is 1− 1 and onto. Let us prove that H is 1− 1. Let x = (xa : a ∈ A)
and y = (ya : a ∈ A) be a pair of points of limX. This means that there exists
an a ∈ A such that ya 6= xa. There exists a Φ ∈ ∆ such that a ∈ Φ. Thus, the
collections {xa : a ∈ Φ} and {xa : a ∈ Φ} are different. From this we conclude
that xΦ 6= yΦ, xΦ, yΦ ∈ XΦ = lim{Xa, pab, Φ}. Hence H is 1 − 1. Let us prove
that H is onto. Let y = (yΦ : Φ ∈ ∆) be any point of lim{XΨ, qΦΨ, ∆}. Each yΦ

is a collection {xa : a ∈ Φ} and if Ψ ⊇ Φ, then the collection {xa : a ∈ Φ} is the
restriction of the collection {xa : a ∈ Ψ} on Φ. Let x be the collection which is the
union of all collections {xa : a ∈ Φ}, Φ ∈ ∆. Hence x is a collection (xa : a ∈ A)
which is a point of lim X and H(x) = y.
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Step 5.
Inverse system {XΦ, qΦΨ, ∆} is a λ-directed inverse system. Let {{Xγ , pαβ, Φκ} :

κ ≤ λ} be a collection of approximate subsystems {Xγ , pαβ , Φκ}. The set Φ =
∪{Φκ : κ ≤ λ} has the cardinality ≤ λ since card(Φκ) ≤ λ. By virtue of Steps 1 – 4
there exists an approximate subsystem {Xγ, pαβ , Φ}, card(Φ) = λ. This means
that {XΦ, qΦΨ, ∆} is a λ-directed inverse system. �

If X = {Xa, pab, A} is an approximate inverse system of compact metric spaces,
then w(Xa) = ℵ0, for each a ∈ A. It follows that λ = ℵ0 if card(A) ≥ ℵ1. Hence
we have the following theorem.

Corollary 2. Let X = {Xa, pab, A} be an approximate inverse system of com-
pact metric spaces such that card(A) ≥ ℵ1. Then limX is homeomorphic to the
limit of a σ-directed usual inverse system {Xα, qαβ , ∆}, where each Xα is a limit
of an approximate inverse subsystem {Xγ , pαβ, Φ}, card(Φ) = ℵ0.

Lemma 9. Let X = {Xa, pab, A} be an approximate system such that Xa, a ∈
A, are compact locally connected spaces and pab are monotone surjections. If
Y = {Xb, pcd, B} is an approximate subsystem of X, then the mapping qAB :
limX → lim Y (defined in Step 2 of the proof of Theorem 15) is a monotone
surjection.

Proof. Let Pa : limX → Xa, a ∈ A, be the natural projection. Similarly,
let pa : lim Y → Xa, a ∈ B, be the natural projection. From the definition of
qAB (Step 2 of the proof of Theorem 15) it follows that paqAB = Pa for each
a ∈ B. By virtue of [10, Corollary 4.5] and [7, Corollary 5.6] it follows that
Pa and pa are monotone surjections. Let us prove that qAB is a surjection. Let
y = (ya : a ∈ B) ∈ limY. The sets P−1

a (ya), a ∈ B, are non-empty since Pa is
surjective for each a ∈ A. From the compactness of limX it follows that a limit
superior Z =Ls{P−1

a (ya), a ∈ B} is a non-empty subset of limX. We shall prove
that for each z = (za : a ∈ A) ∈ Z we have Pa(z) = ya. Suppose that Pa(z) 6= ya.
There exists a pair U, V of open disjoint subsets of Xa such that ya ∈ U and
Pa(z) ∈ V . For a sufficiently large b ∈ B the set Pa(P−1

b (b)) is in U because

(AS). This means that P−1
a (V )

⋂

P−1
b (yb) = ∅ for a sufficiently large b ∈ B. This

contradicts the assumption z ∈Ls{P−1
a (ya), a ∈ B}. Hence qAB is a surjection. In

order to complete the proof it suffices to prove that qAB is monotone. Take a point
y ∈ limY and suppose that q−1

AB(y) is disconnected. There exists a pair U, V of

disjoint open sets in limX such that q−1
AB(y) ⊆ U

⋃

V . From the compactness
of lim X it follows that qAB is closed. This means that there exists an open
neighborhood W of y such that q−1

AB(y) ⊆ q−1
AB(W ) ⊆ U

⋃

V . From the definition
of the basis in limY it follows that there exists an open set Wa in some Xa, a ∈ B,

such that y ∈ p−1
a (Wa) ⊆ W . Moreover, we may assume that Wa is connected

since Xa is locally connected. Then P−1
a (Wa) is connected since Pa is monotone

[7, Corollary 5.6]. Moreover, q−1
AB(y) ⊆ P−1

a (Wa) and P−1
a (Wa) ⊆ U

⋃

V since
Pa = paqAB . This is impossible since U and V are disjoint open sets and P−1

a (Wa)
is connected. �
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Theorem 16. Let X = {Xa, pab, A} be an approximate inverse system of com-
pact spaces such that λ ≤ w(Xa) < card(A) for each a ∈ A. If cf(card(A)) 6= λ,
then X = lim X is homeomorphic to a limit of a λ-directed usual inverse sys-
tem {Xα, qαβ , T}, where each Xα is a limit of an approximate inverse subsys-
tem {Xγ, pαβ , Φ}, card(Φ) = λ. Moreover, if card(A) is a regular cardinal,
then X = lim X is homeomorphic to a limit of a λ-directed usual inverse sys-
tem {Xα, qαβ, T}, where each Xα is a limit of an approximate inverse subsystem
{Xγ , pαβ , Φ}, card(Φ) = λ.
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