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INTRINSIC LINEARIZATION OF NONLINEAR REGRESSION
BY PRINCIPAL COMPONENTS METHOD

K. HORNIŠOVÁ

Abstract. Most commonly nonlinear regression models have an important para-

meter-effect nonlinearity but only a small intrinsic nonlinearity. Hence it is of inter-
est to approximate them linearly. This can be done either by retaining the original
parametrization θ, or by choosing a new parametrization β = β(θ). Under a prior
weight density π(θ) we propose criterion of optimality of intrinsically linear approx-
imation. The optimal solution is obtained by principal components method. The
distance of the expectation surface of the new model from the expectation surface
of the original one can be considered as a measure of intrinsic nonlinearity of the
original model, which is simpler to compute than the well-known measure of Bates
and Watts (1980). In the examples consequences for inference on parameters are
examined.

1. Introduction

We consider a (not necessary regular) nonlinear regression model

y = η(θ) + ε, θ ∈ Θ ⊆ Rm,

ε ∼ N(0, σ2W ),
(1)

where η(.) : Θ → RN is measurable mapping, y ∈ RN is vector of measurements,
ε ∈ RN vector of random errors, W is known (positive definite) matrix (usually
W = I), σ2 is unknown.

Since the statistical inference in linear models is much more simpler than in
nonlinear models, possibility of using some linear model instead of the model (1)
and a proper choice of it is often studied. It is natural to base the linearization
on some prior information on unknown parameter θ, if it is available, and then
compare efficiency of such simplified methods with corresponding exact methods.

Situation, when it is known that the true value θ̄ of parameter θ lies in a neigh-
bourhood of a given prior point θ0 ∈ Θ, was treated most often. If the regression
function of the original model is twice continuously differentiable, the model (1) is
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then linearized by the linear part of its Taylor expansion at θ0, i.e. by the model

y = η(θ0) +
∂η(θ0)
∂θ>

(θ − θ0) + ε = Aθ + a + ε,

ε ∼ N(0, σ2W ).
(2)

Similarly can be linearized arbitrary parametric function g(θ) of interest. Prop-
erties and conditions on admissibility of Taylor linearization in a prior point were
studied e.g. in [4].

Sometimes, the prior distribution π on Θ is known. For this case, different
ways of linearization of (1) were proposed. For one of the methods – nonstandard
linearization, see [6].

Another way how to linearize the model (1) utilizing the knowledge of prior π
is linearization by smoothing, proposed in [7]. The approximative linear model

Y = Aθ + a + ε,

ε ∼ N(0, σ2W ),
(3)

is chosen according to the criterion

K1 := min
A∈RN×m

a∈RN

E π[‖η(θ)− (Aθ + a)‖2
W ]

= min
A∈RN×m

a∈RN

∫
Θ

‖η(θ)− (Aθ + a)‖2
W π(θ)dθ.

(4)

The solutions of the minimization problem (4), which corresponds to minimization
of prior expectation of I-divergence between the nonlinear and linear model, have
the form

A = Cov π(η, θ)(Var πθ)−,

a = E πη −A E πθ,

K1 = tr W−1/2{Var πη − Cov π(η, θ)(Var πθ)− Cov π(θ, η)}W−1/2,

(5)

where the last expression is invariant with regard to the choice of pseudoinversion
(Var πθ)−, if the indicated means and covariances with regard to prior distribution
π(.) on Θ exist and are finite. Parametric functions of interest can be linearized
accordingly.

The advantage of the method is that it can be used also when the response
function η(θ) has no derivatives. In the other case

Aπn
→ ∂η(θ0)

∂θ>

if
πn → π0,

where πn are nondegenerate prior distributions and π0 is distribution concentrated
at θ0.

In [3], under the knowledge of joint prior π for (θ, σ), the linearization of the
model is circumvented and parametric function g(θ, σ) ∈ Rs of interest is directly
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estimated by explicit estimator ĝ(y), which is defined as linear combination AΦ(y),
A ∈ Rs×u, of given functions Φ(.) : Rn → Ru of observations, such that the coef-
ficient A is optimal with regard to criterion (average mean square error (AMSE))

min
A∈Rs×u

E π E f(.|θ,σ)‖g(θ)−AΦ(y)‖2,(6)

where f(.|θ, σ) is conditional density of y.

For example, if Φ(y) =
(

y
1

)
, then linear explicit estimator is AΦ(y) = A>y+a,

where
A = [Var πη + E π(σ2)W ]−1 Cov π(η, g),

and

a = E πg −A> E πη,

(7)

with

AMSE = tr{Var πg − Cov π(g, η)[Var πη + E π(σ2)W ]−1 Cov π(η, g)}.

2. Intrinsic linearization

Besides linear models, estimators in intrinsically linear models still have very good
statistical properties. (The model (1) is called intrinsically linear, if its expectation
surface

Eη = {η(θ); θ ∈ Θ}(8)

is relatively open set of a s-dimensional plane of RN , where s ≤ m (Def. 2.2.1 in
[6])). The method of [7] parametrically linearize even intrinsically linear models,
which is often not necessary from statistical point of view. Therefore here we
present another method which approximates nonlinear model by intrinsically linear
one, so that the models which are originally intrinsically linear are not modified.

In the following example we show that linearization by smoothing can indeed
change expectation surface of intrinsically linear model very much.

Example 1. Let us consider intrinsically linear model

η(θ) = (cos2 θ, sin2 θ)>; θ ∈ Θ ⊆ R1.

Let prior π(.) is proper uniform probability distribution on Θ.
Expectation surface on the supp(π(.)) of the model is {(t, 1− t)>; t ∈< 0; 1 >}

in both cases a), b) considered below.
a) let Θ = (0; 2π)

Then the linearization by smoothing is singular:

A = 0̄, a =
(

1
2
1
2

)
, K1 =

1
4
,

so that the expectation surface of linearization by smoothing is

{Aθ + a; θ ∈ Θ} =
{(

1
2
1
2

)}
.
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b) let Θ = (0; π
2 )

Then

A =
12

π(π2 − 4)

(
−1
1

)
, a =

(
1
2
1
2

)
− π

4
A, K1 =

1
4
− 12

π2(π2 − 4)
.= 0.043

and the expectation surface of linearization by smoothing is an interval

{Aθ + a; θ ∈ Θ}=
{(

t
1− t

)
: t∈

(
− 3

π2 − 4
+

1
2
;

3
π2 − 4

+
1
2

)
.= (−0.011; 1.011)

}
In contrast, the best intrinsic linearization problem can be understood as prob-

lem of best approximation of the expectation surface of original model (1) by the
expectation surface of some intrinsically linear model.

Let
y = ξ(θ) + ε ; θ ∈ Θ,

ε ∼ N(0, σ2W )
(9)

be an intrinsically linear model. It is known, (see [6]), that for every intrinsically
linear model there exists a parametrization, in which the model is a regular linear
model. Therefore expectation surface of model (9) is

Eξ = EA,a =
{
Aβ + a : β ∈ Rk

}
,

for some reparametrization β = β(θ), A ∈ RN×k, rank(A) = k, a ∈ RN , k ∈ N.
The distance of a point η(θ) ∈ Eη from Eξ in space RN with scalar product
< a, b >W := a>W−1b is

d[η(θ), Eξ] := min
z∈Eξ

‖η(θ)− z‖2
W ,

and
zopt(θ) := arg min

z∈EA,a

‖η(θ)− z‖2
W

is a W -orthogonal projection of η(θ) on Eξ.
Let β(θ) ∈ Rk be such that

zopt(θ) = Aβ(θ) + a.

Then

β(θ) = (A>W−1A)−1A>W−1(η(θ)− a).(10)

If we have some prior guess on the plausible values θ in the form of a prior weight
function π(θ), the global distance of Eξ from Eη can be measured by

dπ(Eη, Eξ) : =
∫

Θ

‖η(θ)− zopt(θ)‖2
W π(θ)dθ =

=
∫

Θ

‖η(θ)− (Aβ(θ) + a)‖2
W π(θ)dθ =

=
∫

Θ

‖η(θ)− [A(A>W−1A)−1A>W−1(η(θ)− a) + a]‖2
W π(θ)dθ.

Let q be the dimension of manifold Eη.
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In problem of intrinsic linearization of model (1) we consider as optimal such a
choice of A and a which is a solution of

min
k≤q

A∈RN×k

rank(A)=k

a∈RN

dπ(Eη, EA,a).(11)

The solution of (11) is given in the following statement.
Theorem. The optimal choice of k, A, a is equal to

k = min{q, number of nonzero eigenvalues of Var π(W−1/2η)},

A = W 1/2(u1, . . . , uk),(12)

where u1, . . . , uN are orthonormal eigenvectors corresponding to eigenvalues λ1 ≥
· · · ≥ λN ≥ 0 of the matrix

Var π(W−1/2η),

respectively,

a ∈ E πη +Ker(I −A(A>W−1A)−1A>W−1).(12a)

There is exactly one k−dimensional affine manifold Eξ such that for every optimal
choice of A, a it holds that Eξ = EA,a.

min
k≤q

A∈RN×k

rank(A)=k

a∈RN

dπ(Eη, EA,a) =
N∑

i=k+1

λi =
N∑

i=q+1

λi.

Proof.

dπ(Eη, EA,a) = E π

{∥∥(I −A(A>W−1A)−1A>W−1)(η(θ)− a)
∥∥2

W

}
= tr

{
(I −A(A>W−1A)−1A>W−1)(a− E πη)

}>
·W−1

{
(I −A(A>W−1A)−1A>W−1)(a− E πη)

}
+ tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
≥ tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
,

with equality iff a ∈ E πη +Ker(I −A(A>W−1A)−1A>W−1).
Now it is sufficient to solve the minimization problem

min
k≤q

A∈RN×k

rank(A)=k

tr W−1 Var π

{
(I −A(A>W−1A)−1A>W−1)η

}
.

Since the matrix A(A>W−1A)−1A>W−1 is idempotent, the last problem is equiv-
alent with the following one:
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max
k≤q

A∈RN×k

rank(A)=k

tr (W−1A(A>W−1A)−1A>W−1 Var πη)

or (since A is optimal solution iff AD is optimal solution for arbitrary regular
Dk×k)

max
k≤q

A∈RN×k

rank(A)=k

A>W−1A=Ik

tr (A>W−1/2 Var π[W−1/2η]W−1/2A).

The last expression is a problem of principal component analysis of random quan-
tity W−1/2η, from which it follows that the solution has the form given in the
statement of the theorem. �

The obtained intrinsically linear approximation of the original model (1) is equal
to

y = A(A>W−1A)−1A>W−1(η(θ)− E πη) + E πη + ε,

ε ∼ N(0, σ2W ),
(13)

with A taken according to Theorem.
It is obvious that for arbitrary prior π, the original model (1), is intrinsically

linear (with π−probability 1) iff rank(Var πη) ≤ q.
From Theorem it also follows that the minimal squared “distance”

D1 :=
N∑

i=k+1

λi(14)

of the linearized model (13) from the original model (1) can be understood as
measure of intrinsic nonlinearity of model (1).

Example 2 (continuing example 1). In both cases a) and b) the optimal ma-
trices for intrinsic linearization are

A =

(
− 1√

2
1√
2

)
, a =

(
1
2
1
2

)
, D1 = 0,

so the model (9) has the form

y =
(

cos2 θ
sin2 θ

)
+ ε,

ε ∼ N(0, σ2W ).

Example 3. Let

y =
(

θ
cθ2

)
+ ε, θ ∈ Θ = 〈−1, 1〉,

ε ∼ N(0, σ2I2×2),
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where c is some known positive constant. Let θ has proper uniform prior distri-
bution π on Θ. Then the expectation of linearization by smoothing is

(θ, c/3)>.

The expectation of intrinsic linearization is{
(θ, c/3)>, if c <

√
5/3,

(0, c θ2)>, if c >
√

5/3,

i.e. in the latter case the expectation surface of intrinsic linearization is orthogonal
to that of linearization by smoothing. If c =

√
5/3, the matrix Var πη has two

identical eigenvalues, so that intrinsic linearization is not uniquely determined.

Example 4. In [8] two three-parameter sigmoidal models are considered for
data set 1 from Appendix 4A on a vegetative growth process. The models are

yi = η(θ, xi) + εi = θ1 exp[− exp(θ2 − θ3xi)] + εi , i = 1, . . . , N,

ε = (ε1, . . . , εN )> ∼ N(0, σ2W ) (Gompertz model),

and

yi = η(θ, xi) + εi =
θ1

1 + exp(θ2 − θ3xi)
+ εi, i = 1, . . . , N,

ε = (ε1, . . . , εN )> ∼ N(0, σ2W ), (logistic model),

with σ2 unknown, W = I. We consider here two normal prior distributions –
N(θ̂ML, s2(y)M(θ̂ML)) (1), and N(θ̂ML, 25s2(y)M(θ̂ML)) (2), where θ̂ML is max-
imum likelihood estimate in model (1),

s2(y) :=
‖y − η(θ̂ML)‖2

W

N −m
,

and

M(θ) :=
∂η>(θ)

∂θ
W−1 ∂η(θ)

∂θ>
.

Then the results based on 10000 simulations from prior distribution are (Kint and
Kpar are intrinsic and parametric nonlinearity measures from [1]):

Nonlinearity measure Prior Gompertz Logistic
Kint 9.010·10−2 7.300·10−2

Kpar 2.324·100 6.440·10−1

K1 1 3.000·100 1.000·10−1

2 1.000·103 1.000·102

D1 1 4.000·10−3 1.000·10−3

2 1.500·100 4.000·10−1

AMSE 1 2.000·101 1.600·100

2 3.000·102 1.500·101
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3. Nonlinear regression inference using intrinsically linear
approximation

Merits and shortcomings of the above described linearization methods will be com-
pared at examples of point estimation and construction of confidence regions for
parameter θ. However, since computation of ML-estimate in intrinsically linearized
model is no easier than in original model, the importance of intrinsic linearization
is greater in interval estimation and prediction.

Example 5 (continuing Example 4). For data y from [8] and for 10000 sim-
ulations from prior distribution we get ML-estimates in original model (i), in
linearization by smoothing (ii), in intrinsic linearization (iii), and linear explicit
estimate (iv) of parameter θ:

Nonlinearity measure Prior Method Gompertz Logistic
θ1 1 (i) 8.283 ·101 7.246 ·101

(ii) 8.360 ·101 7.254 ·101

(iii) 8.290 ·101 7.245 ·101

(iv) 8.300 ·101 7.249 ·101

2 (ii) 1.100 ·102 7.500 ·101

(iii) 8.400 ·101 7.260 ·101

(iv) 8.700 ·101 7.250 ·101

θ2 1 (i) 1.224 ·100 2.618 ·100

(ii) 1.230 ·100 2.623 ·100

(iii) 1.223 ·100 2.619 ·100

(iv) 1.227 ·100 2.621 ·100

2 (ii) 1.400 ·100 2.720 ·100

(iii) 1.200 ·100 2.610 ·100

(iv) 1.300 ·100 2.660 ·100

θ3 1 (i) 3.710 ·10−2 6.740 ·10−2

(ii) 3.720 ·10−2 6.750 ·10−2

(iii) 3.700 ·10−2 6.740 ·10−2

(iv) 3.710 ·10−2 6.730 ·10−2

2 (ii) 3.400 ·10−2 6.940 ·10−2

(iii) 3.600 ·10−2 6.720 ·10−2

(iv) 3.600 ·10−2 6.830 ·10−2

There are several kinds of (1 − α)-confidence regions for parameter θ used in
nonlinear regression (see discussion in [5]). Here we compare the following ones:

regions based on likelihood ratio (exact only in intrinsically linear models)

ΘLR :={
θ ∈ Θ;

(N −m)(‖y − η(θ)‖2
W − ‖y − η(θ̂)‖2

W )

m‖y − η(θ̂)‖2
W

≤ Fm,M−m(1− α)

}
,

(15)

where θ̂ is ML-estimate in model (1),
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and regions based on projections

ΘP :=
{

θ ∈ Θ;
(N − p)‖P (y − η(θ))‖2

W

p‖(I − P )(y − η(θ))‖2
W

≤ Fp,N−p(1− α)
}

(16)

where P is W−orthogonal projector, p = rank(P ). If P does not depend on y,
region (16) is exact in arbitrary model.

Note, It can happen that no region of the form (16) is good, since the set
MP of points µ ∈ RN which satisfy definition inequality of region (16) is a cone
(differently from the set MLR which is a ball), and intersections of expectation
surfaces of some models with such cones may be unbounded, too large, or, on the
contrary, void sets. See Figure 6.19 in [2].

For above given linearization methods it is natural to construct confidence re-
gions for θ of the form (16) with

P = A(A>W−1A)−1A>W−1,

where A is optimal matrix from (2) (with θ0 = θ̂ML), (5), (7) (with g(θ) := η(θ))
or (12). Corresponding P will be denoted PML, PSM , PEX , PIN , respectively.
(Region for PML without parts due to overlapping is almost exact in flat models
(see [5]). Among this class of confidence regions the confidence regions based on
intrinsic linearization, i.e. on projector PIN should violate the objection from the
Note against confidence regions of type (16) in the most vigorous degree possible
since (I−P ) in this case corresponds to the “direction” of apriori shortest diameter
of expectation surface. If the prior used is subjective, then intersection of such
confidence region with the support of prior can be used.

Example 6 (continuing Example 3). Point estimates of θ:
Linearization by smoothing: θ̂ = y1.

Intrinsic linearization:

θ̂ =


y1, if c <

√
5/3,√

y2/c, if c >
√

5/3 and y2 ≥ 0,

0, if c >
√

5/3 and y2 < 0.

Linear explicit estimation: θ̂ = 1/(1 + 3 E π2(σ
2)) y1 < y1, where π2 is a prior

distribution for σ2, which is assumed to be independent of θ.
Since the prior π is uniform, ML-estimator of θ equals to posterior modus

estimator justified from the bayesian point of view. Therefore, quality of estimators
from various linearizations can be assessed by their closeness to ML-estimator.
Expressions for estimators of θ give an idea which linearization is suitable for
different values of y. It can be roughly recommended to use

linearization by smoothing, if y2 is small and y is above the parabola,
linear explicit estimation, if y2 is small and y is under the parabola,
intrinsic linearization, if y2 is large.
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Let us consider the case favorable to intrinsic linearization with c = 10, E π2(σ
2) =

0.32, and y = (0.87; 8.4)>. Then we get point estimates:

θ̂ =


9.16377 · 10−1, (ML-estimate),
8.70000 · 10−1, (linearization by smoothing),
9.16515 · 10−1, (intrinsic linearization),
6.85000 · 10−1, (linear explicit estimation)

and 0.9-confidence intervals for θ

〈9.005 · 10−1 ; 9.320 · 10−1〉,
LR conf. region,

〈−1.000 · 101 ; −4.669 · 10−1〉 ∪ 〈9.003 · 10−1 ; 9.321 · 10−1〉,
LR conf. region (16) with P = PML,

〈−1.000·101 ; −9.320·10−1〉∪〈−9.010·10−1 ; 9.161·10−1〉∪〈9.169·10−1 ; 1.000·101〉,
conf. region (16) with P = PSM = PEX ,

〈−1.000 · 101 ; −3.095 · 10−1〉 ∪ 〈9.046 · 10−1 ; 9.404 · 10−1〉,
conf. region (16)with P = PIN .

First parts of regions for P = PML and P = PIN and first and third part of
region for P = PSM = PEX are due to overlapping.
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