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INFINITESIMAL DIFFERENTIAL GEOMETRY

P. GIORDANO

Abstract. Using standard analysis only, we present an extension •R of the real

field containing nilpotent infinitesimals. On the one hand we want to present a very

simple setting to formalize infinitesimal methods in Differential Geometry, Analysis
and Physics. On the other hand we want to show that these infinitesimals may

be also useful in infinite dimensional Differential Geometry, e.g. to study spaces of

mappings. We define a full embedding of the category Mann of finite dimensional
Cn manifolds in a cartesian closed category. In it we have a functor •(−) which

extends these spaces adding new infinitesimal points and with values in another full

cartesian closed embedding of Mann. We present a first development of Differential
Geometry using these infinitesimals.

1. The ring of standard infinitesimals

1.1. Introduction

Frequently in Physics it is possible to find informal calculations like

1√
1− v2

c2

= 1 +
v2

2c2
√

1− h44(x) = 1− 1
2
h44(x)

with explicit use of infinitesimals v/c� 1 or h44(x) � 1 such that e.g. h44(x)2 =
0. In fact using this type of infinitesimals we can write an equality, in some
infinitesimal neighborhood, between a smooth function and its tangent straight
line, or, in other words, a Taylor formula without remainder.

Informal methods based on actual infinitesimals are sometimes used in Differen-
tial Geometry too. Some classical examples are the following: a tangent vector is
an infinitesimal arc of curve traced on the manifold and the sum of tangent vectors
is made using infinitesimal parallelograms; tangent vectors to the tangent bundle
are infinitesimal squares on the manifold; a vector field is sometimes intuitively
treated as an “infinitesimal transformation” of the space into itself and the Lie
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brackets of two vector fields as the commutator of the corresponding infinitesimal
transformations.

There are obviously many possibilities to formalize this kind of intuitive reason-
ings, obtaining a more or less good dialectic between informal and formal thinking
(see e.g. [12, 11] and references therein).

We want to show how it is possible to extend the real field adding nilpotent
infinitesimals by means of a very simple construction completely inside “standard
mathematics” (with this we mean that the formal control necessary to work in
our setting is very less strong than that necessary both in Non-Standard Analysis
[3] and Synthetic Differential Geometry [12]). To define the extension •R ⊃ R we
shall use elementary analysis only.

The usefulness of this extension can be glimpsed saying e.g. that using •R it is
possible to write in a completely rigorous way that a smooth function is equal to its
tangent straight line in a first order neighborhood, to use infinitesimal Taylor for-
mulas without remainder, to define a tangent vector as an infinitesimal curve and
sum them using infinitesimal parallelograms, to see a vector field as an infinitesi-
mal transformation, hence, to come to the point, to formalize many non-rigorous
methods used in Physics and Geometry. This is important both for didactical
reasons and because it was by means of these methods that mathematicians like
S. Lie and E. Cartan were originally conducted to construct important concepts
of Differential Geometry.

We can use the infinitesimals of •R not only as a good language to reformulate
well-known results, but also as a very useful tool to construct, in a simple and
meaningful way, a Differential Geometry in classical infinite-dimensional objects
like Man(M,N) the space of all the C∞ mapping between two manifolds M , N .
Here with “simple and meaningful” we mean the idea to work directly on the
geometric object in an intrinsic way without being forced to use charts, but using
infinitesimal points (see [12]). Some important examples of spaces of mappings
used in applications are the space of configurations of a continuum body, groups
of diffeomorphisms used in hydrodynamics, magnetohydrodynamics, electromag-
netism, plasma dynamics and paths spaces for calculus of variations (see [11, 2]
and references therein). Interesting applications in classical field theories can also
be found in [1].

A complete and powerful setting for this kind of problems, but without the
use of infinitesimals, can be found in [5, 11]. The construction of our categories
takes a strong inspiration from this works and from [4]. The author hope that this
work could also serve to introduce infinitesimal methods in the convenient setting
of [11]. The most complete use of infinitesimals in Differential Geometry can be
found in [8, 12, 13], whose setting is incompatible with classical logic and admits
models in intuitionistic logic only. The infinitesimals methods formalized in this
work are strongly influenced by [12, 8].

We start from the idea that a smooth (C∞) function f : R −→ R is actually
equal to its tangent straight line in the first order neighborhood e.g. of the point
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x = 0, that is

(1.1) ∀h ∈ D : f(h) = f(0) + h · f ′(0)

where D is the subset of •R which defines the above-mentioned neighborhood of
x = 0. The previous (1.1) can be seen as a first-order Taylor formula without
remainder because intuitively we think that h2 = 0 for any h ∈ D. These almost
trivial considerations lead us to understand many things: •R must necessarily be
a ring and not a field; moreover we will surely have some limitation in the extension
of some function from R to •R, e.g. the square root. But we are also led to ask if
(1.1) uniquely determines the derivative f ′(0): because even if it is true that we
cannot simplify by h, we know that the polynomial coefficients of a Taylor formula
are unique in classical analysis. In fact we will prove that

(1.2) ∃!m ∈ R : ∀h ∈ D : f(h) = f(0) + h ·m,
that is the slope of the tangent is uniquely determined in case it is an ordinary
real number.
If we try to construct a model for (1.2) a natural idea is to think our new numbers
as equivalence classes [h] of usual functions h : R −→ R. In such a way we can hope
both to include the real field using classes generated by constant functions, and
that the class generated by h(t) = t could be a first order infinitesimal number. To
understand how to define this equivalence relation we can see (1.1) in the following
sense:

(1.3) f(h(t)) ∼ f(0) + h(t) · f ′(0).

If we think h(t) “sufficiently similar to t”, we can define∼ so that (1.3) is equivalent
to

lim
t→0

f(h(t))− f(0)− h(t) · f ′(0)
t

= 0,

that is

(1.4) x ∼ y :⇐⇒ lim
t→0

x(t)− y(t)
t

= 0.

In this way (1.3) is very near to the definition of differentiability for f at 0.
It is important to note that, because of l’Hôpital’s theorems

C1(R,R)/∼ ' R[x]/〈x2〉
that is the usual tangent bundle of R and thus we obtain nothing new. It is not
easy to understand what set of functions we have to choose for x, y in (1.4) so as
to obtain a non trivial structure. The first idea is to take continuous functions at
t = 0 so that e.g. hk(t) = |t|1/k is a kth order nilpotent infinitesimal; for almost
all the results presented in this article continuous functions at t = 0 work well,
but only in proving the non-trivial property

(1.5) (∀x ∈ •R : x · f(x) = 0) =⇒ ∀x ∈ •R : f(x) = 0

(here f : •R −→ •R is a smooth function, in a sense we shall precise after) we
will see that it doesn’t suffice to take continuous functions at t = 0. The previous
property (1.5) is useful to prove the uniqueness of smooth incremental ratios, hence
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to define the derivative f ′ : •R −→ •R for a smooth function f : •R −→ •R which,
generally speaking, is not the extension to •R of an ordinary function defined on
R (e.g. the function used for the small oscillations of the pendulum t 7→ sin(h · t),
where h ∈ •R \ R). To prove (1.5) the following functions turned out to be very
useful:

Definition 1.1. If x : R −→ R, then we say that x is nilpotent iff |x(t)−x(0)|k =
o(t) for some k ∈ N. N will be the set of all the nilpotent functions.

E.g. any Holder function |x(t)− x(s)| ≤ c · |t− s|α (α > 0) is nilpotent. Hence
we now define

Definition 1.2. Let x, y ∈ N , then we say x ∼ y iff

x(t) = y(t) + o(t) for t→ 0.

The quotient N/ ∼ will be indicated with •R and called “the ring of standard
infinitesimals”. Its elements x ∈ •R will be called “extended reals”. We can read
•R either as “dot R” or “extended R”.

E.g. the previous hk(t) = |t|1/k is not equivalent to zero but its k+ 1-th power
is equivalent to zero, thus it is a nilpotent infinitesimal. Because it is also an
ordinary infinitesimal function for t→ 0 this motivates the name “ring of standard
infinitesimals”. N is close with respect to pointwise sum and product of functions.
For the product it suffices to write x ·y−x(0) ·y(0) = x · [y−y(0)]+y(0) · [x−x(0)].
The case of the sum follows from the subsequent equalities (where we use xt :=
x(t), u := x− x0 and v := y − y0):

uk ∼ 0 ∼ vk

(u+ v)k =
k∑

i=0

(
k

i

)
ui · vk−i

∀i = 0, . . . , k :
ui

t · vk−i
t

t
=

(
uk

t

) i
k ·
(
vk

t

) k−i
k

t
i
k · t k−i

k

=
(
uk

t

t

) i
k

·
(
vk

t

t

) k−i
k

.

Obviously ∼ is a congruence relation with respect to pointwise operations hence
•R is a commutative ring.
Where it will be useful to simplify notations we will write “x = y in •R” instead
of x ∼ y, and we will talk directly about the elements of N instead of their
equivalence classes; for example we can say that x = y in •R and z = w in •R
imply x+ z = y + w in •R.
The immersion of R in •R is r 7−→ r̂ defined by r̂(t) := r, and in the sequel we will
always identify R̂ with R. Conversely if x ∈ •R then is well defined and meaningful
the standard part map ◦(−) : x ∈ •R 7−→ ◦x = x(0) ∈ R which evaluates each
extended real in 0.
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1.2. The ideal of first order infinitesimals

If we want that f(h(t)) ∼ f(0) + h(t) · f ′(0) then from Taylor formula we obtain

(1.6) lim
t→0

f(h(t))− f(0)− h(t) · f ′(0)
t

= lim
t→0

h(t)
t
· σ(t)

with σ(t) → 0 for t→ 0. This suggests us to define D using the condition

lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣ < +∞.

Generally we will write x ≈ y for

lim sup
t→0

∣∣∣∣x(t)− y(t)
t

∣∣∣∣ < +∞

and we will say that x is close to y. We obtain a well-defined congruence on •R
that coincides with equality on R.

Definition 1.3.
D := {h ∈ •R |h ≈ 0}.

The elements of D are called first order infinitesimals.

Thus we have x ≈ y iff x(t) = y(t) + O(t) for t → 0. For example if r, s ∈ R,
then h(t) := r · |t| if t ≥ 0 and h(t) := s · |t| if t ≤ 0 is a first order infinitesimal;
another one is h(t) := r · t · sin(1/t), and obviously h(t) := t and in general any C1

infinitesimal function at t = 0. Conversely, if α ∈ (1/2, 1), then x(t) := |t|α is not
an element of D but note that x2 = 0 in •R.

Theorem 1.1. D is an ideal of •R, and

∀h ∈ D : h2 = 0.

Proof. It follows from elementary properties of lim sup; for example the inequal-
ities

lim sup
t→0

∣∣∣∣h(t)− k(t)
t

∣∣∣∣ ≤ lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣+ lim sup

t→0

∣∣∣∣k(t)t
∣∣∣∣ < +∞

lim sup
t→0

∣∣∣∣x(t) · h(t)t

∣∣∣∣ ≤ |x(0)| · lim sup
t→0

∣∣∣∣h(t)t
∣∣∣∣ < +∞

prove that D is an ideal, and the following

0 ≤ lim inf
t→0

∣∣∣∣h(t)2t
∣∣∣∣ ≤ lim sup

t→0

∣∣∣∣h(t)2t
∣∣∣∣ ≤ |h(0)| · lim sup

t→0

∣∣∣∣h(t)t
∣∣∣∣ = 0

prove that every element of D has square equal to zero. �

Another interesting ideal is Dk := {h ∈ •R |hk ∈ D} for k ∈ N>0: this follows
from Newton’s formula and the equality

(1.7)
h(t)i · u(t)k−i

t
=
[
h(t)k

t

] i
k

·
[
u(t)k

t

] k−i
k

.
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It is also useful to define D0 := {0}. Using an idea similar to (1.7) and taking
hk ∈ Djk

, and 0 ≤ ik, we also have

hi1
1 · . . . · hin

n = 0 if
n∑

k=1

ik
jk
> 1

hi1
1 · . . . · hin

n ∈ Dp if
1
p
≤

n∑
k=1

ik
jk
≤ 1.

(1.8)

E.g. if h ∈ D3 and u ∈ D5 we have h2u3 = 0 and h2u ∈ D2. It may also useful
to note that hk = 0 if h2 = k2 = 0 and hi = 0 if h ∈ D and ◦i = 0, that is i
is a generic infinitesimal. Another useful property is expressed by the following
cancellation law, which is a good substitute for the fact that •R is not a field.

Theorem 1.2. Let x ∈ •R and x 6= 0, then

x · r = x · s and r, s ∈ R =⇒ r = s.

Proof. We can write the hypothesis x · r = x · s as

lim
t→0

x(t)
t
· (r − s) = 0 = |r − s| · lim sup

t→0

∣∣∣∣x(t)t
∣∣∣∣ ,

but the lim supt→0

∣∣∣x(t)
t

∣∣∣ 6= 0 because x 6= 0, and hence r = s. �

Obviously this law is not true if r, s are generic extended reals. Finally it is
also easy to prove that x ∈ •R is invertible iff ◦x 6= 0.

1.3. Extension of functions

Before considering the proof of (1.2) we have to understand how to extend a given
function f : R −→ R to a certain •f : •R −→ •R. First of all we can define •A
for A ⊆ Rk exactly as we defined •R: it is sufficient to consider the set NA of all
the nilpotent functions x : R −→ A (that is such that ||xt − x0||k = o(t) for some
k ∈ N, where || − || is the norm in Rk) with values in A; afterward we take the
quotient with respect to the analogous of the relation ∼ defined in Def. 1.2. We
shall give further the general definition of the extension functor •(−), here we only
want to examine some elementary properties of the ring •R.

Definition 1.4. Let A be a subset of Rk, f : A −→ R and x ∈ •A then we
define

•f(x) := f ◦ x.

This definition is well posed if f is locally lipschitzian; in fact if x = y in •R
then x0 = y0 and so for some δ,K > 0 we have

(1.9) ∀t ∈ (−δ, δ) : ‖f(xt)− f(yt)‖ ≤ K · ‖xt − yt‖;
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hence for t ∈ (−δ, δ) we have

0 ≤ lim sup
t→0

∣∣∣∣f(xt)− f(yt)
t

∣∣∣∣ ≤
≤ K · lim sup

t→0

∣∣∣∣x(t)− y(t)
t

∣∣∣∣ = 0.

Note also that (1.9) implies f(x) ∈ N if x ∈ NA. In the sequel Lip(A,B) will be
the set of all the locally lipschitzian functions defined in A and with values in B.
The function •f is an extension of f , that is

•f(r) = f(r) in •R for r ∈ R,

thus we can still use the symbol f(x) both for x ∈ •R and x ∈ R without confusion.
In the following theorem I0 := {h ∈ •R | ◦h = 0} will be the set of all the infinites-
imals of •R.

Theorem 1.3. Let A be an open set in R and x ∈ A, then x+h ∈ •A for every
h ∈ I0.

It is necessary to give some explanation to understand the statement of this
theorem. In fact •A = NA/ ∼, thus we don’t have •A ⊆ •R if A ⊆ R (any
equivalence relation [x]A ∈ •A is made of functions x : R −→ A only, whereas
[x]R ∈ •R is made of functions x : R −→ R). In spite of all that there is
obviously a natural injection i : •A −→ •R. In fact [x]A = {y ∈ NA |x ∼ y} and
so x ∈ N = NR and we can define i([x]A) := [x]R. This map is well defined
and injective, essentially because the definition of ∼ doesn’t depend on A. Using
i : •A −→ •R we can identify •A with a subset of •R if it is clear from the context
the superset we are considering (in this case R ⊇ A); the statement of the previous
theorem use this identification.

Proof. We have to prove that [x + h]R ∈ i(•A). Because h ∈ I0 we have that
x + ht ∈ A for t sufficiently small t ∈ (−δ, δ) and thus there exists y : R −→ A
such that yt = x + ht for t ∈ (−δ, δ). Hence, directly from the definition of ∼,
i([y]A) = [y]R = [x+ h]R. �

In conclusion of this section we enunciate the following useful elementary trans-
fer theorem for equalities, whose proof follows directly from the previous defini-
tions:

Theorem 1.4. Let A ⊆ Rk, and τ, σ ∈ Lip(A,R). Then it results

∀x ∈ •A : •τ(x) = •σ(x)

iff

∀r ∈ A : τ(r) = σ(r).
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1.4. The derivation formula

Now we will prove the formula (1.2), which we will call derivation formula. It
is natural to expect that it will be equivalent to the usual differentiability of
a function, in fact we have

Theorem 1.5. Let A be an open set in R, x ∈ A and f ∈ Lip(A; R), then the
following conditions are equivalent:

1. f is differentiable at x
2. ∃!m ∈ R : ∀h ∈ D : f(x+ h) = f(x) + h ·m.

In this case we have m = f ′(x), where f ′(x) is the usual derivative of f at x.

Note that m = f ′(x) ∈ R, i.e. the slope is an usual real number and that we
can use the previous formula with standard real numbers x only, and not with
a generic x ∈ •R, but we shall remove this limitation in a subsequent section.
In other words we can say that this formula allows us to differentiate the usual
differentiable functions using a language with infinitesimal numbers and to obtain
from this an ordinary function.

Proof. 1) ⇒ 2): First of all note that because of Theorem 1.3 we can consider
f(x + h) for any h ∈ D. Now let m := f ′(x) and h ∈ D, i.e. lim supt→0

∣∣∣h(t)
t

∣∣∣ <
+∞. For hypothesis f is differentiable in x, hence we can find a function σ :
(A− x) −→ R such that

∀u ∈ A− x : f(x+ u) = f(x) + u ·m+ u · σ(u)

lim
u→0

σ(u) = σ(0) = 0.

Therefore

lim sup
t→0

∣∣∣∣f(x+ ht)− f(x)− ht ·m
t

∣∣∣∣ = lim sup
t→0

∣∣∣∣ht · σ(ht)
t

∣∣∣∣
≤ σ(h0) · lim sup

t→0

∣∣∣∣ht

t

∣∣∣∣ = 0.

This proves the existence; for the uniqueness we simply use the cancellation law
(Theorem 1.2).
2) ⇒ 1): For this implication it suffices to apply the hypothesis 2) with h(t) := t.

�

If we apply this theorem to the C1 function p(r) :=
∫ x+r

x
f(t) dt, then we obtain

the following

Corollary 1.6. Let A open in R, x ∈ A and f ∈ C0(A). Then

∀h ∈ D :
∫ x+h

x

f(t) dt = h · f(x).

Moreover f(x) ∈ R is uniquely determined by this equality.
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For multiple integrals we have analogous formulas; e.g. if h, k ∈ D2 and h·k ∈ D
then ∫

[0,h]×[0,k]

f(x, y) dxdy = hk · f(0, 0).

With the ideal Dk of the kth order infinitesimal numbers and a function f ∈ Ck(A)
it is possible to prove infinitesimal Taylor formula without any remainder

∀h ∈ Dk : f(x+ h) =
k∑

i=0

hi

i!
· f (i)(x)

with the standard reals f (i)(x) uniquely determined by this formula. Another
useful form of the derivation formula is the following

Theorem 1.7. Let A open in R and f : A −→ R be a C1 function. Let h, k ∈ •R
be such that h · k ∈ D, then for every x ∈ A

k · f(x+ h) = k · f(x) + kh · f ′(x)

We close this section introducing a very simple notation useful to emphasize
some equalities: if h, k ∈ •R then we say that ∃h/k iff ∃!r ∈ R : h = r · k, and
obviously we indicate this r ∈ R with h/k. Therefore we can say, e.g., that

f ′(x) =
f(x+ h)− f(x)

h
∀h ∈ D6=0

f(x) =
1
h
·
∫ x+h

x

f(t) dt.

Moreover we can prove some natural properties of this “ratio”, like the following
one

∃u
v
,
x

y
and vy 6= 0 =⇒ u

v
+
x

y
=
uy + vx

vy
.

1.5. Order relations

From the previous sections one can draw the conclusion that •R is essentially “the
little-oh” calculus. If on the one hand this is certainly true, on the other hand
the extended reals give us more flexibility than this calculus: working with •R
we don’t have to bother ourselves with remainders made of “little-oh”, but we
can neglect them and use the great powerfulness of the algebraic calculus with
nilpotent infinitesimals (see [12] for many examples which can be repeated almost
equal in our setting using previous theorems). But thinking the elements of •R as
new numbers, and not simply as “little-oh functions”, permits to treat them in a
different and new way, for example to define on them two meaningful partial order
relations, the first one of which is the following.

Definition 1.5. For x, y ∈ •R, we say that x � y iff we can find z ∈ •R such
that z = 0 in •R and

∃ δ > 0 : ∀ t ∈ (−δ, δ) : x(t) ≥ y(t) + z(t).
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In other words let us write ∀0 t : P(t) to indicate that the property P(t) is true
for all t in some neighborhood of t = 0, then we can reformulate the previous
definition using the “little-oh” language

x � y :⇐⇒ ∀0 t : x(t) ≥ y(t) + o(t),

but note that the function o(t) depends on x, y. We can read x � y saying “x is
weakly greater or equal to y”.

We can equivalently say that x � y iff we can find x = x′ and y = y′ in •R such
that ∀0t : x′t ≥ y′t. The definition of � is well posed, and for example we have
that the first order infinitesimal h(t) = |t| is positive but not negative. It is easy
to prove that this relation is reflexive and transitive, hence it remains to show that
it is also anti-symmetric. If x � y and y � x then we have

x(t)− y(t) ≥ z1(t) ∀t ∈ (−δ1, δ1)

y(t)− x(t) ≥ z2(t) ∀t ∈ (−δ2, δ2)

lim
t→0

z1(t)
t

= 0 = lim
t→0

−z2(t)
t

.

Taking δ := min{δ1, δ2} we obtain

∀t ∈ (0, δ) :
z1(t)
t

≤ x(t)− y(t)
t

≤ −z2(t)
t

∀t ∈ (−δ, 0) :
−z2(t)
t

≤ x(t)− y(t)
t

≤ z1(t)
t

.

Hence for t→ 0, these inequalities prove that x = y in •R.
With this relation •R becomes an ordered ring. We also observe that � extends
the order relation in R and that it is possible to prove the cancellation law for in-
equality, that is if h ∈ •R is different from zero and r, s ∈ R, then from |h|·r � |h|·s
we can deduce that r ≤ s.
We can enunciate an elementary transfer theorem for inequalities, simply sub-
stituting = with � in Theorem 1.4. Finally note that the usual definition of
infinitesimal number as an extended real x for which −r ≺ x ≺ r for all standard
positive real number r is equivalent to say that the standard part of x is zero.

It is possible to define another meaningful partial order relation on •R saying
that

x ≤ y :⇐⇒ x = y or (x � y and y − x is invertible).

Some properties are better stated using � (e.g. elementary transfer theorem, prop-
erties of absolute value and those about infinitesimals), whereas ≤ is better for
powers and logarithms, for topological properties and for intervals. Actually, as
we will see, a useful topology on •R is generated by the sets •U for U open in
R; it is easy to see that if ht := |t · sin 1

t |, then 0 is not an interior point neither
in {x ∈ •R| − h � x � h} nor in {x ∈ •R| − h � x � 1}. Therefore the above
mentioned topology is not generated by �, whereas it is easy to check that it is
generated by ≤.
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Once again the ring structure of •R is compatible with ≤; the order relation be-
tween standard reals is extended by ≤ and we can also state the above mentioned
cancellation law; for the strict relation < both the cancellation law without limi-
tations and the elementary transfer theorem are valid. Finally for the relation ≤
we can state a weak form of trichotomy: let’s write x ' y for x − y ∈ I0 (that is
◦x = ◦y), then for every x, y ∈ •R

x ' y or x < y or y < x.

Anyway neither � nor ≤ are order relations, as we can see taking xt := t · sin 1
t

which is not comparable with y = 0.
We conclude this section giving a brief indication of some other possible oper-

ations and properties of •R. First of all we can consider the absolute value: it
is a well defined function for which the usual order properties still hold (use the
transfer theorem for inequalities), but for which the following ones are valid too

x � 0 ⇐⇒ |x| = x

x � 0 ⇐⇒ |x| = −x

|x| = 0 ⇐⇒ x = 0.

Moreover we can consider powers and logarithms of strictly positive (w.r.t. ≤)
extended reals (note that obviously the square root is not well defined on D there-
fore the last limitation cannot be eliminate). For these operations are still valid
the usual algebraic and order properties: for example if y is strictly positive and
z > 1, then we have

x ≥ y =⇒ logz(x) ≥ logz(y).

2. The cartesian closure of F

In this section we shall define the basic constructions which will lead us to the
notion of Cn space and Cn function. They represent the most general kind of
spaces and functions extendible with our infinitesimal points. Any Cn manifold
is a Cn space too, and the category Cn of all Cn spaces is cartesian closed, hence
it contains several infinite-dimensional spaces, e.g. that formed by all the usual
Cn functions between two manifolds. It is important to note that, exactly as in
[4, 14, 5, 11, 13], the category Cn contains many “pathological” spaces; actually
Cn works as a “cartesian closed universe” and we will see that, like in [8, 12, 13],
the particular infinitesimally linear Cn spaces have the best properties and will
work as a good substitute of manifolds.

The ideas used in this section arise from analogous ideas of [4] and [5]; actually
C∞ is the category of diffeological spaces (see [14] and references therein).

We present the construction starting from a concrete category F of topological
spaces (which satisfies few conditions) and embedding it in a cartesian closed
category F̄ . We will call F̄ the cartesian closure of F . We need this generality
because we shall use it to define both domain and codomain of the extension
functor •(−) : Cn −→ •Cn starting from two different categories F . The problem
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to generalize the definition of •R to a functor •(−) can also be seen from the
following point of view: now it is natural to define a tangent vector as a map

t : D −→ •M.

But we have to note that: t has to be “regular” in some sense, hence we need
some kind of geometric structure both on D and •M ; the ideal D is not of type
•M for some manifold M because the only standard real number in D is 0; the
definition of •M has to generalize •R. We shall define structures on D and •M
so that D, •M ∈ •Cn, hence we shall define the concept of tangent vector so that
t ∈ •Cn(D, •M).

Hypotheses:
1. F is a subcategory of Top which contains all the constant maps and all the

open subspaces U ⊆ H (with the induced topology) of every H ∈ F with
their inclusion i : U ↪→ H ∈ FUH := F(U,H).

In the following | − | : F −→ Set is the forgetful functor which associate to any
H ∈ F its support set |H| ∈ Set. Moreover with τH we will call the topology of H
and with (U ≺ H) the subspace of H induced on the open set U ∈ τH.

2. F is closed with respect to restrictions to open sets, that is if f ∈ FHK, U
and V are open in H, K resp. and f(U) ⊆ V , then f |U ∈ F(U ≺ H,
V ≺ K);

3. Every topological space H ∈ F has the following “sheaf property”: let H,
K ∈ F , (Hi)i∈I an open cover of H and f : |H| −→ |K| a map such that
∀i ∈ I : f |Hi

∈ FHiK, then f ∈ FHK.
For the construction of the domain of the extension functor we want to consider
a category F which permits to embed finite dimensional manifolds in Cn. To this
aim we will set F = ORn, the category with objects open sets U ⊆ Ru (with the
induced topology), for some u ∈ N, and with hom-set the usual Cn(U, V ) of Cn

functions between the open sets U ⊆ Ru and V ⊆ Rv. What type of category F
we have to choose depends on the setting we need: e.g. in case we want to consider
manifolds with boundary we have to take the analogous of the above mentioned
category ORn but with objects open set U ⊆ Ru

+ = {x ∈ Ru |xu ≥ 0}.
The basic idea to define a Cn space X (which faithfully generalizes the notion

of manifold) is to substitute the notion of chart with a family of mappings d :
H −→ X with H ∈ F . E.g. for F = ORn these mappings are of type d : U −→ X
with U open in some Ru, thus they can be thought as u-dimensional figures on X.
Hence a Cn space can be thought as a support set and the specification of all the
finite-dimensional figures on the space itself. Generally speaking we can think F
as a category of “types of figures”. Always considering the case F = ORn, we can
also think F as a category which represents “a well known notion of regular space
and regular function”: with the cartesian closure F̄ we want extend this notion
to a more general type of spaces (e.g. spaces of mappings). In the diffeological
setting [4, 14] a figure d : U −→ X is called a plot on X.

We are trivially generalizing both the work of [5, 11], where only curves as
types of figures are considered, and the notion of diffeology in which F = OR∞.
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This generalization permits to obtain in an easy way the cartesian closedness of
F̄ , and thus to have at our disposal a general instrument F 7→ F̄ very useful in
the construction e.g. of the codomain of the extension functor •(−), where we will
choose a different F . In the sequel we will frequently use the notation f ·g := g ◦f
for the composition of maps so as to facilitate the lecture of diagrams, but we will
continue to evaluate functions “on the right” hence (f · g)(x) = g(f(x)). Objects
and arrows of F̄ generalize the same notions of the diffeological setting.

Definition 2.1. If X is a set, then we say that (D, X) is an object of F̄ if
D = {DH}H∈F is a family with

DH ⊆ Set(|H|, X).

We indicate with the notation FJH · DH the set of all the compositions f · d of
functions f ∈ FJH and d ∈ DH . The family D has finally to satisfy the following
conditions:

1. FJH · DH ⊆ DJ .
2. DH contains all the constant maps d : |H| −→ X.
3. Let H ∈ F , (Hi)i∈I an open cover of H and d : |H| −→ X a map such that
d|Hi

∈ D(Hi≺H), then d ∈ DH .

Finally we set |(D, X)| := X.

For the condition 1. we can think DH as the set of all the regular functions
defined on the “well known” object H ∈ F and with values in the new space
X; in fact this condition says that the set of figures DH is closed with respect
to re-parametrization with f ∈ FJH . Condition 3. is the above mentioned sheaf
property and asserts that a figure has a local character depending on F . We will
frequently write d ∈

H
X to indicate that d ∈ DH and we can read it “d is a figure

of X of type H” or “d belong to X at the level H” or “d is a generalized element of
X of type H” or, finally, “(d, U) is a plot of X”. This kind of arrows is important
to obtain cartesian closure, whereas we shall further use arrows of kind X −→ |H|
to extend these spaces with new infinitesimal points.

The definition of arrow f : X −→ Y between two spaces X, Y ∈ F̄ is the usual
one for diffeological spaces, that is f : |X| −→ |Y | takes, through composition,
generalized elements d ∈

H
X of type H in the domain to generalized elements of

the same type in the codomain f(d) := d ·f ∈
H
Y . Note that we have f : X −→ Y

in F̄ iff ∀H∀x ∈
H
X : f(x) ∈

H
Y , moreover X = Y iff ∀H∀d : d ∈

H
X ⇔

d ∈
H
Y . These and many other properties justify the notation ∈

H
and the name

“generalized element”.
With these definitions F̄ becomes a category. Note that it is, in general, in the

second Grothendieck universe because D is a family indexed in the set of objects
of F (this is not the case for F = ORn which is a set).

The simplest F̄-object is K̄ := (F(−)K , |K|) for K ∈ F , and for it we have that
d : K̄ −→ X iff d ∈

K
X and F(H,K) = F̄(H̄, K̄). Therefore F is fully embedded

in F̄ if H̄ = K̄ implies H = K; e.g. this is true if the given category F verifies the
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following hypothesis

|H| = |K| = S and H
1S−−−−→ K

1S−−−−→ H =⇒ H = K.

E.g. this is true for F = ORn. Another way to construct an object of F̄ is to
generate it starting from a given family D0

H ⊆ Set(|H|, X), for any H ∈ F , closed
with respect to constant functions. We will indicate this space with (F · D0, X)
and its figures are, locally, compositions f · d with f ∈ FHK and d ∈ D0

K . More
precisely δ ∈

H
(F · D0, X) iff δ : |H| −→ X and for every h ∈ |H| there exist an

open neighborhood U of h in H, K ∈ F , d ∈ D0
H and f : (U ≺ H) −→ K in F

such that δ|U = f · d.
On each space X ∈ F̄ we can put the final topology τX for which any figure
d ∈

H
X is continuous, that is a subset U ⊆ |X| is in τX iff d−1(U) ∈ τH for

any H ∈ F and any d ∈
H
X. With respect to this topology any arrow of F̄ is

continuous and we still have the given τH in the space H̄, that is τH = τ H̄ .
Open subsets U on a space X will serve us, e.g., as domains for arrows of type

U −→ Rk. These maps, which trivially generalize the notion of chart and that we
will call “observables on X”, will permit us to define the extension functor •(−).

2.1. Categorical properties of the cartesian closure

We shall now examine subobjects in F̄ and their relation with the restriction of
functions, after which we shall analyse completeness, co-completeness and carte-
sian closure of F̄ .

Definition 2.2. Let X ∈ F̄ and S ⊆ |X|, then we define

(S ≺ X) := (D, S)

where
d ∈ DH :⇐⇒ d : |H| −→ S and d · i ∈

H
X.

Here i : S ↪→ |X| is the inclusion map. We will call (S ≺ X) “the subspace induced
on S by X”.

Using this definition only it’s very easy to prove that (S ≺ X) ∈ F̄ and that
its topology contains the induced topology. Moreover τ (S≺H) ⊆ τX if S is open,
hence in this case we have on (S ≺ X) the induced topology. Finally we have the
following

Theorem 2.1. Let f : X −→ Y be an arrow of F̄ and U , V subsets of |X| and
|Y | respectively, such that f(U) ⊆ V , then

(U ≺ X)
f |U−−−−−→ (V ≺ Y ) in F̄ .

Obviously it is easy to state and prove that any X ∈ F̄ has the sheaf property.
Using our notation for subobjects we can prove the following useful and natural
properties directly from definition 2.2

• (U ≺ H̄) = (U ≺ H) for U open in H ∈ F
• i : (S ≺ X) ↪→ X is the lifting of the inclusion i : S ↪→ |X| from Set to F̄
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• (|X| ≺ X) = X
• (S ≺ (T ≺ X)) = (S ≺ X) if S ⊆ T ⊆ |X|
• (S ≺ X)× (T ≺ Y ) = (S × T ≺ X × Y ).

These properties imply that the relation X ⊆ Y iff |X| ⊆ |Y | and (|X| ≺ Y ) = X
is a partial order. Note that this relation is stronger to say that the inclusion is an
arrow, because it asserts that X and the inclusion verify the universal property of
(|X| ≺ Y ), that is X is a subobject of Y .

Completeness and co-completeness are analyzed in the following theorem. For
its standard proof see [5] for a similar theorem.

Theorem 2.2. Let (Xi)i∈I be a family of objects in F̄ and pi : |X| −→ |Xi|
arrows in Set ∀ i ∈ I. Define

d ∈
H
X :⇐⇒ d : |H| −→ |X| and ∀ i ∈ I : d · pi ∈H

Xi

then (X
pi−−−−→ Xi)i∈I is a lifting of (|X| pi−−−−→ |Xi|)i∈I in F̄ .

Whereas if ji : |Xi| −→ |X| are arrows in Set∀ i ∈ I and

∀x ∈ |X| ∃ i ∈ I ∃xi ∈ Xi : x = ji(xi)

then defining d ∈
H
X iff d : |H| −→ |X| and for every h ∈ |H| there exist an

open neighborhood U of h in H, i ∈ I and δ ∈
U
Xi s.t. d|U = δ · ji, we have that

(Xi
ji−−−−→ X)i∈I is a co-lifting of (|Xi|

ji−−−−→ |X|)i∈I in F̄ .

Directly from the definitions it is easy to prove that on quotient spaces we
exactly have the quotient topology and that on any product we have a topology
stronger than the product topology.

Finally if we define

DH := {d : |H| −→ F̄(X,Y ) | H̄ ×X
d∨−−−−→ Y in F̄}

(we are using the notations d∨(h, x) := d(h)(x) and µ∧(x)(y) := µ(x, y)) then
〈D, F̄(X,Y )〉 =: Y X is an object of F̄ . With this definition, see e.g. [4] or [5],
it is easy to prove that F̄ is cartesian closed, i.e. that the F̄-isomorphism (−)∨

realizes
(Y X)Z ' Y Z×X .

3. The category Cn

3.1. Observables on Cn spaces and separated spaces

The most natural way to apply the results of previous section for our aims is to
set F = Mann, that is to consider directly the cartesian closure of the category of
finite dimensional Cn manifolds (we shall not formally assume any hypothesis on
the topology of a manifold because we will never need it in the following; moreover
if not differently specified, with the word “manifold” we will always mean “finite
dimensional manifold”). We shall not follow this idea for several reasons; we will
set instead Cn := ORn, that is the cartesian closure of the category ORn of open
sets and Cn arrows. For n = ∞ this gives exactly diffeological spaces [4, 14]. As
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we noted before Mann is in the second Grothendieck universe and, essentially for
simplicity, from this point of view the choice F = ORn is better. In spite of this
choice it is natural to expect, and in fact we will prove it, that the category of
finite-dimensional manifolds is faithfully contained in Cn. Another reason for our
definition of Cn is that in this way the category of Cn spaces and arrows is more
natural to accept and to work in with respect to Mann; hence ones again a reason
of simplicity. We will see that manifolds modelled in convenient vector spaces (see
[11]) are faithfully embedded in Cn, hence our choice to take finite dimensional
objects in the definition of Cn is not restrictive from this point of view.

Now we pay attention to another type of maps which go “on the opposite
direction” with respect to figures d : K −→ X. As mentioned above we shall use
them to introduce new infinitesimal points for any X ∈ Cn.

Definition 3.1. Let X be a Cn space, then we say that

UK is a zone (in X)

iff U ∈ τX is open in X and K ∈ ORn. Moreover we say that

c is an observable on UK or c ∈UK X

iff c : (U ≺ X) −→ K̄ in Cn.

Remember that for any open set K the Cn space K̄ is

K̄ = (Cn(−,K),K),

hence composition of figures d ∈
H
X with observables c ∈UK gives ordinary Cn

maps: d|S · c ∈ Cn(S,K), where S := d−1(U).
From our previous theorems it follows that Cn functions f : X −→ Y take

observables on the codomain to observables on the domain i.e.:

(3.1) c ∈UK Y =⇒ f |S · c ∈SK X,

where S := f−1(U). Therefore isomorphic Cn spaces have isomorphic sets of
figures and observables.
Generalizing through the observables the equivalence relation 1.2 to generic Cn

spaces, we will have to study the following condition, which is connected with the
faithfulness of the extension itself.

Definition 3.2. If X ∈ Cn and x, y ∈ |X|, then we write

x � y

and we read it “x and y are identified in X”, iff for every zone UK and every
c ∈UK X we have

1. x ∈ U ⇐⇒ y ∈ U
2. x ∈ U =⇒ c(x) = c(y).

Moreover we say that X is separated iff x � y implies x = y for any x, y ∈ |X|.
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Observe that if two points are identified in X then a generic open set contains
the first iff it contains the second too (take a constant observable), and from (3.1)
that Cn functions f : X −→ Y preserve the relation �:

x � y in X =⇒ f(x) � f(y) in Y.

Trivial examples of separated spaces can be obtained considering the objects Ū
with U ∈ ORn, or taking subobjects of separated spaces. But the full subcategory
of separated Cn spaces has other good enough properties.

Theorem 3.1. The category of separated Cn spaces is complete and admits
co-products. Moreover if X, Y are separated then Y X is separated too, and hence
separated spaces form a cartesian closed category.

Sketch of the proof. We only do some considerations about co-product, because
it is easy to prove that products and equalizers of separated spaces are separated
too. Let us consider a family (Xi)i∈I of separated spaces with support sets Xi :=
|Xi|. Constructing their sum in Set

X :=
∑
i∈I

Xi

ji : x ∈ Xi 7−→ (x, i) ∈ X,

from the completeness of Cn we can lift it to a co-product (Xi
ji−−−→ X )i∈I . To

prove that X is separated we take two points x, y ∈ X = |X | identified in X .
These points are of the form x = (xr, r) and y = (ys, s), with xr ∈ Xr, ys ∈ Xs

and r, s ∈ I. We want to prove that r and s are necessarily equal. In fact from
the definition of figures of X (Theorem 2.2) we have that

A ∈ τX ⇐⇒ ∀ i ∈ I : j−1
i (A) ∈ τXi

,

and hence Xr × {r} is open in X and x � y implies

(xr, r) ∈ Xr × {r} ⇐⇒ (ys, s) ∈ Xr × {r} hence r = s.

Hence x = y iff xr and ys = yr are identified in Xr and this is a consequence of
the following facts:

1. if U is open in Xr then U × {r} is open in X ;
2. if c ∈UK Xr, then γ(x, r) := c(x) ∀x ∈ U is an observable of X on U × {r}.

Now let us consider exponential objects. If f , g ∈ |Y X | are identified, to prove that
they are equal is equivalent to prove that f(x) and g(x) are identified in Y for any
x. To obtain this conclusion is sufficient to consider that the evaluation in x i.e.
εx : ϕ ∈ |Y X | 7−→ ϕ(x) ∈ |Y | is a Cn map and hence from any observable c ∈UK Y
we can always obtain the observable εx|U′ · c ∈U′K Y X where U ′ := ε−1

x (U). �

Finally let’s consider two Cn spaces such that the topology τX×Y is equal to
the product of the topologies τX and τ Y . Then if x, x′ ∈ |X| and y, y′ ∈ |Y | it
is easy to prove that we have x � x′ in X and y � y′ in Y iff (x, y) � (x′, y′) in
X × Y .
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3.2. Manifolds as objects of Cn

We can associate in a very natural way a Cn space M̄ to any manifold M ∈ Mann

with the following

Definition 3.3. Define |M̄ | := |M | and for every H ∈ ORn

d ∈
H
M̄ :⇐⇒ d ∈ Mann(H,M).

We obtain a Cn space with the same topology of the starting manifold. Moreover
the observables of M̄ are the most natural that one could expect, in fact it is very
easy to prove that

c ∈UK M̄ ⇐⇒ c ∈ Mann(U,K).

Hence it is clear that M̄ is separated, because charts are observables of the space.
The following theorem says that the passage from Mann to Cn that we are consid-
ering is a full embedding and therefore it says that Cn is a non-trivial generalization
of the notion of manifold which include infinite-dimensional spaces too.

Theorem 3.2. Let M and N be Cn manifolds, then
1. M̄ = N̄ =⇒ M = N

2. M̄
f−−−→ N̄ in Cn ⇐⇒ M

f−−−→ N in Mann.
Hence Mann is fully embedded in Cn.

Proof of 1). If (U,ϕ) is a chart on M , then ϕ−1|A : A := ϕ(U) −→M is a figure
of M̄ , that is ϕ−1|A ∈

A
M̄ = N̄ . But if ψ : U −→ ψ(U) ⊆ Rk is a chart of N ,

then it is also an observable of N̄ , and composition of figures and observables gives
ordinary Cn maps, that is the atlases of M and N are compatible.

Proof of 2) We use the same ideas as above and moreover that ϕ−1|A ∈
A
M̄

implies ϕ−1|A · f ∈A
N̄ . Finally we can compose this A-figure of N̄ with a chart

(observable) of N obtaining an ordinary Cn map. �

Directly from the definitions we can prove that for two manifolds we also have

M ×N = M̄ × N̄ .

This property is useful to prove the affirmations done in the following examples.

3.3. Examples

Example 3.1. Let M be a C∞ manifold modelled on convenient vector spaces
(see [11]). We can define M̄ analogously as above, saying that d ∈

H
M̄ iff

d : H −→M is a smooth map between H (open in some Rh) and M . In this
way smooth curves on M are exactly the figures c ∈R M̄ of type R in M̄ . On
M we obviously think the so called natural topology, that is the identification
topology with respect to some smooth atlas, which is also the final topology with
respect to all smooth curves and hence is also the final topology τ M̄ with respect
to all figures of M̄ . More easily with respect to the previous case of finite dimen-
sional manifolds, it is possible to study observables, obtaining that c ∈UK M̄ iff
c : U −→ K is smooth as a map between manifolds modelled on convenient vector
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spaces. Moreover if (U,ϕ) is a chart of M on the convenient vector space E, then
ϕ : (U ≺ M̄) −→ (ϕ(U) ≺ Ē) is C∞. Using these results it is easy to prove the
analogous of Theorem 3.2 for the category of manifolds modelled in convenient
vector spaces. Hence also classical smooth manifolds modelled in Banach spaces
are embedded in C∞.

Example 3.2. It is possible to prove that the following applications, frequently
used e.g. in calculus of variations, are smooth, that is they are arrows of C∞.

(a) The operator of derivation:

∂i : C∞(Rn,Rk) −→ C∞(Rn,Rk)

u 7−→ ∂u

∂xi

(b) The integral operator:

i : C∞(R2,R) −→ C∞(R,R)

u 7−→
∫ b

a

u(−, s) ds

(c) Using the previous examples we can prove that the classical operator of
calculus of variations is smooth

I(u)(t) :=
∫ b

a

F [u(t, s), ∂2u(t, s), s] ds

I : C∞(R2,Rk) −→ C∞(R,R),
where the function F : Rk × Rk × R −→ R is smooth.

Example 3.3. Because of cartesian closedness set-theoretical operations like
the following are examples of Cn arrows:

• composition:

(f, g) ∈ BA × CB 7→ g ◦ f ∈ CA

• evaluation:
(f, x) ∈ Y X ×X 7→ f(x) ∈ Y

• insertion:
x ∈ X 7→ (x,−) ∈ (X × Y )Y

Example 3.4. Inversion between smooth manifolds modelled on Banach spaces

(−)−1 : f ∈ Diff(N,M) 7→ f−1 ∈ Diff(M,N)

is a smooth mapping, where Diff(M,N) is the subspace of NM given by the dif-
feomorphisms between M and N . So (Diff(M,M), ◦) is a (generalized) Lie group.
To prove that (−)−1 is smooth let’s consider a figure d ∈

U
Diff(N,M), then

f := (d · i)∨ : U × N −→ M , where i : Diff(N,M) ↪→ MN is the inclusion, is
an ordinary smooth function between Banach manifolds. We have to prove that
g := [d · (−)−1 · j]∨ : U ×M −→ N is smooth, where j : Diff(M,N) ↪→ NM . But
f [u, g(u,m)] = m and D2f(u, n) = D[d(u)](n) hence the conclusion follows from
the implicit function theorem because d(u) ∈ Diff(N,M).
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Example 3.5. Since the category Cn is complete, we can also have Cn spaces
with singular points like e.g. the equalizer {x ∈ X | f(x) = g(x)}. Any algebraic
curve is in this way a C∞ separated space too.

Example 3.6. Another type of space with singular points is the following.
Let ϕ ∈ Cn(Rk,Rm) and consider the subspace ([0, 1]k ≺ Rk), then (ϕ([0, 1]k) ≺
Rm) ∈ Cn is the deformation in Rm of the hypercube [0, 1]k.

Example 3.7. Let C be a continuum body, I the interval for time, and E the
3-dimensional Euclidean space. We can define on C a natural structure of C∞
space. For any point p ∈ C let pr(t) ∈ E be the position of p at time t in the
frame of reference r; we define figures of type U on C (U ∈ ORn) the functions
d : U −→ C for which the following application

d̃ : U × I −→ E
(u, t) 7−→ d(u)r(t)

is smooth. For example if U = R then we can think d : R −→ C as a curve traced
on the body and parameterized by u ∈ R. Hence we are requiring that the position
d(u)(t) of the particle d(u) ∈ C varies smoothly with the parameter u and the time
t. This is a generalization of the continuity of motion of any point of the body
(take d constant). This smooth (that is diffeological) space will be separated, as
an object of C∞, if different points of the body cannot have the same motion:

pr(−) = qr(−) =⇒ p = q ∀p, q ∈ C.

The configuration space of C can be viewed (see [15]) as the space

M :=
∑
t∈I

Mt with Mt ⊆ EC

and so, for the categorical properties of C∞ the spaces EC , Mt and M are always
objects of C∞ as well. With this structure the motion of C:

µ : C × I −→ E
(p, t) 7−→ p(t)

is a smooth map. Note that to obtain these results we need neither Mt nor C
be manifolds, but only the possibility to associate to any point p of C a motion
pr(−) : I −→ E . If we had the possibility to develop differential geometry for
these spaces too we would have the possibility to obtain many results of continuum
mechanics for body which cannot be naturally represented using a manifolds or
with infinite-dimensional configuration space. Moreover in the next section we
will see how to extend any C∞ space with infinitesimal points, so that we can also
consider infinitesimal sub-bodies of C.

4. The extension of Cn spaces and functions

Now we want to extend any Cn space and any Cn function by means of our
“infinitesimal points”. First of all we will have to extend to a generic space X the
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notion of nilpotent path. Afterward we shall use the observables to generalize the
equivalence relation ∼ (see Definition 1.2) using the following idea

ϕ(xt) = ϕ(yt) + o(t) with ϕ ∈UK X.

In this point the main problem is to understand how to relate x, y with the domain
U of ϕ. In the subsequent sections we will also prove some results that will conduct
us toward the theorem •(M ×N) ' •M × •N with M,N manifolds. The fact that
this useful theorem is not proved for generic Cn spaces is due to the fact that the
topology on a product between Cn spaces is generally stronger than the product
topology.

4.1. Nilpotent paths

If X is a Cn space, then using τX we can define the set C0(X) of all the maps
x : R −→ X continuous at the origin t = 0. Because any Cn function f is
continuous we have f ◦ x ∈ C0(Y ) if x ∈ C0(X).

If U is open in X then on the subspace (U ≺ X) we have the induced topology
and from this it follows that

Theorem 4.1. Let X be a Cn space and x ∈ C0(X). Take an observable
ϕ ∈UK X with x(0) ∈ U , then

lim
t→0

ϕ(xt) = ϕ(x0).

As many other concepts we will introduce, the notion of nilpotent map is defined
by means of observables.

Definition 4.1. Let X be a Cn space and x ∈ C0(X), then we say that x is
nilpotent (rel. X) iff for every zone UK of X and every obsevable ϕ ∈UK X we
have

x(0) ∈ U =⇒ ∃k ∈ N : ‖ϕ(xt)− ϕ(x0)‖k = o(t).

Moreover
NX := N(X) := {x ∈ C0(X) | x is nilpotent}.

Because of property (3.1), if f ∈ Cn(X,Y ) and x ∈ NX then f ◦ x ∈ NY ,
that is Cn functions preserve nilpotent maps. In case of a manifold M , a map
x : R −→ |M | is nilpotent iff we can find a chart (U,ϕ) on x0 such that ‖ϕ(xt)−
ϕ(x0)‖k = o(t) for some k ∈ N.

Finally we enunciate the relations between product manifolds and nilpotent
paths. For the (standard) proof is essential to observe that τ M̄×N̄ = τM×N = τM×N

and thus on the product M̄×N̄ of Cn spaces we exactly have the product topology.

Theorem 4.2. Let M,N be manifolds and x : R −→ |M |, y : R −→ |N |, then

x ∈ NM̄ and y ∈ NN̄ ⇐⇒ (x, y) ∈ NM̄×N̄ .

Here (x, y)t := (xt, yt).
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4.2. The extension of spaces and functions

Definition 4.2. Let X be a Cn space and x, y ∈ NX then we say that

x ∼ y in X or simply x = y in •X

iff for every zone UK of X and every observable ϕ ∈UK X we have

1) x0 ∈ U ⇐⇒ y0 ∈ U

2) x0 ∈ U =⇒ ϕ(xt) = ϕ(yt) + o(t).

Obviously we write •X := NX/ ∼ and •f(x) := f ◦ x if f ∈ Cn(X,Y ) and
x ∈ •X. We prove the correctness of the definition of •f in the following:

Theorem 4.3. If f ∈ Cn(X,Y ) and x = y in •X then •f(x) = •f(y) in •Y .

Proof. Take a zone V K in Y and an observable ψ ∈V K Y , then from continuity
of f , U := f−1(V ) ∈ τX . We can thus apply hypothesis x = y in •X with the zone
UK and the observable ϕ := f |U · ψ ∈UK X. From this it follows the conclusion
noting that f ◦ x, f ◦ y ∈ NY and x0 ∈ U iff f(x0) ∈ V . �

Using Theorem 4.1 we can note that x = y in •X implies that x0 and y0 are
identified in X (Definition 3.2) and thus using constant maps x̂(t) := x we obtain
an injection ˆ(−) : |X| −→ •X if the space X is separated. Therefore if Y is
separated too, •f is really an extension of f . Finally note that •(−) preserves
compositions and identities.

Example 4.1. If X = M is a Cn manifold then we have x ∼ y in M iff there
exists a chart (U,ϕ) of M such that

1. x0, y0 ∈ U
2. ϕ(xt) = ϕ(yt) + o(t).

Moreover the previous conditions do not depend on the chart (U,ϕ). In particular
if X = U is an open set in Rk, then x ∼ y in U is simply equivalent to the limit
relation x(t) = y(t) + o(t); hence if i : U ↪→ Rk is the inclusion map, it’s easy to
prove that •i : •U −→ •Rk is injective. As in Theorem 1.3 we will always identify
•U with •i(•U), so we simply write •U ⊆ •Rk. Using this equivalent way to
express the relation ∼ on manifolds, we can see that (x, y) = (x′, y′) in •(M ×N)
iff x = x′ in •M and y = y′ in •N . From this conclusion and from Theorem 4.2
we can prove that the following applications

αMN := α : ([x]∼, [y]∼) ∈ •M × •N 7−→ [(x, y)]∼ ∈ •(M ×N)

βMN := β : [z]∼ ∈ •(M ×N) 7−→ ([z · pM ]∼, [z · pN ]∼) ∈ •M × •N

(for clarity we have used the notation with the equivalence classes) are well-defined
bijections with α−1 = β (obviously pM , pN are the projections). We will use the
first one of them in the following section with the temporary notation 〈p, x〉 :=
α(p, x), hence f〈p, x〉 = f(α(p, x)) for f : •(M × N) −→ Y . This simplifies our
notations but it permits to avoid the identification of •M × •N with •(M × N)
until we will have proved that α and β are arrows of the category •Cn.
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5. The category of extended spaces and the extension functor

5.1. Motivations:

Up to now every •X is a simple set only. Now we want to use the general passage
from a category F to its cartesian closure F̄ so as to put on any •X some kind of
useful structure. Our aim is to obtain in this way a new cartesian closed category
F̄ =: •Cn and a functor “extension” •(−) : Cn −→ •Cn. Therefore we have to
choose F , that is what will be the types of figures of •X. It may seem very natural
to take •g : •U −→ •V as arrow in F if g : U −→ V is in ORn (in [6] we followed
this way). The first problem in this idea is that, e.g.

•R
•f−−−−→ •R =⇒ •f(0) = f(0) ∈ R,

hence there cannot exist a constant function of type •f to a non-standard value
and so we cannot satisfy the closure of F with respect to generic constant functions
(see hypotheses on F in Section 2). But we can make further considerations about
this problem so as to motivate better the choice of F . The first one is that we
surely want to have the possibility to lift, using cartesian closedness, maps simple
as the sum between extended reals:

s : (p, q) ∈ •R× •R −→ p+ q ∈ •R.

Hence s∧(p) : q ∈ •R −→ p+ q ∈ •R must be an arrow of •Cn. Note that it is nor
constant neither of type •f because s∧(p)(0) = p and p could be an extended real.
The second consideration is about α: if we want to have α as an arrow of •Cn,
then in the following situation we have to obtain a •Cn arrow again

•R× •R
p× 1•R−−−−−−−−→ •R× •R α−−−→ •(R× R)

•g−−−−→ •R

(t, s) 7−→ (p, s) 7−→ 〈p, s〉 7−→ •g〈p, s〉

(where p ∈ •R and g ∈ Cn(R2,R)). The idea we shall follow is exactly to take
as arrows of F maps that locally are of type δ(s) = •g〈p, s〉, where p works as a
parameter of •g〈−,−〉. Obviously in this way δ could also be a constant map to
an extended value (take as g a projection). Frequently one can find maps of type
•g〈p,−〉 in informal calculations in physics or geometry. Actually they simply are
Cn maps with some fixed parameter p, which could be an infinitesimal distance
(e.g. in the potential of the electric dipole, see below), an infinitesimal coefficient
associated to a metric (like in the formula given at the beginning), or considering
a side of an infinitesimal surface.

Note the importance of α to perform passages like the following

M ×N
f−−−→ Y in Cn

•(M ×N)
•f−−−−→ •Y in •Cn
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•M × •N
•f−−−−→ •Y in •Cn (identification via α)

•M
•f∧−−−−−→ •Y

•N using cartesian closedness.

This motivates the choice of arrows in F , but there is a second problem about
the choice of its objects. Take a manifold M and an arrow t : D −→ •M in •Cn.
Whatever this will mean we want to think t as a tangent vector applied either to
a standard point t(0) ∈ M , and in this case it is a standard tangent vectors, or
to an extended one, t(0) ∈ •M \M . Roughly speaking this is the case if we can
write t(h) = •g〈p, h〉 for some g, p. If we want to obtain this equality it is useful
to have both 1D as a figure of D

1D ∈
D
D =⇒ t ∈

D

•M,

and maps of type •g〈p,−〉 : D −→ •M as figures of •M . Therefore it would be
useful to have D as an object of F . But D is not the extension of a standard
subset of R, thus what will be the objects of F? We will take generic subsets S of
•(Rs) with the topology τ S generated by U = •U ∩S for U open in Rs (in this case
we will say that the open set U is defined by U in S). These are the motivations
to introduce F by means of the following

Definition 5.1. We call S•Rn the category whose objects are subsets S ⊆
•(Rs), for some s which depends on S, and with the previous topology τ S. If
S ⊆ •(Rs) and T ⊆ •(Rt) then we say that

S
f−−−→ T in S•Rn

iff f maps S in T and for every s ∈ S we can write

f(x) = •g〈p, x〉 ∀x ∈ V

for some

p ∈ •(Rp)

U open neighborhood of p defined by U in •(Rp)
V open neighborhood of s defined by V in S

g ∈ Cn(U × V,Rt).

Moreover we will consider on S•Rn the forgetful functor given by the inclusion
| − | : S•Rn ↪→ Set.

It is easy to prove that S•Rn and the functor | − | verify the hypotheses on F
(see Section 2), hence we can define

•Cn := S•Rn.

Each object of •Cn is called an “extended (Cn) space”.
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5.2. The extension functor

Now the problem is: what extended spaces could we associate to sets like •X or
D? For any subset Z ⊆ •X we call •(ZX) the extended space generated on Z (see
Section 2) by the following set of figures d : T −→ Z (where T ⊆ •(Rt))

(5.1)
d ∈ D0

T (Z) :⇐⇒ d is constant or we can write

d = •h|T for some h ∈
V
X such that T ⊆ •V .

Thus in the non-trivial case we start from a standard figure h ∈
V
X, where the

extension of V contains T ; we extend this figure obtaining •h : •V −→ •X, and
finally the restriction •h|T is a generating figure if it maps T in Z.

Using this definition we call (with some abuses of language)
•X := •(•XX)

D := •(DR)
•R := •(•RR)
•Rk := •(•(Rk)Rk)

Dk := •(DkRk).

We will call •(ZX) the extended space induced on Z by X. We can now study the
extension functor:

Theorem 5.1. Let f ∈ Cn(X,Y ) and Z a subset of •X with •f(Z) ⊆W ⊆ •Y ,
then in •Cn we have that

•(ZX)
•f |Z−−−−−−→ •(WY ).

Therefore •(−) : Cn −→ •Cn.

Proof. Take a figure δ ∈
S
•(ZX) in the domain. We have to prove that δ · •f |Z

locally factors through S•Rn and D0(W ). Hence taking s ∈ S we can write
δ|U = f1 · d where U is an open neighborhood of s, f1 ∈ S•Rn(U ≺ S, T ) and
d ∈ D0

T (Z). We omit the trivial case d constant, hence we can suppose to have,
using the same notation as above, d = •h|T : T −→ Z with h ∈

V
X. Therefore

(δ · •f |Z)|U = f1 · •h|T · •f |Z = f1 · •(hf)|T .
But hf ∈

V
Y and so (δ · •f |Z)|U = f1 · d1, where d1 := •(hf)|T ∈ D0

T (W ), which
is the conclusion. �

5.3. The isomorphisms α and β

We want to prove that the above mentioned bijective applications α and β are
arrows of •Cn. To simplify the proof we will use the following preliminary results.
The first one is a general property of the extension F 7→ F̄ .

Lemma 5.1. Suppose that F admits finite products, and for every objects K,
J an isomorphism

β := βKJ : K × J −−−−→
∼

K̄ × J̄ in F̄ .
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Now let Z, X, Y ∈ F̄ with X and Y generated by DX and DY respectively. Then
we have

X × Y
f−−−→ Z in F̄

iff for any K, J ∈ F and d ∈ DX
K , δ ∈ DY

J we have

β · (d× δ) · f ∈
K×J

Z

The second Lemma asserts that F = S•Rn verifies the hypotheses of the previ-
ous one.

Lemma 5.2. The category S•Rn admits finite products and the above men-
tioned isomorphisms βKJ . Moreover let M , N be Cn manifolds, and h ∈

V
M ,

l ∈
V ′
N with K ⊆ •V and J ⊆ •V ′, then

βKJ · (•h|K × •l|J) · αMN = •(h× l)|K×J

The proofs are a direct effect of the given definitions.

Theorem 5.2. Let M , N be Cn manifolds, then in •Cn we have
•(M ×N) ' •M × •N.

Proof. Note that in the statement each manifold is identified with the corre-
sponding Cn space M̄ . Hence we mean •M = •M̄ = •(•MM̄). In proving that α
is a •Cn arrow we can use the Lemma 5.1 because of Lemma 5.2 and considering
that •M and •N are generated by D0(•M) and D0(•N). Because these generat-
ing sets are defined using a disjunction (see definition 5.1) we have to check four
cases depending on d and δ. In the first one we have d = •h|K ∈ D0

K(•M) and
δ = •l|J ∈ D0

J(•N) (we are using the same notations of the previous Lemma 5.2).
Thus

βKJ · (d× δ) · α = βKJ · (•h|K × •l|J) · α = •(h× l)|K×J .

That is βKJ ·(d×δ)·α is a generating element in •(M×N), and so it is also a figure.
In the second case let’s suppose δ constant to n ∈ •N , take a chart l−1 : U −→ Rp

on ◦n = n0 ∈ N and let p := •l−1(n), W := •Rp. Then for any k ∈ K and j ∈ J
we can write

α{(d× δ)[βKJ(〈k, j〉)]} = α[•h(k), •l(p)]

= {βKW · [•h|K × •l|J ] · α}〈k, p〉
= •(h× l)|K×W 〈k, p〉

(5.2)

where we have used once again the equality of Lemma 5.2. Thus let’s call τ :
〈k, j〉 ∈ |K × J | 7→ 〈k, p〉 ∈ |K ×W |, so that we can write (5.2) as

βKJ · (d× δ) · α = τ · •(h× l)|K×W

But •(h × l)|K×W is a generating figure of •(M ×N) and τ is an arrow of S•Rn,
and this proves that βKJ · (d × δ) · α ∈

K×J
•(M × N). The remaining cases are

either trivial or analogous to the last one.
For βMN the proof is simpler, and it suffices to note that e.g. α · •pM is the

projection on •M ; hence the conclusion follows from the fact that •pM and •pN

are arrows of •Cn. �
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In the following we shall always use α to identify these type of spaces •M×•N =
•(M ×N).

5.4. Figures of extended spaces

In this section we want to understand better the figures of the extended space
•(ZX); we will use these results later, for example when we will study the embed-
ding of Mann in •Cn.

From the general definition of F̄–space generated by D0 given in section 2,
a figure δ ∈

S
•(ZX) can be locally factored as δ|V = fd through an arrow f of

S•Rn and a generating function d ∈ D0
T (Z); here V = V(s) is an open neighborhood

of the fixed s ∈ S. Hence, either δ|V is constant (if d is constant) or we can write
d = •h|T and f = •g(p,−) so that

δ(x) = d[f(x)] = •h[•g(p, x)] = •(gh)(p, x) ∀x ∈ B,

where B = •B ∩ V and A × B is an open neighborhood of (◦p, ◦s). Therefore we
can write

δ(x) = •γ(p, x) ∀x ∈ B

with γ := g|A×B ·h ∈ Cn(A×B,X). Thus figures of •(ZX) are locally necessarily
either constant map or a natural generalization of the maps of S•Rn, that is
“parameterized extended Cn arrows”. Using the properties of •Cn and of its
arrow αRpRs it is easy to prove that these conditions are sufficient too. Moreover
if X = M is a manifold, the condition “δ|V constant” can be omitted. In fact if
δ|V is constant to m ∈ Z ⊆ •M , then taking a chart ϕ on ◦m ∈ M we can write
δ(x) = m = •γ(p, x), where p = •ϕ(m) and γ(x, y) = ϕ−1(x). Using these results
we can see that •(ZX) = (Z ≺ •X). Hence if we take Z ⊆ •Rz, we have three
coincident ways to see it as an extended space: Z̄ = •(ZRz) = (Z ≺ •Rz) (here Z̄
is the general passage from an object H ∈ F to H̄ ∈ F̄). E.g. if f : •Rz −→ •X

is a •Cn arrow, then we also have f : •Rz −→ •X and so f ∈•Rz
•X and locally

we can write f either as a constant function or, with the usual notations, as
f(x) = •γ(p, x). For functions f : I −→ •X defined on some set I ⊆ I0 of
infinitesimals which contains 0 ∈ I, these two alternatives are globally true instead
of locally only.

We close this section enunciating the following properties of the extension func-
tor:

1. If X ⊆ Y in Cn (see section 2.1) and |X| is open in Y , then •X ⊆ •Y in
•Cn and •X is open in •Y .

2. In the same hypotheses as above, if Z ⊆ |•X| then (Z ≺ •X) = (Z ≺ •Y ).
3. Let f : X −→ Y and Z ⊆ Y in Cn, with |Z| open in Y . Moreover define

•f−1(•Z) := (•f−1(|•Z|) ≺ •X) and f−1(Z) := (f−1(|Z|) ≺ X). Then
•[f−1(Z)] = •f−1(•Z) as extended spaces.
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5.5. The embedding of manifolds in •Cn

If we consider a Cn space X, we have just seen that we have the possibility to
associate an extended space to any subset Z ⊆ •X. Thus if X is separated we can
put a structure of •Cn space on the set |X| of ordinary points of X, by means of
X̄ := •(|X|X) = (|X| ≺ •X). Intuitively X and X̄ seem very similar, and in fact
we have

Theorem 5.3. Let X, Y be Cn separated spaces, then
1. X̄ = Ȳ =⇒ X = Y

2. X̄
f−−−→ Ȳ in •Cn ⇐⇒ X

f−−−→ Y in Cn.

Hence Cn separated spaces are fully embedded in •Cn, and so is Mann.

Proof. 1) The equality X̄ = Ȳ immediately implies the equality of support sets
|X| = |Y |. We consider now a generalized element d ∈

H
X where H is an open

set of Rh. Taking the extension of d and then the restriction to ordinary points
only we obtain

(5.3) (H ≺ •H̄)
•d|H−−−−−−→ (|X| ≺ •X) = X̄ = Ȳ .

But (H ≺ •H̄) = (H ≺ •Rh) = •(HRh) = H̄, hence
•d|H = d : H̄ −→ Ȳ in •Cn

and so d ∈
H
Ȳ . Therefore for every s ∈ H either d is constant in some open

neighborhood V of s defined by V , or, using the usual notations, we can write

d(x) = •γ(p, x) in •Y ∀x ∈ V = •V ∩H = V ∩H.

Hence for every x ∈ V ∩H we have ◦d(x) � ◦[γ(p, x)] in Y , and so we can write
d(x) = γ(p0, x) because Y is separated and x ∈ V ∩H ⊆ Rh is standard. Therefore
d|V ∩H is a Y -valued arrow of Cn defined in a neighborhood of the fixed s. The
conclusion thus follows from the sheaf property of Y .

2) ⇒ From the proof of 1) we have seen that if d ∈
H
X then d ∈

H
X̄. Hence

f(d) ∈
H
Ȳ . But once again from the passages of 1) we have seen that this implies

that f(d) ∈
H
Y .

⇐ It is sufficient to extend f , to restrict it to standard points only, and finally
to consider that our spaces are separated. �

An immediate corollary of this theorem is that the extension functor is another
full embedding for separated spaces.

Corollary 5.4. Let X,Y be Cn separated spaces, then
1. •X = •Y =⇒ X = Y

2. If •X
f−−−→ •Y in •Cn and f(|X|) ⊆ |Y | then

X
f ||X|−−−−−−→ Y in Cn

3. •X
•f−−−−→ •Y in •Cn ⇐⇒ X

f−−−→ Y in Cn
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4. If f , g : X −→ Y are Cn functions, then
•f = •g =⇒ f = g.

Proof of 1. We have to prove that the support sets of X and Y are equal, but
this is trivial if we take standard parts

{◦x | x ∈ •X} = |X| = {◦x | x ∈ •Y } = |Y |.
Hence X̄ = (|X| ≺ •X) = (|Y | ≺ •Y ) = Ȳ . The other properties stated in
the corollary are proved considering the previously seen passages which use the
restriction to ordinary points, in case preceded by an application of the extension
functor. �

5.6. The generalized derivation formula in •Cn

In this section we want to explore the possibility to use the derivation formula
through the use of observables ϕ ∈UK X. Precisely we start from a generic •Cn

function f : D −→ •X with f(0) ∈ •U := •(U ≺ X) (not the extension of
a classical one, that is f generally is not of the form f = •g|D) and we study the
validity of the formula for the function •ϕ(f(−)) defined in D and with values in
the •R module •Rk. Note that the result is not trivial just because the function f
generally is not of the form •g|D but of a more general type. First of all we prove
that the previous composition is well defined, that is the following generalization
of Theorem 1.3

Theorem 5.5. Let X be a Cn space and U ∈ τX an open set. Let f : D −→ •X
be a •Cn function with f(0) ∈ •U , then f(h) ∈ •U for every h ∈ D.

Proof. From the hypothesis on f it follows that f ∈
D

•X because D = D.
Hence, considering that 0 ∈ D ⊂ I0 and the results of section 5.4, we can globally
say that either f is constant, and the proof is trivial, or we can write the equality
f(h) = •γ(p, h) in •X for every h ∈ D. For the sake of clarity let y := f(h), thus
taking standard parts (that is evaluating at t = 0)

(5.4) ◦y � ◦[•γ(p, h)] = γ(p0, 0) = ◦[•γ(p, 0)] � ◦f(0).

But f(0) ∈ •U , from which ◦f(0) ∈ U and so ◦y ∈ U from the previous relation
(5.4). Hence yt ∈ U for t small and moreover y ∈ NU because y = f(h) ∈ NX and
because on U = (U ≺ X) we have the induced topology. �

Theorem 5.6. Let X be a Cn space and ϕ ∈URk
X an observable. Let f be as

above, then there exists one and only one pair

a ∈ •Rk and b ∈ Rk

such that
∀h ∈ D : •ϕ(f(h)) = a+ h · b.

Proof. Omitting as usual the trivial case in which f is constant, from the pre-
vious proof we have seen that we can write

∀h ∈ D : f(h) = •γ(p, h) in •X.
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Therefore from the definition of equality in •X

ϕ[f(h)t] = ϕ[γ(pt, ht)] + t · σ1(t) ∀0t,

with limt→0 σ1(t) = 0. But the function ψ := ϕ[γ(−,−)] is an ordinary Cn func-
tion, hence we can use the Taylor formula (n is at least 1) to obtain

ψ(pt, ht) = ψ(pt, 0) + ht · ∂2ψ(pt, 0) + σ2(t)

lim
t→0
ht 6=0

σ2(t)
ht

= 0.

Hence if we define

a := •ϕ[•γ(p, 0)] ∈ •Rk

b := ∂2ψ(p0, 0) ∈ Rk

then substituting

ϕ[f(h)t]− at − ht · b =

= ht · [∂2ψ(pt, 0)− ∂2ψ(p0, 0)] + σ2(t) + t · σ1(t) = o(t)

This proves that •ϕ[f(h)] = a+ h · b. To prove uniqueness of a is sufficient to set
h = 0; for b is sufficient to note that if

∀h ∈ D : h · b = h · β

then setting ht = t, from the equality in •Rk we quickly obtain b = β. �

Using the generalized derivation formula we can extend Theorem 1.5 to non-
standard points x ∈ •R. It suffices to consider the function f(x + ·) : D −→ •R
which is an arrow in •Cn and to which we can apply Theorem 5.6.
We will denote with ϕ′(f) the unique b in the previous theorem so that we can
formulate the following result, in which is stated that the generalized derivation
formula determine uniquely the function f .

Theorem 5.7. Let X ∈ Cn and f, g : D −→ •X in •Cn, with f(0) = g(0).
Moreover we assume that ϕ′(f) = ϕ′(g) for every ϕ ∈URk

X with f(0) ∈ •U , then
f=g.

Proof. Fix an h ∈ D and for simplicity let y := f(h) and z := g(h). From the
proof of a previous theorem we have seen that ◦y � ◦f(0), but f(0) = g(0) in •X

hence y0 � ◦f(0) � ◦g(0) � z0. Now we consider an observable ϕ ∈URk
X and

from y0 � z0 we deduce that

z0 ∈ U ⇐⇒ y0 ∈ U.

Hence if we assume that y0 ∈ U then f(0)t ∈ U ∀0t and f(0) ∈ •U . Thus
from the hypotheses of the theorem it follows that ϕ′(f) = ϕ′(g) and hence the
generalized derivation formula implies that •ϕ(f(h)) = •ϕ(g(h)), that is ϕ(yt) =
ϕ(zt) + o(t). �
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In the case that X is a manifold, to have the equality f = g is sufficient to find
a chart (U,ϕ) with f(0) ∈ •U and for which ϕ′(f) = ϕ′(g) (see the example in
Section 4.2).

6. Examples

We started this article defining in a very simple way an extension •R of the real field
containing nilpotent infinitesimals. Afterwards, generalizing diffeological spaces,
we introduced a cartesian closed embedding Cn of Mann to which we generalized
the definition of •R obtaining the category •Cn. The aim of this article is to intro-
duce the foundations of this theory of infinitesimals, leaving its full development in
Differential Geometry for future works. To perform this aim it is important to note
the deep analogy between our construction and Synthetic Differential Geometry
(see [12] and references therein): frequently we only have to trivially generalize
this work.

The elementary examples listed in the following want to show in a few rows
the simplicity of the analytic/algebraic calculus using nilpotent elements. Here
“simplicity” means that the dialectic with informal calculations is really faithful;
this is important for future developments both as a proof of the flexibility of
the new language and also for researches in artificial intelligence like automatic
differentiation theories. Last but not least it may also be important for didactical
or historical researches.

Example 6.1. Commutation of differentiation and integration. Suppose we
want to discover the derivative of the function

g(x) :=
∫ β(x)

α(x)

f(x, t) dt ∀x ∈ R

where α, β and f are C1 functions. We can see g as a composition of locally
lipschitzian functions hence we can apply the derivation formula:

g(x+ h) =
∫ α(x)

α(x)+hα′(x)

f(x, t) dt+ h ·
∫ α(x)

α(x)+hα′(x)

∂f

∂x
(x, t) dt

+
∫ β(x)

α(x)

f(x, t) dt+ h ·
∫ β(x)

α(x)

∂f

∂x
(x, t) dt

+
∫ β(x)+hβ′(x)

β(x)

f(x, t) dt+ h ·
∫ β(x)+hβ′(x)

β(x)

∂f

∂x
(x, t) dt.

Now we use h2 = 0 to obtain e.g.

h ·
∫ α(x)

α(x)+hα′(x)

∂f

∂x
(x, t) dt = −h2 · α′(x) · ∂f

∂x
(x, t) = 0

and ∫ α(x)

α(x)+hα′(x)

f(x, t) dt = −h · α′(x) · f(α(x), t).

Treating in an analogous way similar terms we finally obtain the conclusion. Note
that the final formula comes out by itself so that we have “discovered” it and not
simply we have proved it.
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Example 6.2. Circle of curvature. A simple application of the infinitesimal
Taylor formula is the parametric equation for the circle of curvature, that is the
circle with second order osculation with a curve γ : [0, 1] −→ R3. In fact if
r ∈ (0, 1) and γ̇r is a unit vector, from the second order formula we have

(6.1) ∀h ∈ D2 : γ(r + h) = γr + h γ̇r +
h2

2
γ̈r = γr + h~tr +

h2

2
cr ~nr

where ~n is the unit normal vector, ~t is the tangent one and cr the curvature. But
once again from Taylor formula we have sin(ch) = ch and cos(ch) = 1 − c2h2

2 .

Now it suffices to substitute h and h2

2 from these formulas into (6.1) to obtain the
conclusion

∀h ∈ D2 : γ(r + h) =
(
γr +

~nr

cr

)
+

1
cr
·
[
sin(crh)~tr − cos(crh)~nr

]
.

In a similar way we can prove that any f ∈ C∞(R,R) can be written ∀h ∈ Dk as

f(h) =
k∑

n=0

an · cos(nh) +
k∑

n=0

bn · sin(nh).

Example 6.3. Schwarz’s theorem. Using nilpotent infinitesimals a simple and
meaningful proof of Schwarz’s theorem can be obtained. This simple example
aims to show how to manage some differences between our setting and Synthetic
Differential Geometry (see [8, 12, 13]). Let f : V −→ E be a C2 function between
Banach spaces and a ∈ V , we want to prove that d2f(a) : V × V −→ E is
symmetric. Take

k ∈ D2

h, j infinitesimals
jkh ∈ D6=0

(e.g. we can take kt = |t| 12 , ht = jt = |t| 14 ). Using k ∈ D2 we have

(6.2)

j · f(x+ hu+ kv) =

= j ·
[
f(x+ hu) + k ∂vf(x+ hu) +

k2

2
∂2

vf(x+ hu)
]

= j · f(x+ hu) + jk · ∂vf(x+ hu)

where we used the fact that k2 ∈ D and j infinitesimal imply jk2 = 0. Now we
consider that jkh ∈ D hence using Theorem 1.7 we obtain

(6.3) jk · ∂vf(x+ hu) = jk · ∂vf(x) + jkh · ∂u(∂vf)(x).

But k ∈ D2 and jk2 = 0 hence

j · f(x+ kv)− j · f(x) = jk · ∂vf(x).

Substituting in (6.3) and (6.2) we obtain

(6.4)
j · [f(x+ hu+ kv)− f(x+ hu)− f(x+ kv) + f(x)] =

= jkh · ∂u(∂vf)(x).
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The left side of this equality is symmetric in u, v, hence changing them we have

jkh · ∂u(∂vf)(x) = jkh · ∂v(∂uf)(x)

and hence the conclusion because jkh 6= 0 and ∂u(∂vf)(x), ∂v(∂uf)(x) ∈ E.
From (6.4) it follows directly the classical limit relation

lim
t→0

f(x+ htu+ ktv)− f(x+ htu)− f(x+ ktv) + f(x)
htkt

= ∂u(∂vf)(x).

Example 6.4. Electric dipole. From a Physical point of view an electric dipole
is usually defined as “a pair of charges with opposite sign placed at a distance d
very less than the distance r from the observer”.
Conditions like r � d are frequently used in Physic and very often we obtain a
correct formalization if we ask d ∈ •R infinitesimal but r ∈ R \ {0} i.e. r finite.
Thus we can define an electric dipole as a pair (p1, p2) of electric particles, with
charges of equal intensity but with opposite sign such that their mutual distance
at every time t is a first order infinitesimal:

(6.5) ∀t : |p1(t)− p2(t)| =: |~dt| =: dt ∈ D.
In this way we can calculate the potential in the point x using the properties of
D and using the hypothesis that r is finite and not zero. In fact we have

ϕ(x) =
q

4πε0
·
(

1
r1
− 1
r2

)
~ri := x− pi

and if ~r := ~r2 −
~d
2 then

1
r2

=
(
r2 +

d2

4
+ ~r · ~d

)−1/2

= r−1 ·

(
1 +

~r · ~d
r2

)−1/2

because for (6.5) d2 = 0. For our hypotheses on d and r we have that
~r · ~d
r2

∈ D

hence from the derivation formula(
1 +

~r · ~d
r2

)−1/2

= 1− ~r · ~d
2r2

In the same way we can proceed for 1/r1, hence:

ϕ(x) =
q

4πε0
· 1
r
·

(
1 +

~r · ~d
2r2

− 1 +
~r · ~d
2r2

)
= . . .

The property d2 = 0 is also used in the calculus of the electric field and for the
moment of momentum.

Example 6.5. Newtonian limit in Relativity. Another example in which we
can formalize a condition like r � d using the previous ideas is the Newtonian
limit in Relativity; in it we can suppose to have

• ∀t : vt ∈ D2 and c ∈ R
• ∀x ∈M4 : gij(x) = ηij + hij(x) with hij(x) ∈ D.
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where (ηij)ij is the matrix of the Minkowski’s metric. These conditions can be
interpreted as vt � c and hij(x) � 1 (low speed with respect to the speed of light
and weak gravitational field). In this way we have, e.g. the equalities:

1√
1− v2

c2

= 1 +
v2

2c2
and

√
1− h44(x) = 1− 1

2
h44(x).

Example 6.6. Linear differential equations. Let

L(y) := A0

dNy

dtN
+ . . .+AN−1

dy
dt

+AN · y = 0

be a linear differential equation with constant coefficients. Once again we want to
discover independent solutions in case the characteristic polynomial has multiple
roots e.g.

(r − r1)2 · (r − r3) · . . . · (r − rN) = 0.

The idea is that in •R we have (r − r1)2 = 0 also if r = r1 + h with h ∈ D. Thus
y(t) = e(r1+h)t is a solution too. But e(r1+h)t = er1t + ht · er1t, hence

L
[
e(r1+h)t

]
= 0

= L
[
er1t + ht · er1t

]
= L

[
er1t
]
+ h · L

[
t · er1t

]
We obtain L [t · er1t] = 0, that is y1(t) = t · er1t must be a solution. Using k-th
order infinitesimals we can deal with other multiple roots in a similar way.

7. Tangent vectors, vector fields and infinitesimally linear spaces

The use of nilpotent infinitesimals permits to develop many concepts of Differential
Geometry in an intrinsic way without being forced to use coordinates, as we shall
see in some examples below. In this way the use of charts becomes specific of
stated areas.

We can call this kind of intrinsic geometry Infinitesimal Differential Geometry.
The possibility to avoid coordinates using infinitesimal neighborhood instead per-
mits to perform some generalizations to more abstract spaces, like spaces of map-
pings. Even if the categories Cn and •Cn are very big and not very much can be
said about generic objects, in this section we shall see that the best properties can
be formulated for a restricted class of extended spaces, the infinitesimally linear
ones, to which spaces of mappings between manifolds belong to.

We start from the fundamental idea of tangent vector. It is now natural to define
a tangent vector to a space X ∈ •Cn as an arrow (in •Cn) of type t : D −→ X.
Therefore TX := XD and Tf(t) := df(t) := f ◦ t with projection π : t ∈ TX 7→
t(0) ∈ X is the tangent bundle of X. Note that using the absolute value it is
also possible to consider “boundary tangent vectors” taking |D| := { |h| : h ∈ D}
instead of D, for example at the initial point of a curve or at a side of a closed set.
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In the following M ∈ Man∞ =: Man will always be a finite dimensional smooth
manifold and we will use the notation TM for T(•M).

It is important to note that with this definition of tangent vector we obtain
a generalization of the classical notion. In fact t(0) ∈ •M and hence the tangent
vector t can be applied to an extended point. If we want to study classical tangent
vectors only we have to consider the following C∞ object

Definition 7.1. We call TstM the C∞ object with support set

|TstM | := {•f |D : f ∈ C∞(R,M)},

and with generalized elements of type U (open in Ru)

d ∈
U

TstM :⇐⇒ d : U −→ |TstM | and d · i ∈
Ū

TM,

where i : |TstM | ↪→ TM is the inclusion.

That is in TstM we consider only tangent vectors t = •f |D obtained as extension
of ordinary smooth functions f : R −→ M , and we take as generalized elements,
functions d with values in TstM which in •C∞ verify d∨ : Ū × D −→ •M (here
U ∈ S•R∞ 7→ Ū ∈ C∞ is the general passage from an object H ∈ F to H̄ ∈ F̄).
Note that, intuitively speaking, d takes standard elements u ∈ U ⊆ Rk to standard
elements d(u) ∈ TstM .

Theorem 7.1. Let t ∈ TM be a tangent vector, then

t ∈ TstM ⇐⇒ t(0) ∈M.

Proof. If t = •f |D then t(0) = f(0) ∈ M . Vice versa if t(0) ∈ M then take a
chart (U,ϕ) on t(0) and apply the generalized derivation formula (Theorem 5.6)
obtaining •ϕ(t(h)) = a + h · b for any h ∈ D and with a ∈ •Rk, b ∈ Rk. But
•ϕ(t(0)) = ϕ(t(0)) = a because t(0) ∈ M . Hence a ∈ Rk is standard and we can
write t(h) = •ϕ−1(a+ h · b) =: •f |D(h). �

In the following result we prove that the definition of standard tangent vector
t ∈ TstM is equivalent to the classical one.

Theorem 7.2. In the category C∞ the object TstM is isomorphic to the usual
tangent bundle of M .

Sketch of the proof. We have to prove that Tm
st := {t ∈ TstM | t(0) = m} ' Tm

where here Tm := {f ∈ C∞(R,M) | f(0) = m}/ ∼ is the usual tangent space of M
at m ∈M . Note that Tm ∈ C∞ because of completeness and co-completeness.

Let d be the dimension of M . Firstly we prove that

α : [f ]∼ ∈ Tm 7→ d(ϕ ◦ f)
dt

(0) ∈ Rd

α−1 : v ∈ Rd 7→ [r 7→ ϕ−1(ϕm+ r · v)]∼ ∈ Tm

are arrows of C∞, where ϕ : U −→ Rd is a chart on m with ϕ(U) = Rd.
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Secondly we prove that

β : t ∈ Tm
st 7→ ϕ′(t) ∈ Rd

β−1 : v ∈ Rd 7→ •[r 7→ ϕ−1(ϕm+ r · v)]|D ∈ Tm
st

are arrows of C∞. We give some details for β. If d ∈
U

Tm
st then d∨ : Ū×D −→ •M

in •C∞. But Ū ×D = Ū × D̄ = U ×D hence d∨ ∈
U×D

•M . Thus we can locally
write d∨|V = •γ(p,−,−)|V where V is an open neighborhood of (u, 0) defined by
A×B, u ∈ U and γ ∈ C∞(Ū×A×B,M). But V = •(A×B)∩(U×D) = (A∩U)×D
because U ⊆ Ru. As in the proof of Theorem 5.6 we can prove that

β[d(x)] = ϕ′[d(x)] =
d
dt
{ϕ[γ(p0, x, t)]}|t=0 ∀x ∈ A ∩ U.

Hence (d · β)|A∩U ∈ C∞(A ∩ U,Rd) is an ordinary smooth function. Note the
importance to have as U a standard open set in the last passage: this is a strong
motivation for the definition we gave of TstM . �

For any object X ∈ •Cn the multiplication of a tangent vector t by a scalar
r ∈ •R can be defined simply “increasing its speed” by a factor r:

(r · t)(h) := t(r · h).

As we already noted, in the category •Cn we have spaces with singular points too,
like algebraic curves with double points. Because of this reason we cannot always
define the sum of tangent vectors, but we need to introduce a class of objects
in which this operation is possible. The following definition simply affirms that
in these spaces there always exists the infinitesimal parallelogram generated by
a finite number of given vectors.

Definition 7.2. Let X ∈ •Cn, then we say that X is infinitesimally linear iff
for any k ∈ N greater than 1 and for any ti ∈ TxX, i = 1, . . . , k, there exists one
and only one p : Dk −→ X such that

∀i = 1, . . . , k : p(0, i−1. . . . . . , 0, h, 0, . . . , 0) = ti(h) ∀h ∈ D.

The following theorem gives meaningful examples of infinitesimally linear ob-
jects.

Theorem 7.3. The extension of any manifold •M is infinitesimally linear. If
Mi ∈ Mann for i = 1, . . . , s then

•M
•M ...

2
•Ms

1 ' •M
•(M2×···×Ms)
1

is infinitesimally linear too.

Proof. Given any chart (U,ϕ) on ◦m we can define the infinitesimal parallelo-
gram p as

(7.1) p(h1, . . . , hk) = •ϕ−1

(
•ϕ(m) +

k∑
i=1

hi · ϕ′(ti)

)
.
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If fact if τ(h) := p(0, i−1. . . . . . , 0, h, 0, . . . , 0) then ϕ(τ(h)) = ϕ(m) + h · ϕ′(ti); this
implies that t(0) = τ(0) and ϕ′(τ) = ϕ′(ti), hence ti = τ . To prove uniqueness
consider that if p : Dk −→ •M then p ∈

Dk
•M and we can write p(h) = γ(q, h),

where γ ∈ Cn(U × V,M) and q is the usual extended parameter. Hence

ϕ[γ(q, 0, i−1. . . . . . , 0, h, 0, . . . , 0)] = ϕ[ti(h)] = ϕ(m) + h · ϕ′(ti)

and so

ϕ[γ(q, h)] = ϕ(m) +
k∑

i=1

hi · ϕ′(ti)

from the first order infinitesimal Taylor formula.
Because

•M
•M ...

2
•Ms

1 ' •M
•M2×···×•Ms
1 ' •M

•(M2×···×Ms)
1

it suffices to prove the conclusion for s = 2. First of all we note that, because of the
previously proved uniqueness, the definition 7.1 of the infinitesimal parallelogram
doesn’t depend on the chart ϕ on ◦m. Now let t1, . . . , tk be k tangent vectors
at f ∈ •N

•M . We shall define their parallelogram p : •M −→ •NDk

patching
together smooth functions defined on open subsets, and using the sheaf property
of •NDk

. Indeed for every m ∈ •M we can find a chart (Um, ϕm) of N on ◦f(m)
with ϕm(Um) = Rn. Now m ∈ Vm := f−1(•Um) ∈ τ •M and for every x ∈ Vm we
have t∨i (0, x) = f(x) ∈ •Um. Hence t∨i (h, x) ∈ •Um for any h ∈ D by theorem 5.5.
Therefore we can define

p∨m(x, h) := ϕ−1
m

{
k∑

i=1

ϕm[t∨i (hi, x)]− (k − 1) · ϕm(fx)

}
∀x ∈ Vm,∀h ∈ Dk

and we have that p∨m : (Vm ≺ •M)×Dk −→ •N is smooth, because it is composi-
tion of smooth functions. If x ∈ Vm ∩Vm′ then p∨m(x,−) = p∨m′(x,−), in fact from
the generalized derivation formula ϕm[t∨i (hi, x)] = ϕm(fx) + hi ·ϕ′m[t∨i (−, x)] and
hence we can write

(7.2) p∨m(x, h) = ϕ−1
m

{
ϕm(fx) +

k∑
i=1

hi · ϕ′m[t∨i (−, x)]

}
∀x ∈ Vm,∀h ∈ Dk.

But (Um, ϕm) is a chart on ◦f(x), so p∨m(x,−) is the infinitesimal parallelogram
generated by the tangent vectors t∨i (−, x) at f(x), and we know that (7.2) doesn’t
depend on ϕm, so pm = pm′ . From (7.2) is also easy to prove that p : Dk −→ •N

•M

verifies the desired properties. Uniqueness follows noting that p∨(m,−) is the
infinitesimal parallelogram generated by t∨i (−,m). �

If X is infinitesimally linear then we can define the sum of tangent vectors
t1, t2 ∈ TxX simply taking the diagonal of the parallelogram p generated by these
vectors

(t1 + t2)(h) := p(h, h) ∀h ∈ D.
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With these operations TxX becomes a •R module. To prove e.g. that the sum is
associative see [8, 12] for a similar theorem.
Vector fields on a generic object X ∈ •Cn are naturally defined as

V : X −→ TX such that V (m)(0) = m.

In the case of manifolds, X = •M , this implies that V (m)(0) ∈ M for every
m ∈M , hence from (7.1)

V |M : (M ≺ •M) −→ ({•f |D : f ∈ Cn(R,M)} ≺ TM).

From this, using the definition of arrow in Cn and the embedding Theorem 5.3, it
follows that

V |M : M −→ Tst(M) in Cn,

that is the standard notion of vector field on M . Vice versa if we have

W : M −→ Tst(M) in Cn

then we can extend it to •M . In fact fix m ∈ •M,h ∈ D and choose a chart (U, x)
on ◦m. Then we can write

W |U =
d∑

i=1

Ai ·
∂

∂xi
,

with Ai ∈ Cn(U,R). But m ∈ •U because ◦m ∈ U and hence we can define

W̃ (m,h) :=
d∑

i=1

•Ai(m) · ∂

∂xi
(m)(h).

This definition doesn’t depend on the chart (U, x) and, for the sheaf property of
•M provides a •Cn function

W̃ : •M ×D −→ •M such that W̃ (m, 0) = m

and with (W̃∧)|M = V .
Finally we can easily see that any vector field can equivalently be seen as an infin-
itesimal transformation of the space into itself. In fact using cartesian closedness
we have

V ∈ (XD)X ' XX×D ' XD×X ' (XX)D.

If W corresponds to V in this isomorphism then W : D −→ XX and V (x)(0) = x
is equivalent to say that W (0) = 1X , that is W is the tangent vector at 1X to the
space of transformations XX , that is an infinitesimal path traced from 1X .

8. A first comparison with other theories of infinitesimals

It is not easy to clarify in a few rows the relationships between our Infinitesimal
Differential Geometry (IDG) and other, more developed and well established theo-
ries of actual infinitesimals. Nevertheless here we want to sketch a first comparison,
and to state some open problems, mostly underlining the conceptual differences
instead of the technical ones, hoping in this way to clarify the foundational and
philosophical choices we made.
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8.1. Nonstandard Analysis (NSA)

As a consequence of the will to have a field which extends the reals, in NSA every
non zero infinitesimal is invertible and so we cannot have nilpotent elements. On
the contrary in IDG we aim to obtain a ring as an extension, and, as a result of
our choices, we cannot have non-nilpotent infinitesimals, in particular they cannot
be invertible. In IDG our first aim was to obtain a meaningful theory from the
intuitive point of view, to the disadvantage of some formal property, only partially
inherited from the real field. Vice versa any constructions of the hyperreals ∗R
has, as one of its primary aims, to obtain the inheritance of all the properties of the
reals through the transfer principle. This way of thinking implies that in NSA we
want to be free to extend every function f : R −→ R from R to ∗R, and that any
sequence of standard reals (xn)n∈N ∈ RN, even the more strange, represents one
and only one hyperreal. Of course in this article we followed a completely different
way: to define •R we restrict ourselves to nilpotent functions (xt)t∈R ∈ N ⊂ RR,
and hence we can only extend locally lipschitzian functions from R to •R. Ob-
viously we have in mind that in Differential Geometry we shall work with Cn

functions only. In exchange not every property is transferred to •R, e.g. we have
partial order relations only.
In NSA this attention to formally inherit every property of the reals implies that
on the one hand we have the greatest logical strength, but on the other hand we
need a higher formal control (some background of Logic is necessary e.g. to apply
the transfer principle) and sometimes we lose the intuitive point of view. E.g.
what is the intuitive meaning and usefulness of ◦[sin(I)] ∈ R, the standard part of
the sine of an infinite number I ∈ ∗R? These, together with very strong but scien-
tifically unjustified cultural reasons, may be some motivations for the not so high
success of NSA in Mathematics, and consequently in its didactics. Anyway NSA
is essentially the only theory of actual infinitesimals with a discrete diffusion and
a sufficiently great community of working mathematicians and published results,
even if few of them concern Differential Geometry. Two open problems concerning
the relationships between IDG and NSA are the following.

Problem. It is possible to define •R so as to include the hyperreals of NSA. It
suffices to consider sequences of elements of N and to define

x ∼ y :⇐⇒
{
n ∈ N | lim

t→0

xn(t)− yn(t)
t

= 0
}
∈ U∞.

Where U∞ is an ultrafilter which contains the filter of cofinite sets. In this way
almost all the results that we presented here, but not every, can be rightly refor-
mulated. Is it possible to obtain a construction which follows the ideas presented
in this article, but with a good theory of invertible infinitesimals?

Problem. Our partial order relations are not an order, but we can fix an
ultrafilter U0 which contains the filter of neighborhoods at t = 0 and define ≥
substituting ∀0t in the definition of � with

{t |xt ≥ yt + zt} ∈ U0,
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then we can simply prove that we obtain an order. Modifying in a similar way the
equality in •R is it possible to prove a general transfer theorem?

8.2. Synthetic Differential Geometry (SDG)

There are many analogies between SDG and IDG, so that sometimes proofs remain
almost unchanged. But the differences are so important that, in spite of the
similarities, these theories can be said to describe “different kind of infinitesimals”.

One of the most important differences is that in IDG we have h · k = 0 if h2 =
k2 = 0. This is not the case in SDG, where infinitesimals h, k ∈ ∆ := {d | d2 = 0}
with h · k not necessarily equal zero, sometimes play an important role. Note
that, as shown in the proof of Schwarz theorem using infinitesimals, to bypass this
difference, sometimes requires completely new ideas. Because of these diversities,
in our derivation formula we are forced to state ∃!m ∈ R and not ∃!m ∈ •R. This
is essentially the only important difference between this formula and the Kock-
Lawvere axiom. Indeed to differentiate a generic smooth map f : •R −→ •R we
need “smooth incremental ratios” (the analogous of the Fermat-Reyes axiom in
SDG; these results of IDG will be presented in a next work. A first approach
to this problem, previous to the introduction of the useful sheaf property in the
definition of F̄ spaces, can be seen in [7]).

Another point of view of the relationships between these two theories can be
introduced starting from a sentence of [13], pag. 385: “These structures [conve-
nient vector spaces] are in a way simpler than the sheaves considered in this book,
but one should notice that the theory of convenient vector spaces does not include
an attempt to develop an appropriate framework for infinitesimal structures, which
is one of the main motivations of our approach...”. We want to think that this
thought could also be applied to diffeological spaces, and so IDG may be a possible
solution. Indeed models of SDG are not so easy to construct Topos, so that we
are almost compelled to work with the internal language of the Topos itself, that
is in intuitionistic logic. If on the one hand this implies that “all our spaces and
functions are smooth”, and so we don’t have to prove this after every definition,
on the other hand it requires a more strong formal control of the Mathematics you
are doing.

Everyone can be in agreement or not with the above cited sentence of [13], or if
it is difficult or easy to learn to work in intuitionistic logic and after to translate the
results using Topos models. Anyway we think undeniable that the formal beauty
achieved by SDG can be reached with difficulty using a theory in classical logic. It
suffices to say, as a simple example, that to prove the infinitesimal linearity of MN

(starting from M , N generic infinitesimally linear spaces), it suffices to fix n ∈ N ,
to note that ti(−, n) are tangent vectors at f(n), to consider their parallelogram
p(−, n), and automatically, thanks to the use of intuitionistic logic, p is smooth
without any need to use directly the sheaf property to prove it.

On the other hand if we need a partition of unity, we are forced to assume
a suitable axiom for the existence of bump functions (whose definition, in the
models, necessarily uses the law of the excluded middle).
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From the intuitive, classical, point of view, it is a little strange that we don’t
have “examples” of infinitesimals in SDG (it is only possible to prove that ¬¬∃d ∈
∆), so that, e.g., we cannot construct a physical theory containing a fixed infin-
itesimal parameter; moreover any d ∈ ∆ is at the same time d ≤ 0 and d ≥ 0;
finally the definition of the Lie brackets using h · k for h, k ∈ ∆

[X,Y ]h·k = Y−k ◦X−h ◦ Yk ◦Xh

is very far to the usual definitions given on manifolds.

Problem. Is it possible to construct a theory of nilpotent infinitesimals useful
for several construction in Differential Geometry and with:

• meaningful and useful examples of first order infinitesimals h2 = k2 = 0
with h · k 6= 0;

• models simpler than Topos models of SDG so that classical logic suffices to
work in it;

• ∃!m ∈ •R in the derivation formula?

8.3. Weil functors (WF)

Weil functors (see [9] and [10]) represent, as far as we know, the only way to
introduce some kind of useful infinitesimal method without the need to possess
a non-trivial background in mathematical logic. They don’t arrive to the con-
struction of a whole “infinitesimal universe” like in IDG or in the previously cited
theories, but to define functors TA : Man −→ Man, related to the geometrical
constructions we are interested in and starting from a Weil algebra A = R · 1⊕N
(N is a finite dimensional ideal of nilpotent elements). The flexibility of its in-
put A gives a corresponding flexibility to the construction of these functors. But,
generally speaking, if one change the geometrical problem, one has also to change
the algebra A and so the corresponding functor TA. E.g. if A = R[x]/〈x2〉, then
TA is the ordinary tangent bundle functor, whereas if B = R[x, y]/〈x2, y2〉, then
TB = TA ◦TA is the second tangent bundle. Note that x, y ∈ B verify x2 = y2 = 0
but x · y 6= 0. This provides us with the first difference between WF and IDG. In
fact although •R = R · 1⊕ I0 and dimR I0 = ∞, using the infinitesimals of •R we
can generate a large family of Weil algebras (e.g. any A = R · 1⊕N ⊂ R · 1⊕Dk

which represents kth order infinitesimal Taylor formula) but not every algebra can
be generated in this way, e.g. the previous B. But using exponential objects of
C∞ and •C∞ we can give a simple infinitesimal representation of a large class of
WF. We will use the common multi-index notations, e.g. if α = (α1, . . . , αn) ∈ Nn,
h = (h1, . . . , hn) ∈ •Rn, then hα = hα1

1 · . . . ·hαn

n ∈ •R. For α1, . . . , αc ∈ Nn, c ≥ n,
let

Dα := {h ∈ •Rn |hαi ∈ D ∀i = 1, . . . , c} .
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Using this notation we will always suppose that α verifies

α1 = (k1, 0, . . . , 0)

α2 = (0, k2, 0, . . . , 0)
. . .

αn = (0, . . . , 0, kn)

αj
i ≤ kj ∀i = n+ 1, . . . , c.

Hence Dα ⊆ Dk1 × . . .×Dkn
. E.g. if α1 = (3, 0), α2 = (0, 2) and α3 = (1, 1), then

Dα = {(h, k) ∈ D3 ×D2 |h · k ∈ D}. To any infinitesimal object Dα is associated
a corresponding Taylor formula: let f = •g|Dα , with g ∈ C∞(Rn,R), then

f(h) =
∑

r∈ι(α)

hr

r!
·mr ∀h ∈ Dα.

Where ι(α) := {r ∈ Nn | ∃h ∈ Dα : hr 6= 0, |r| < k}, k := max(k1, . . . , kn).
Coefficients mr = ∂rg

∂xr (0) ∈ R are uniquely determined by this formula. Here
r ≤ αi means rj ≤ αj

i for every j = 1, . . . , n. We can therefore proceed generalizing
the definition 7.1 of standard tangent functor.

Definition 8.1. We call MDα the C∞ object with support set∣∣MDα
∣∣ := {•f |Dα

: f ∈ C∞(Rn,M)},

and with generalized elements of type U (open in Ru)

d ∈
U
MDα :⇐⇒ d : U −→

∣∣MDα
∣∣ and d · i ∈

Ū

•MDα ,

where i :
∣∣MDα

∣∣ ↪→ •MDα is the inclusion.

We can extend this definition to the arrows of Man with fDα(t) := t · f ∈
NDα , where t ∈ MDα and f ∈ Man(M,N). With these definitions we obtain a
product preserving functor (−)Dα : Man −→ Man. Finally we have a natural
transformation e0 : (−)Dα −→ 1Man defined by evaluation at 0 ∈ Rn: e0(M)(t) :=
t(0). The functor (−)Dα and the natural transformation e0 verify the “locality
condition” of theorem 1.36.1 in [9]: if U is open in M and i : U ↪→ M is the
inclusion, then UDα = e0(M)−1(U) and iDα is the inclusion of UDα in MDα . We
can thus apply the above cited theorem to obtain that (−)Dα is a Weil functor,
whose algebra is

Al
(
(−)Dα

)
= RDα ' R[x1, . . . , xn]/〈xβ1

1 · . . . · xβn

n 〉β∈I .

Where I := {β ∈ Nn | ∃i∃j : β > αi, β
j > αj

i}; here β > αi means βj > αj
i for

every j = 1, . . . , n.
Not every Weil functor has this simple infinitesimal representation. E.g. the
second tangent bundle (−)D ◦ (−)D is not of type (−)Dα ; indeed it is easy to
prove that the only possible candidate could be Dα = D × D, but (RD)D is
a four dimensional manifold, whereas RD×D has dimension three. We don’t have
this kind of problems with the functor (−)Dα = •C∞(Dα,−) : •C∞ −→ •C∞



INFINITESIMAL DIFFERENTIAL GEOMETRY 277

which generalizes the previous one as well as TM = •MD generalizes the standard
tangent functor. In fact because of cartesian closedness we have(

XDα
)Dβ ' XDα×Dβ

and Dα ×Dβ is again of type Dα.
Weil functors has another more general, but less simple, infinitesimal represen-

tation using exponential objects. We sketch here the case of the second tangent
bundle for M = R only. Let

D(10) :=
{
(h, k) ∈ D2

2 |h2 = 0 = k
}

D(01) :=
{
(h, k) ∈ D2

2 |h = 0 = k2
}

D(11) :=
{
(h, k) ∈ D2

2 |h2 · k = 0 = h · k2
}

D̄ := D(10)×D(01)×D(11).

Now we consider the incremental differences corresponding to these objects, that
is

f10[−] : (h, k) ∈ D(10) 7→ f(h, k)− f(0) ∈ •R
f01[−] : (h, k) ∈ D(01) 7→ f(h, k)− f(0) ∈ •R
f11[−] : (h, k) ∈ D(11) 7→ f(h, k)− f(h, 0)− f(0, k) + f(0) ∈ •R.

Finally let

RD̄ :=
{
(f(0), p1 · f10[−], p2 · f01[−], p3 · f11[−]) | f ∈ C∞(R2,R)

}
where pi are projections, e.g. p1 : D̄ −→ D(10). If g ∈ RD̄ then

g(h) = (f(0), h1 · ∂1f(0), h4 · ∂2f(0), h5 · h6 · ∂12f(0)) ∀h ∈ D̄

and RD̄ is an algebra isomorphic to (RD)D. To generalize this representation to
a generic manifold M ∈ Man we have to use infinitesimal incremental differences
of functions f ∈ C∞(Rn,M). This could also be performed in an intrinsic way
using affine structures definable on the infinitesimals neighborhood of any point,
which will be presented in a next work.
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