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CONTINUOUS SELECTIONS FOR LIPSCHITZ

MULTIFUNCTIONS

I. KUPKA

Abstract. In [11] an example presented a Hausdorff continuous, u.s.c. and l.s.c.
multifunction from 〈−1, 0〉 to R which had no continuous selection. The multi-
function was not locally Lipschitz. In this paper we show that a locally Lipschitz
multifunction from R to a Banach space, which has ”locally finitely dimensional“
closed values does have a continuous selection.

1. Introduction

The research in the selection theory was started by Michael in 1956 (see for example
[15], [16]) by proving several continuous selection theorems. Then, the problem
of the existence of selections of various types – linear e. g. [7], measurable [13],
Carathéodory [8], quasicontinuous [10], [14], Lipschitz [3], [6] etc. – was studied
in many papers. A Lipschitz selection theorem for compact-valued multifunctions
defined on a closed interval, with values in a metric space, was proved in [5].
Recent results concerning selections are listed in [18].

In general, there is no guarantee that a ”nice“ multifunction will have a contin-
uous selection. Even closed-valued continuous multifunctions defined on compact
interval and with values in R need not have a continuous selection (see[11]). In
this paper, we show, in particular, that if such a multifunction is locally Lipschitz,
it does have a continuous selection. This will be a consequence of a more general
assertion, Theorem 3.

2. Notation and terminology

For definiton of basic notions: multifunction, selection, l.s.c. u.s.c. and Hausdorff
continuous multifunction, Hausdorff metric etc see e.g. [12] and [17].

In what follows we denote by N the set of all positive integers, by R the real
line with its usual topology and by B an arbitrary Banach space over R. If X is
a metric space, x ∈ X and r is a positive real number, we denote the closed ball
with the center x and diameter r by B(x, r). Throughout this paper we consider
only multifinctions with nonvoid values.
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If K is a positive real number, and (X, d), (Y, %) are metric spaces, we say
that a multifunction F from X to Y is K-Lipschitz if for every x1, x2 from X the
inequality H%(F (x1), F (x2)) ≤ Kd(x1, x2) is true. (By H% we denote a Hausdorff
metric on 2Y − {∅} derived in a natural way from %).

Before proving our main results we need the following technical lemma:

Lemma 1. Let Y be a Banach space over R. Let a ∈ R, let m be a positive real
number. Let I = 〈a, a + m〉 (I = 〈a−m, a〉) ⊂ R. Let F : I → Y be a K-Lipschitz
multifunction. Let r > 0, r < K. Let b ∈ F (a). Then there exists an M -Lipschitz
function f : I → Y such that M = (K + r), f(a) = b and for each x in I

d(f(x), F (x)) = inf{d(f(x), t); t ∈ F (x)} < r.

Moreover f(I) ⊆ B(b, 2Km) holds.

Proof. Let us consider the case I = 〈a, a + m〉. The case I = 〈a − m, a〉 is
symmetrical.

Let n ∈ N be such that K m
n

< r
6 and m

n
< 1

3 . Let us define xi = a + m
n

i

for i = 0, 1, 2, . . . n. Denote b = y0. Since F is K-Lipschitz, there exists a point
y1 ∈ F (x1) such that

d(y0, y1) 5 H(F (x0), F (x1)) +
rm

2n

5 Kd(x0, x1) +
rm

2n
5 K

m

n
+

rm

2n
5

(

K +
r

2

) m

n
.

By final induction we can find a set {y0, y1, . . . , yn} such that ∀i = 0, 1, 2, . . . , n,
yi ∈ F (xi) and

d(yi, yi+1) 5
(

K +
r

2

) m

n
for i 5 n− 1.

Let us define a continuous function f : 〈a, a + m〉 → Y in this way: f(xi) = yi,
i = 0, 1, 2, . . . , n

f(x) =
1

m
[n(x− xi)yi+1 + n(xi+1 − x)yi] if x ∈ (xi, xi+1).

We will prove that f is (K + r
2 )-Lipschitz on 〈a, a + m〉.

(I) Let x, x′ ∈ 〈xi, xi+1〉, for some i ∈ {0, 1, . . . , n} , x < x′. We obtain

d(f(x), f(x′))

=
1

m
‖n(x′ − xi)yi+1 + n(xi+1 − x′)yi − n(x− xi)yi+1 − n(xi+1 − x)yi‖

=
n

m
‖(x′ − x)yi+1 − (x′ − x)yi‖ 5

n

m
|x′ − x| · ‖(yi+1 − yi)‖

5
n

m
|(x′ − x)|

(

K +
r

2

) m

n
5

(

K +
r

2

)

|x′ − x|.
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(II) In general, if x < xi < xi+1 . . . , xi+k < x′ for some i, k ∈ {0, 1, . . . , n},
i + k < n then, because of (I)

d(f(x), f(x′))

5 d(f(x), f(xi)) + d(f(xi), f(xi+1)) + . . . + d(f(xi+k−1), f(xi+k))

+ d(f(xi+k), f(x′))

5
((

K +
r

2

)

|xi − x|+
(

K +
r

2

)

|xi+1 − xi|+ . . . +
(

K +
r

2

)

|x′ − xi+k |
)

=
(

K +
r

2

)

|x′ − x|.

Now, let x ∈ 〈a, a + m〉, then x ∈ 〈xi, xi+1〉 for some i ∈ {0, 1, . . . , n}. So

d(f(x), F (x)) = inf{d(f(x), t), t ∈ F (x)}

= inf
{∥

∥

∥

n

m
(x− xi)yi+1 +

n

m
(xi+1 − x)yi − t

∥

∥

∥
; t ∈ F (x)

}

Since F is K-Lipschitz there exists a point p from F (x) such that d(p, yi+1)
5 (K + r

2 )(xi+1 − x) therefore

d(f(x), p) 5 d(f(x), yi) + d(yi, yi+1) + d(yi+1, p)

5
(

K +
r

2

)

(x− xi) +
(

K +
r

2

) m

n
+

(

K +
r

2

)

(xi+1 − x)

5
(

K +
r

2

)

(xi+1 − xi) +
(

K +
r

2

) m

n
5 2

(

K +
r

2

) m

n
5 2

r

6
+ r

m

n
< r.

so d(f(x), F (x)) < r for each x from 〈a, a + m〉.
Now, since f(a) = b and f is a (K +r)-Lipschitz function, for r such that r < K

and for each x from 〈a, a + m〉 we have

d(b, f(x)) = d(f(a), f(x)) 5 (K + r)|x − a| 5 2K|a + m− a| 5 2Km

so f(〈a, a + m〉) ⊆ B(b, 2Km). �

Theorem 1. Let B be a finitely dimensional Banach space. Let a ∈ R, let l

be a positive real number. Let I = 〈a, a + l〉 (〈a − l, a〉). Let F : I → B be a
K-Lipschitz multifunction with closed values. Then F has a K-Lipschitz selection
on I.

Proof. We will prove the Theorem only for the case I = 〈a, a + l〉. According
to Lemma 1 there exists a sequence {fi}∞i=1 of functions fi : 〈a, a + l〉 → B such
that for each index i from N and each x from 〈a, a + l〉 d(fi(x), F (x)) < 1

i
is true.

Moreover each function fi is
(

K + 1
i

)

-Lipschitz and fi(〈a, a + l〉) ⊂ B(b, 2Kl).
This implies that for every x from X the set {fi(x); i = 1, 2, . . .} is precompact.

Since B is finitely dimensional, according to Arzela-Ascoli theorem the set
M = {fi; i ∈ 1, 2, . . .} is precompact. So there exists a continuous function
f : 〈a, a + l〉 → B such that f is a uniform limit of a sequence {fij

}∞j=1 (a subse-

quence of {fi}∞i=1) of functions from M .
Let us consider an ε > 0. As we have proved above there exists an index k such

that fij
is (K + ε)-Lipschitz for each j = k. That means that the function f is

also (K + ε)-Lipschitz. f is proved to be K-Lipschitz.
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Now it is simple to realize that f is a selection of F . For each ε > 0 there exists
an index m such that for each x from X

d(fim
(x), F (x)) < ε and sup

x∈〈a,a+l〉

|fim
(x) − f(x)| < ε.

So for every x from X d(f(x), F (x)) < 2ε. Since ε was an arbitrary positive real
number, for each x from X d(f(x), F (x)) = 0 is true. F has closed values so f is
a selection of F . �

3. Main results

Theorem 2. Let B be a finitely dimensional Banach space over R. Let F :
R → B be a K-Lipschitz multifunction with closed values. Then F has a K-
Lipschitz selection on R.

Proof. This is a simple consequence of Theorem 1 so we will only give an outline
of the proof. Let b be an element of the set F (0). Using Theorem 1, we can define
by induction K-Lipschitz selections f1, f2, . . . f2i, f2i+1, . . . of F such that for each
nonnegative integer i the function f2i (f2i+1) is defined on 〈2i, 2i+ 2〉 (〈−2i− 2,

−2i〉) and f2i(2i + 2) = f2(i+1)(2i + 2) (f2i+1(−2i− 2) = f2(i+1)+1(−2i− 2)) and
such that f1(0) = f2(0) = b. It is easy to see that a function f : R → B defined
by f(x) = f2i(x) if x ∈ 〈2i, 2i + 2〉 and f(x) = f2i+1(x) if x ∈ 〈−2i − 2,−2i〉 is
correctly defined and it is a K-Lipschitz selection of F . �

Theorem 2 is true for certain multifunctions with non-convex and non-compact
values. It is a generalization of a result, obtained for multifunctions with convex
compact values:

Corollary 1. [6, Corollary 2] Let n be a positive integer, let B = Rn. Let
F : R → B be a K-Lipschitz multifunction with convex compact (and nonvoid)
values. Then F has a K-Lipschitz selection on R.

In the following lemma we shall use the following assumption concerning a mul-
tifunction F from R to a Banach space B:

Assumption LFD. For every x from R there exists an open neighborhood
Ox ⊂ R and a finitely dimensional set Bx ⊂ B such that F (Ox) ⊂ Bx.

We say that a multifunction F : R → B is locally Lipschitz if for every real x

there exists an open interval Ux and a positive real constant Kx such that x ∈ Ux

and F is Kx-Lipschitz on Ux.

Lemma 2. Let B be a Banach space. Let F : R → B be a locally Lipschitz
mutifunction with closed values. Let F satisfy the assumption LFD. Let a ∈ R

and b ∈ F (a). Then for every real c, d, c < d satifying c ≤ a ≤ d there exists
a Lipschitz selection f : 〈c, d〉 → B of F such, that f(a) = b.

Proof. It suffices to show that F is Lipschitz on 〈c, d〉 and that there exists
a finitely dimensional subset Z of B such that F (〈c, d〉) ⊂ Z. After that we can
apply Theorem 1.
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We proceed by a usual ”locally on compact implies globally on compact“ proce-
dure. Obviously for every x from 〈c, d〉 there exists an open interval Ux, a positive
real number Kx and a finitely dimensional subset Bx of B such that x ∈ Ux,
F (Ux) ⊂ Bx and F is Kx-Lipschitz on Ux.

Consider the following open cover C of 〈c, d〉: C = {Ux; x ∈ 〈c, d〉} . There exists
a finite subcover S of C and a positive integer n such that S = {Ux1

, Ux2
, . . . , Uxn

}.
Let us denote M = max{Kx1

, Kx2
, . . . , Kxn

}. Then F is M -Lipschitz on each
interval Uxi

for i ∈ {1, 2, . . . , n}. The fact 〈c, d〉 ⊂ U :=
⋃n

i=1 Uxi
implies F is

M -Lipschitz on 〈c, d〉.
Moreover, F (〈c, d〉) ⊂ F (U) ⊂ Z :=

⋃n

i=1 Bxi
, and we can see that Z is finitely

dimensional.
If c < a < d Theorem 1 implies F has an M -Lipschitz selection h ( g ) on 〈c, a〉

(〈a, d〉) such that g(a) = h(a) = b. So if c < a < d the function f : 〈c, d〉 → B

defined by f(x) = g(x) on 〈c, a〉 and f(x) = h(x) on 〈a, d〉 is a Lipschitz selection
of F on 〈c, d〉. The proof for the cases a = c, a = d is even easier. �

To realize that the assumptions of our final result, Theorem 3, can hardly be
weakened let us compare the following three assertions:

(1) There exists a finitely valued Lipschitz multifunction from a unit circle into
R

2 that has no continuous selection. (See Example 1. Of course, each
multifunction with values in R

2 or R automatically satisfies the assumption
LFD.)

(2) There exists a Hausdorff continuous multifunction from the compact inter-
val 〈−1, 0〉 to R with closed values, which is locally Lipschitz in every point
of 〈−1, 0) and has no continuous selection (See Example 2).

(3) Each locally Lipschitz multifunction with closed values from R to a Ba-
nach space, satisfying the assumption LFD has a continuous selection. (See
Theorem 3).

The examples presented below are based on ideas, used in examples published
in [4] and [11].

Example 1. Let K = cos(t) + i · sin(t); t ∈ 〈0, 2π) be the unit circle in the
complex plane.

For each t from 〈0, 2π) let us denote

at = cos(t) + i · sin(t), bt = cos

(

t

2

)

+ i · sin
(

t

2

)

ct = cos

(

π +
t

2

)

+ i · sin
(

π +
t

2

)

Let us define a two-valued multifunction F : K → K by F (at) = {bt, ct} for every
t from 〈0, 2π).

This multifunction has compact (even finite) values and is Lipschitz.This can
be seen by two ways.

An intuitive way is the easier one. If we draw a picture of our circle, we realize,
that with t ”moving“ from 0 towards 2π the point at is moving from the point
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[1, 0] to [0, 1], then [−1, 0] and finally to [1, 0] again. In this time the two-tuple
[bt, ct] travels around the circle too, but its speed is the half of the speed of at.

Now we show in an exact way that F is 1-Lipschitz. Let t1, t2 be from 〈0, 2π),
t1 > t2. We have

|at1 − at2 | =
√

(cos(t1)− cos(t2))2 + (sin(t1)− sin(t2))2

=
√

2− 2 cos(t1) cos(t2)− 2 sin(t1) sin(t2) =
√

2(1− cos(t1 − t2))

=
√

2
√

1− cos(t1 − t2)).

Similarly

|bt1 − bt2 | =
√

2

√

1− cos

(

t1 − t2

2

)

.

And, of course,

|ct1 − ct2 | = |bt1 − bt2 |.
Moreover

|bt1 − ct2 | = |ct1 − bt2 | =
√

2

√

1− cos

(

t1 − t2

2
− π

)

=
√

2

√

1 + cos

(

t1 − t2

2

)

.

Therefore

H(F (at1), F (at2)) = H({bt1 , ct1}, {bt2 , ct2})
≤ min{|bt1 − bt2 |, |bt1 − ct2 |}

= min

{

√
2

√

1− cos

(

t1 − t2

2

)

,
√

2

√

1 + cos

(

t1 − t2

2

)

}

Now it is sufficient to show that

min

{
√

1− cos

(

t1 − t2

2

)

,

√

1 + cos

(

t1 − t2

2

)

}

≤
√

1− cos(t1 − t2) =
1√
2
|at1 − at2 |

for all t1, t2, 2π > t1 > t2 ≥ 0.
So the last thing we need to verify is that for all l ∈ 〈0, 2π)

min

{

1− cos

(

l

2

)

, 1 + cos

(

l

2

)}

≤ 1− cos(l)

or equivalently ∀l ∈ 〈0, 2π):

cos

(

l

2

)

− cos(l) ≥ 0 or cos

(

l

2

)

+ cos(l) ≤ 0.(∗)
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Since

cos

(

l

2

)

− cos(l) = 2 sin

(

3

4
l

)

sin

(

l

4

)

cos

(

l

2

)

+ cos(l) = 2 cos

(

3

4
l

)

cos

(

l

4

)

it is easy to verify that

cos

(

l

2

)

− cos(l) ≥ 0 ∀l ∈
〈

0,
4

3
π

〉

cos

(

l

2

)

+ cos(l) ≤ 0 ∀l ∈
〈

2

3
π, 2π

〉

Therefore (∗) is verified and for all t1, t2 from 〈0, 2π), t1 > t2,

H(F (at1), F (at2)) ≤ |at1 − at2 |.
F is proved to be 1-Lipschitz.

Nevertheless, F has no continuous selection on K. It has two natural continuous
selections on each Kε ⊂ K where the set Kε is defined by Kε = {at; t ∈ 〈0, 2π−ε)}
for every positive ε < 2π. These selections are: f(at) = bt and g(at) = ct for each
at from Kε.

However, no of these selections can be prolonged to K, For example f(a0) =
b0 = [1, 0] , but lim

t→2π−
f(at) = lim

t→2π−
bt = [−1, 0].

Example 2. [11] Let F : 〈−1, 0〉 → R be defined as follows:

F (0) = R

F (x) =

{

n(n + 1)

2
x +

k

2n
; k ∈ Z

}

∪
{

n(n + 1)
2n + 1

2n+1
x +

n + 1

2n+1
+

k

2n
; k ∈ Z

}

for every positive integer n and every x ∈
〈

− 1
n
,− 1

n+1

〉

.

In other words: the intersection of the graph of F with the set
〈

− 1
n
,− 1

n+1

〉

×R

is a system of segments joining the following couples of points: the point
[

−1
n

, m
2n

]

with the point
[

− 1
n+1 , m

2n + 1
2

]

and
[

− 1
n
, m

2n

]

with the point
[

− 1
n+1 , m

2n + 1
2 + 1

2n+1

]

where m is an arbitrary integer.
To show that F is locally Lipschitz on 〈−1, 0) it is sufficient to show that it is

n(n + 1)-Lipschitz on In =
〈

−1
n

, −1
n+1

〉

for every n ∈ N, n > 0.

Let x1, x2 ∈ In. Let y1 ∈ F (x1). Then there exists an integer k such that

y1 =
n(n + 1)

2
x1 +

k

2n
or y1 = n(n + 1)

2n + 1

2n+1
x1 +

n + 1

2n+1
+

k

2n
.

There exists also y2 from F (x2) such that

y2 =
n(n + 1)

2
x2 +

k

2n
or y2 = n(n + 1)

2n + 1

2n+1
x2 +

n + 1

2n+1
+

k

2n
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so |y1 − y2| equals

n(n + 1)

2
|x1 − x2| or

n(n + 1)(2n + 1)

2n+1
|x1 − x2|.

In both cases we have

|y1 − y2| ≤ Kn|x1 − x2|, where Kn = n(n + 1).(∗∗)
In the same way we can pick an y2 from F (x2) first and find a y1 from F (x1)

such that the inequality (∗∗) is true.
This means that for each x1, x2 from In H(F (x1), F (x2)) ≤ Kn|x1−x2| is true.
We have just proved that F is locally Lipschitz on 〈−1, 0). The Hausdorff

continuity of F on 〈−1, 0〉 is proved in [11].
F has no continuous selection on 〈−1, 0〉 : every continuous selection f of F

defined on the set 〈−1, 0) has the property lim
t→0−

f(t) = +∞.

Next we will prove our main theorem:

Theorem 3. Let B be a Banach space over R. Let F : R → B be a locally
Lipschitz mutifunction with closed values. Let F satisfy the assumption LFD. Let
a ∈ R and b ∈ F (a). Then F has a continuous selection f on R such that f(a) = b.

Proof. For n = 1, 2, 3 . . . denote In = 〈−n, n〉. In what follows we procced by
induction. Let us suppose, without loss of generality, that a = 0.
(1) According to Lemma 2 there exists a Lipschitz selection f1 : T1 → B of F on
the interval I1 such that f(a) = b. Let us denote f1(−1) = b1 and f1(1) = c1.
(2) Let us suppose that for n in N, n = 1, 2, . . . k there exist Lipschitz selections
fn of F on In such that if l, m ∈ {1, 2, . . . k}, l > m then fl(x) = fm(x) for each
x from Im.

For each of the n considered let us denote fn(−n) = bn andfn(n) = cn.
Since bk ∈ F (−k) there exists a Lipschitz selection gk of F on 〈−k−1,−k〉 such

that gk(−k) = bk. Since ck ∈ F (k) there exists a Lipschitz selection hk of F on
〈k, k + 1〉 such that hk(k) = ck.

Let us define a function fk on Ik by

fk(x) = gk(x) for x from 〈−k − 1,−k〉
fk(x) = fk−1(x) for x from 〈−k, k〉
fk(x) = hk(x) for x from 〈k, k + 1〉.

We have just constructed by induction a sequence of Lipschitz selections fk of
F on the intervals Ik such that if k1 < k2 then fk2

(x) = fk1
(x) for all x from Ik1

.
All functions fk are continuous selections of F on their domains.

Let us define a function f : R → B by

f(x) = f1(x) for x ∈ 〈−1, 1〉,
f(x) = fk(x) for x ∈ 〈−k − 1,−k〉 ∪ 〈k, k + 1〉, k = 1, 2, . . .

The function f is a selection of F on R. It is continuous because all functions fk

are continuous. �
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6. Guričan J. and Kostyrko P., On Lipschitz selections of Lipschitz Multifunctions, Acta Math-

ematica Universitatis Comenianae 66–67 (1985), 131–135.
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