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GATEAUX DIFFERENTIABILITY FOR FUNCTIONALS
OF TYPE ORLICZ-LORENTZ

F. E. LEVIS and H. H. CUENYA

Abstract. Let (Ω,A, µ) be a σ-finite nonatomic measure space and let Λw,φ be

the Orlicz-Lorentz space. We study the Gateaux differentiability of the functional

Ψw,φ(f) =
∞
∫
0

φ(f∗)w. More precisely we give an exact characterization of those

points in the Orlicz-Lorentz space Λw,φ where the Gateaux derivative exists. This

paper extends known results already on Lorent spaces, Lw,q , 1 < q < ∞. The case
q = 1, it has been considered.

1. Introduction

Let (Ω,A, µ) be a σ-finite nonatomic measure space, M0 = M0(Ω,A, µ) the class
of µ-measurable functions on Ω that are finite µ-a.e..

As usual, for f ∈ M0 we denote by µf its distribution function and by f∗ its
decreasing rearrangement. If two functions f and g have the same distribution
function we say that they are equimeasurable and we put f ∼ g. The reader can
see [1] for definitions and properties.

Now recall some basic notations and definitions. Let φ : R+ → R+, be differen-
tiable, convex, φ(0) = 0, φ(t) > 0 for t > 0 and a weight function w : (0, γ) → R+,
for γ ≤ ∞, be nonincreasing and locally integrable with respect to the Lebesgue
measure m. For f ∈M0 let

Ψw,φ(f) =
∫ ∞

0

φ(f∗(t))w(t)dm(t).

We consider the Orlicz-Lorentz space

Λw,φ := {f ∈M0 : Ψw,φ(λf) < ∞ for all λ > 0}.
It is clear that w = const, Λw,φ becomes an ordinary Orlicz space Lφ. On the
other hand setting φ(t) = tq, w(t) = t

q
p−1 we obtain the Lorentz space Lp,q in the

case 1 ≤ q ≤ p < ∞ and Ψw,φ(f) = ‖f‖q
pq.

It is well known that the functional Ψw,φ : M0 → [0,∞] is an orthogonally
subadditive convex modular and Ψw,φ(f) = supv∼w

∫∞
0

φ(|f |)v, (see [7]). In [2]
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the authors make the following assertion: If 1 < q < ∞ and the weight w is strictly
decreasing, it is known that Lw,q has a Gateaux differentiable norm at f if and
only if µ{|f | = s} = 0 for any s > 0. However we observe that the Corollary 3 in
[2] does not hold when q = 1. In section 4, we give an example which shows that
the Corollary 3 in [2] is not true. So, we can not get in this case the set of points
where the Gateaux derivative exists.

Our main purpose in this paper it will be to give an exact characterization of
those points in Λw,φ where there is the Gateaux derivative of the functional Ψw,φ,
when φ is differentiable and w is a stritly decreasing function. We remark that
this work generalizes the known results over differentibility in Lorentz spaces for
1 < q < ∞.

For f, h ∈ Λw,φ, we will use in this work the one-sided Gateaux derivatives
γ+(f, h) = lims→0+

Ψw,φ(f+sh)−Ψw,φ(f)
s , γ−(f, h) = lims→0−

Ψw,φ(f+sh)−Ψw,φ(f)
s .

Definition 1.1. We say that a function f ∈ Λw,φ is a smooth point if there
exists the Gateaux derivative of the functional Ψw,φ in f , i.e., if γ+(f, h) = γ−(f, h)
for all h ∈ Λw,φ.We denote it by γ(f, h).

Let f ∈ Λw,φ. By redefining f , if necessary, on a set of µ-measure zero, we
may assume that |f | and f∗ have the same non-null range, say R(f). Since f∗ is
decreasing, if λ ∈ R(f), each If (λ) = {t > 0 : f∗(t) = λ} is either a singleton or
an interval. The case where If (λ) is an interval, can occur for at most countably
many values of λ, say W (f). We introduce the following sets, which will play an
important role later,

E(f) = Ω−
⋃

λ∈W (f)

Cf (λ) where Cf (λ) = {x ∈ Ω:|f(x)| = λ},

Ew,φ = {f ∈ Λw,φ − {0} : µ(supp(f)− E(f)) = 0}

and

∆w,φ = Ew,φ ∩ {f ∈ Λw,φ : µ(Ω− supp(f)) = 0 or m(supp(f∗)) = ∞}

where m is the Lebesgue measure and supp(f) is the support of the function f .
Let us now agree on some terminology. A function σ : (Ω, µ) → (S, ν) is called

a measure preserving transformation (m.p.t) if for each ν-measurable set I ⊂ S,
σ−1(I) is µ-measurable and µ(σ−1(I)) = ν(I). It is very important to emphasize
that any m.p.t. induce equimeasurability, that is, if g ∈ M0(S, ν) then |g| ◦ σ is
a µ-measurable function on Ω and |g| ◦ σ ∼ |g|.

If f ∈ Λw,φ, then limt→∞ f∗(t) = 0. In consequence, by Ryff Theorem (see [1])
there is a m.p.t. σ : supp(f) → supp(f∗) such that |f | = f∗ ◦ σ µ-a.e. on
supp(f). We denote such a σ by σf and we observe that σf satisfies µf (|f |) ≤ σf

on supp(f).



GATEAUX DIFFERENTIABILITY 33

2. A characterization of the smooth points in Λw,φ when φ′+(0) = 0

In this section, we obtain a characterization of smooth points in the Orlicz-Lorentz
space Λw,φ, when φ′+(0) = 0. More precisely, we prove that the set of smooth
points in this Λw,φ, is Ew,φ.

For the proof of the main theorem, we need some auxiliary lemmas.

Lemma 2.1. Let f, h ∈ Λw,φ, A := supp(h) − supp(f) and s a nonzero
real number be. If µ(A) > 0, then there is a m.p.t σf+sh such that |f + sh| =
(f + sh)∗ ◦ σf+sh µ-a.e on supp(f + sh) and σhχA

≤ σf+sh µ-a.e on A, where
σhχA

is given by Ryff in [1].

Proof. From [1] as aλ = µ(ChχA
(λ)) < ∞,

σhχA
(x) =

{
inf{t : x ∈ Eλ,t}+ µhχA

(λ) if λ ∈ W (hχA), x ∈ ChχA
(λ)

µhχA
(λ) otherwise

where {Eλ,t : 0 ≤ t ≤ aλ} is an increasing family of µ-measurable subsets (i.f.m.s)
of ChχA

(λ) such that µ(Eλ,t) = t for 0 ≤ t ≤ aλ.
For each λ ∈ R(f + sh) we define a function αλ : Cf+sh(λ) → If+sh(λ) in the

following way. If λ /∈ W (f+sh), then If+sh(λ) is a singleton and we define αλ(x) =
µf+sh(λ). Now suppose that λ ∈ W (f + sh). Since |s|W (hχA) ⊂ W (f + sh) then
λ /∈ |s|W (hχA) or there is a β ∈ W (hχA) such that λ = |s|β. In the first case,
let αλ be the m.p.t given in [1], proposition II.7.4. For the second case, we have
ChχA

(β) ⊂ Cf+sh(λ). We call D := Cf+sh(λ) − ChχA
(β) and kλ = µ(D). If

kλ = 0 then aβ = µ(Cf+sh(λ)). Here we consider {Eβ,t : 0 ≤ t ≤ aβ} an i.f.m.s
of Cf+sh(λ) with µ(Eβ,t) = t, 0 ≤ t ≤ aβ and the mapping αλ(x) = inf{t : x ∈
Eβ,t}+ µf+sh(λ) is a m.p.t Finally, if kλ > 0 let {Rλ,t : 0 ≤ t ≤ kλ} be an i.m.f.s
of D such that µ(Rλ,t) = t, 0 ≤ t ≤ kλ. Then

Uλ,t =
{

Eβ,t if 0 ≤ t ≤ aβ

Rt−aβ
∪ ChχA

(β) if aβ < t ≤ aβ + kλ

is an i.f.m.s of Cf+sh(λ) such that µ(Uλ,t) = t, 0 ≤ t ≤ aβ + kλ. So, αλ(x) =
inf{t : x ∈ Uβ,t}+ µf+sh(λ) is a m.p.t.

Now, we define σf+sh : supp(f + sh) → supp(f + sh)∗ by

σf+sh(x) = αλ(x), (λ ∈ R(f + sh), x ∈ Cf+sh(λ)) .

Clearly, σf+sh is a m.p.t and |f + sh| = (f + sh)∗ ◦ σf+sh µ-a.e on supp(f + sh).
On the other hand, for x ∈ A and λ = |h(x)|, we have x ∈ ChχA

(λ) ⊂ Cf+sh(|s|λ).
Since µshχA

≤ µf+sh, if λ ∈ W (hχA), we get σhχA
(x) ≤ inf{t : x ∈ Eλ,t} +

µf+sh(|s|λ) = σf+sh(x). If λ /∈ W (hχA), σhχA
(x) = µhχA

(λ) ≤ µf+sh(|s|λ) ≤
σf+sh(x). The proof is complete. �

Henceforth, we consider in this paper the m.p.t σf+sh given in lemma 2.1

Lemma 2.2. Let f, h ∈ Λw,φ. If f∗ is continuous at t0 then

lim
s→0

(f + sh)∗(t0) = f∗(t0).
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Proof. Let (sn)n∈N be an arbitrary sequence such that limn→∞ sn = 0. As
limn→∞ |f + snh| = |f |, it is well known that f∗(t) ≤ limn(f + snh)∗(t) for all
t ≥ 0.

Using a property of the decreasing rearrangement we obtain for m ∈ N and
t ≥ 0, (f + snh)∗(t) = (f + snh)∗

(
m

m+1 t + 1
m+1 t

)
≤ f∗

(
m

m+1 t
)

+ |sn|h∗
(

1
m+1 t

)
.

Therefore, we have limn(f + snh)∗(t) ≤ f∗
(

m
m+1 t

)
. As f∗ is continuous in t0,

taking limit for m →∞, we have

lim
n

(f + snh)∗(t0) ≤ f∗(t0).

The proof is complete. �

Lemma 2.3. Let A, {An}n∈N and {Bn}n∈N be subsets of Ω such that
µ(Bn − An) = 0 for all n ∈ N and A ⊂ limn Bn =: B0. If A0 := limn An then
µ(A) = µ(A ∩A0).

Proof. We note that

A = (A ∩A0) ∪ (A ∩ ∪∞n=1(Bn −An)) .(2.1)

In fact, if x ∈ A, there exists m ∈ N such that x ∈
⋂∞

n=m Bn. Suppose that
x /∈ A0 then there exists k ∈ N, k ≥ m such that x /∈ Ak. Thus x ∈ Bk −Ak. The
reciprocal inclusion is obvious, so (2.1) is true.
Since µ(Bn −An) = 0 for all n ∈ N, (2.1) implies that µ(A) = µ(A ∩A0). �

Lemma 2.4. Let f ∈ Λw,φ and (sn)n∈N be such that µ(E(f)) > 0 and
limn→∞ sn = 0. Then for all h ∈ Λw,φ,

lim
n→∞

σf+snh(x) = σf (x)

µ-a.e on E(f) ∩ supp(f).

Proof. Let A := E(f)∩{x ∈ supp(f) : |f(x)| = f∗◦σf (x)}, Bn := supp(f+snh)
and An := {x ∈ supp(f +snh) : |f(x)+snh(x)| = (f +snh)∗◦σf+snh(x)}. Clearly
A ⊂ limn Bn. Since |f + snh| = (f + snh)∗ ◦ σf+snh µ-a.e on supp(f + snh), we
have µ(Bn−An) = 0 for all n ∈ N. As µ(E(f)∩supp(f)) = µ(A), from lemma 2.3
we get

µ(E(f) ∩ supp(f)) = µ(A ∩ lim
n

An).

We will prove that limn→∞ σf+snh(x) = σf (x) for all x ∈ A ∩ limn An. Assume
that it is false, then there exist x ∈ A ∩ limn An, ε > 0 and a subsequence of
(sn)n∈N which we again denote by (sn)n∈N such that |σf+snh(x)− σf (x)| > ε.
Consider the following sets

N = {n ∈ N : σf+snh(x) > σf (x) + ε} and M = {n ∈ N : σf+snh(x) < σf (x)− ε}.

Clearly some of these sets must be infinite. Suppose that card(N )= ∞. Since the
points of noncontinuity of f∗ are at most countably, there exists 0 < δ < ε, such
that f∗ is continuous in σf (x) + δ.
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As x ∈ A, from lemma 2.2 we have

|f(x)| = f∗(σf (x)) > f∗(σf (x)+
δ

2
) ≥ f∗(σf (x)+ δ) = lim

n→∞
(f +snh)∗(σf (x)+ δ).

Since x ∈ limn An, for n large enough in N we obtain

|f(x) + snh(x)| = (f + snh)∗ ◦ σf+snh(x).

Therefore

lim
n→∞

(f + snh)∗(σf (x) + δ) ≥ lim
n→∞

(f + snh)∗(σf+snh(x)) = |f(x)|.

It is a contradiction, so the card(N ) must be finite.
We now suppose that card(M)= ∞. Then

|f(x)| = f∗(σf (x)) < f∗(σf (x)− ε

2
) ≤ f∗(σf (x)− ε) ≤ lim

n
(f + snh)∗(σf (x)− ε).

For n large enough in M, (f + snh)∗(σf (x)− ε) ≤ |f(x) + snh(x)|, and we obtain

lim
n

(f + snh)∗(σf (x)− ε) ≤ |f(x)|,

which is other contradiction, so the card(M) must be finite. The proof is complete.
�

Lemma 2.5. Let f, h ∈ Λw,φ be with µ(E(f)) > 0. If C := E(f) ∩ supp(f)
then

lim
s→0

∫
supp(f+sh)∩C

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ =

∫
C

w(σf )φ′(|f |) sg(f)hdµ

Proof. Let (sn)n∈N be an arbitrary sequence such that limn→∞ sn = 0 and let
(wn)n∈N be a sequence of µ-measurable functions on Ω defined by

wn(x) =
{

w(σf+snh(x)) if x ∈ supp(f + snh) ∩ C
0 otherwise.

Clearly∫
supp(f+snh)∩C

w(σf+snh)
φ(|f + snh|)− φ(|f |)

sn
dµ =

∫
C

wn
φ(|f + snh|)− φ(|f |)

sn
dµ.

Let H := {t ∈ supp(f∗) : w is continuous at t} and D := A ∩ limn An ∩ σ−1
f (H)

where A and An are the sets defined in lemma 2.4 Then µ(D) = µ(C). In fact,
by the proof of the lemma 2.4 we have µ(A ∩ limn An) = µ(C). On the other
hand, as supp(f)− σ−1

f (H) ⊂ σ−1
f (supp(f∗)−H) and µ(σ−1

f (supp(f∗)−H)) =
m(supp(f∗)−H) = 0, we get µ(D) = µ(A ∩ limn An).

So, if x ∈ D we get

lim
n→∞

wnφ(2(|f |+ |h|)) = w(σf )φ(2(|f |+ |h|)) on D

and

lim
n→∞

wn
φ(|f + snh|)− φ(|f |)

sn
= w(σf )φ′(|f |) sg(f)h on D.
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Moreover, for all n ∈ N such that 0 < |sn| ≤ 1,
∣∣∣wn

φ(|f+snh|)−φ(|f |)
sn

∣∣∣ ≤
wnφ(2(|f |+ |h|)). On the other hand,∫

supp(f)

w(σf )φ(2(|f |+ |h|))dµ ≤
∫ ∞

0

wφ(2(|f |+ |h|)∗)dt < ∞.(2.2)

Then by the generalized Lebesgue convergence theorem we have

lim
n→∞

∫
C

wn
φ(|f + snh|)− φ(|f |)

sn
dµ =

∫
C

w(σf )φ′(|f |) sg(f)hdµ.

�

Remark. We observe that the lemma 2.5 holds when φ′+(0) > 0.

Theorem 2.6. If f ∈ Ew,φ and h ∈ Λw,φ then

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Proof. Since

wφ(f∗) ∼ w(σf )φ(|f |) and wφ((f + sh)∗) ∼ w(σf+sh)φ(|f + sh|)

we have

Ψw,φ(f)=
∫

supp (f)

w(σf )φ(|f |)dµ, Ψw,φ(f + sh)=
∫

supp (f+sh)

w(σf+sh)φ(|f + sh|)dµ.

As (w(σf ))∗ = w in [0, µ(supp(f)), by the Hardy-Littlewood inequality (see [1])∫
supp (f)

w(σf )φ(|f + sh|)dµ ≤
∫ ∞

0

w(t)φ((f + sh)∗(t))dt.

In consequence, for all s > 0 we get

1
s

(∫
supp (f+sh)

w(σf+sh)φ(|f + sh|)dµ−
∫
supp (f)

w(σf )φ(|f + sh|)dµ

)
≥ 0.

So

Ψw,φ(f + sh)−Ψw,φ(f)
s

≥
∫
supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ.(2.3)

Analogously with f + sh to instead of f , we get for s > 0 the inequality

Ψw,φ(f + sh)−Ψw,φ(f)
s

≤
∫
supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ.

(2.4)
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Similarly for all s < 0∫
supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ ≤ Ψw,φ(f + sh)−Ψw,φ(f)

s

≤
∫

supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ.

(2.5)

For all s, 0 < |s| ≤ 1,
∣∣∣w(σf )φ(|f+sh|)−φ(|f |)

s

∣∣∣ ≤ w(σf )φ(2(|f |+ |h|)). Thus, from
(2.4) and the Lebesgue convergence theorem we get

lim
s→0

∫
supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ =

∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

We now consider A := supp(h)− supp(f) and the following functions

H(s) =
∫

supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ,

K(s) =
∫

A

w(σf+sh)
φ(|sh|)

s
dµ,

and

L(s) =
∫
supp (f+sh)∩E(f)∩supp (f)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ.

Since f ∈ Ew,φ we have H(s) = L(s) + K(s). In addition, by lemma 2.5 we get

lim
s→0

L(s) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

If µ(A) = 0, then K(s) = 0. In otherwise, from lemma 2.1, we get∣∣∣∣w(σf+sh)
φ(|sh|)

s

∣∣∣∣ ≤ w(σhχA
)
φ(|sh|)
|s|

µ-a.e on A.

Moreover, lims→0 w(σhχA
)φ(|sh|)

|s| = 0, w(σhχA
)φ(|sh|)

|s| ≤ w(σhχA
)φ(|h|) if |s| ≤ 1

and ∫
A

w(σhχA
)φ(|h|)dµ ≤ Ψw,φ(h) < ∞.

Thus by generalized Lebesgue convergence theorem, lims→0 K(s) = 0, which im-
plies that

lim
s→0

H(s) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Finally from (2.3), (2.4) and (2.5) we obtain

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

�
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Corollary 2.7. For all f ∈ Ew,φ,

Γ(f) = w(µf (|f |))φ′(|f |) sg(f)

where Γ denotes the Gateaux gradient operator.

Proof. Since σf (x) = µf (|f(x)|) on supp(f), the corollary is an immediate
consequence of theorem 2.6 �

Next, we establish the main result of this section.

Theorem 2.8. Suppose that w is a strictly decreasing function. f ∈ Λw,φ is
a smooth point if only if f ∈ Ew,φ.

Proof. The sufficient condition follows from theorem 2.6.
Suppose now that f /∈ Ew,φ. If f = 0 then for any h ∈ Λw,φ − {0}, γ+(f, h) 6=

γ−(f, h), so f is not a smooth point. Assume f 6= 0. Then there exists r > 0
such that µ(Cf (r)) = a > 0. As µ is nonatomic, there is a set A ⊂ Cf (r) such
that µ(A) = a

4 . We define h ∈ Λw,φ by h(x) = χA(x) sg(f(x)). For s > 0, we
call fs = f + sh and gs = f − sh. From the definition of h, for sufficiently small
positive s, we have |fs| = |f | + s|h| and |gs| = |f | − s|h|. Next, if s < r and
µf (r) < µf (r + s) + a

4 , we obtain

µfs(λ) =
{

µf (λ) + a
4 if r ≤ λ < r + s

µf (λ) otherwise

and

f∗s (t) =

 r + s if µf (r + s) ≤ t < µf (r + s) + a
4

f∗
(
t− a

4

)
if µf (r + s) + a

4 ≤ t < µf (r) + a
4

f∗(t) otherwise

Thus,

Ψw,φ(fs)−Ψw,φ(f)
s

=
∫ µf (r)

µf (r+s)

w(t)
φ(r + s)− φ(f∗(t))

s
dt

+
∫ µf (r+s)+ a

4

µf (r)

w(t)
φ(r + s)− φ(r)

s
dt

+
∫ µf (r)+ a

4

µf (r+s)+ a
4

w(t)
φ(f∗(t− a

4 ))− φ(r)
s

dt.

It is easy to prove that the first and third terms in the equality above tend to zero
as s → 0. A straightforward computation leads to

γ+(f, h) = φ′(r)
∫ µf (r)+ a

4

µf (r)

w(t)dt.
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Since φ(t) > 0 for t > 0, φ′(r) > 0. On the other hand, if s < r and µf (r − s)− a
4 <

µf (r) + a, we obtain, in a similar way,

Ψw,φ(gs)−Ψw,φ(f)
−s

=
∫ µf (r−s)− a

4

µf (r)+ 3
4 a

w(t)
φ(r)− φ(f∗(t + a

4 ))
s

dt

+
∫ µf (r)+a

µf (r−s)− a
4

w(t)
φ(r)− φ(r − s)

s
dt

+
∫ µf (r−s)

µf (r)+a

w(t)
φ(f∗(t))− φ(r − s)

s
dt.

Therefore

γ−(f, h) = φ′(r)
∫ µf (r)+a

µf (r)+ 3
4 a

w(t)dt.

Since w is strictly decreasing, γ−(f, h) < γ+(f, h). We conclude that f is not
a smooth point. �

Remark. We observe that the necessary condition of theorem 2.8 holds when
φ′+(0) > 0.

3. A characterization of the smooth points in Λw,φ when φ′+(0) > 0

In this section we give a characterization of smooth points in Orlicz-Lorentz space
Λw,φ when φ′+(0) > 0. We will use a similar technical to the developed in the
section two. We assume here that lim

t→∞
w(t) = 0.

We begin with two auxiliary lemmas.

Lemma 3.1. Let f, h ∈ Λw,φ. If µf is continuous at λ then

lim
s→0

µf+sh(λ) = µf (λ).

Proof. Let s be such that 0 < |s| < 1. Using properties of the distribution
function we have

µf+sh(λ) = µf+sh

(
(1−

√
|s|)λ +

√
|s|λ

)
≤ µf

(
(1−

√
|s|)λ

)
+ µh

(√
|s|
|s|

λ

)
,

(3.1)

lims→0 µh

(√
|s|
|s| λ

)
= 0 and µf (λ) ≤ lims µf+sh(λ). In addition, by hypotheses,

we have lims→0 µf ((1−
√
|s|)λ) = µf (λ). From (3.1), lims µf+sh(λ) ≤ µf (λ). The

proof follows immediately. �

Lemma 3.2. Let f ∈ Ew,φ and h ∈ Λw,φ be. If m(supp(f∗)) = ∞ then

lim
s→0

σf+sh(x) = ∞ for all x ∈ supp(h)− supp(f).
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Proof. If supp(h)− supp(f) = ∅, it is trivial. In either case, let x ∈ supp(h)−
supp(f). Given M > 0, since m(supp(f∗)) = ∞ we can choice s1 such that
µf (|s1h(x)|) > M . As f ∈ Ew,φ, µf is continuous. Then by lemma 3.1
lims→0 µf+sh(|s1h(x)|) = µf (|s1h(x)|). Thus µf+sh(|s1h(x)|) > M for sufficiently
small s. It follows that M < µf+sh(|sh(x)|) for sufficiently small s. Finally, for
the last remark in the introduction we have µf+sh(|sh(x)|) ≤ σf+sh(x). The proof
is complete. �

Theorem 3.3. If f ∈ ∆w,φ and h ∈ Λw,φ then

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Proof. We proceed analogously to the proof of theorem 2.6. According to the
remark of lemma 2.5, we only need to prove that lims→0 K(s) = 0. Let A :=
supp(h) − supp(f). If µ(Ω − supp(f)) = 0 then µ(A) = 0. Therefore K(s) ≡ 0.
Suppose that µ(A) > 0 and m(supp(f∗)) = ∞. From lemma 2.1, σhχA

(x) ≤
σf+sh(x) for all x ∈ A. In addition,

∫
A

w(σhχA
)φ(|h|)dµ ≤ Ψw,φ(h) < ∞. There-

fore by lemma 3.2 and the Lebesgue convergence theorem, lims→0 K(s) = 0. �

Corollary 3.4. For all f ∈ ∆w,φ,

Γ(f) = w(µf (|f |))φ′(|f |) sg(f)

where Γ denotes the Gateaux gradient operator.

Theorem 3.5. Suppose that w is a strictly decreasing function. f ∈ Λw,φ is a
smooth point if only if f ∈ ∆w,φ.

Proof. The sufficient condition is immediate consequence of theorem 3.3.
Assume that f /∈ ∆w,φ. If f /∈ Ew,φ then f is not a smooth point because the

remark of theorem 2.8. We now suppose that f ∈ Ew,φ, so µ(Ω − supp(f)) > 0
and m(supp(f∗)) < ∞. Take a set A ⊂ Ω− supp(f) with 0 < µ(A) < ∞ and let
h(x) = χ

A
(x). A straightforward computation leads to

lim
s→0±

Ψw,φ(f + sh)−Ψw,φ(f)
s

= ±φ′+(0)
∫ µf (0)+µ(A)

µf (0)

w(t)dt(3.2)

i.e., γ+(f, h) 6= γ−(f, h). �

Remark. It is well known that Ew,φ and ∆w,φ are dense sets in the Lorentz
space because the points of Gateaux-differentiability of the norm in a separable
space form always a dense set.

4. An example

In [2], the authors have established the following corollary for 1 ≤ q < ∞ :

Corollary. Let f and h be any elements in Lw,q, Then

lim
s↓0

‖f + sh‖q − ‖f‖q

s
= lim

s↑0

‖f + sh‖q − ‖f‖q

s
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if and only if for all λ > 0, µ(|f | = λ) > 0 implies h · sg(f) is constant on |f |−1(λ).
However, next we give an example which shows that the Corollary does not

hold for q = 1.
Example. Let f ∈ Lw,1(0,∞) be defined by f(x) = (1−x)χ[0,1](x). According

to corollary 3, f should be a smooth point, however f /∈ ∆p,1.
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H. H. Cuenya, Departamento de Matemática. Facultad de Ciencias Exactas, F́ısico Qúımica
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