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WEIGHTED ENDPOINT ESTIMATES FOR MULTILINEAR
LITTLEWOOD-PALEY OPERATORS

LIU LANZHE

ABSTRACT. In this paper, we prove weighted endpoint estimates for multilinear
Littlewood-Paley operators.

1. INTRODUCTION AND RESULTS

Let ¥ be a fixed function on R™ which satisfies the following properties:

(1) [¢(x)dz =0,

(2) [(@)] < O+ [af)~+Y,

(3) [W(z +y) — (@) < Clyl(L + |z[)~ "+ when 2|y| < |z[;
Let m be a positive integer and A be a function on R™. The multilinear Littlewood-
Paley operator is defined by

1/2
e dyd
gﬁ‘(f)(m):[/ Lo (=) Hoear| e

where

an+1(A; €z, Z)

n = 2™

FA(f)(a.y) = / ey — 2)f(2)dz,

Ra(diz,y) = Aw) = 3 D" A —y)°,

la|<m

and Y (z) = t~™p(x/t) for t > 0. We denote by F(f)(y) = f = ¢:(y). We also

define
9.(f)() = <//R+ (M)nuﬂ(f)(y)?jffgm,

which is the Littlewood-Paley operator (see [17]).
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1/2
Let H be the Hilbert space H = {h Rl = (f S+ |h(t)|2dydt/t"“) <oo}.
+
Then for each fixed z € R", FA(f)(z,y) may be viewed as a mapping from (0, +00)
to H, and it is clear that

)

n/2
) = ||(t+|t_y) F ()

nu/2
5u(N@) = H(mt—y> F(H)

We also consider the variant of g;‘, which is defined by

T = [ []. (M)W|FtA<f><x,y>|2fi’ffr/2, p>1

A @y = [ Lot A2 e

R T —z™

and

Qa1 (A;2,2) = Rip(As2,2) — Y D*A()(x — 2)°.

|a|=m

Note that when m = 0, gf is just the commutator of Littlewood-Paley oper-
ator (see [1], [14], [15]). It is well known that multilinear operators, as an
extension of commutators, are of great interest in harmonic analysis and have
been widely studied by many authors (see [4] — [8], [12], [13]). In [11], [16],
the endpoint boundedness properties of commutators generated by the Calderon-
Zygmund operator and BMO functions are obtained. The main purpose of this
paper is to study the weighted endpoint boundedness of the multilinear Littlewood-
Paley operators. Throughout this paper, M(f) will denote the Hardy-Littlewood
maximal function of f, @ will denote a cube of R™ with side parallel to the
axes. For a cube @) and any locally integral function f on R™, we denote that

1(@) = Jo f@)dr, Jo = 1QI™" [ f(@)dz and F#(2) = sup Q1 [ |y)~ faldy

Moreover, for a weight functions w € Ay (see [10]), f is said to belong BMO(w)
if f# € L>*(w) and define ||f||pmo(w) = |[f# ||z, if w = 1, we denote that
BMO(R™) = BMO(w). Also, we give the concepts of atomic and weighted H*
space. A function a is called a H'(w) atom if there exists a cube @ such that
a is supported on @, [|al| e (w) < w(@)~! and [a(z)dr = 0. It is well known
that, for w € Ay, the weighted Hardy space H'(w) has the atomic decomposition
characterization (see [2]).
We shall prove the following theorems in Section 3.

Theorem 1. Let D*A € BMO(R") for |a] = m and w € Ay. Then gf is
bounded from L*>°(w) to BMO(w).
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Theorem 2. Let D*A € BMO(R") for |a| = m and w € Ay. Then g is
bounded from H'(w) to L*(w).

Theorem 3. Let D*A € BMO(R") for |a| = m and w € Ay. Then gt is
bounded from H'(w) to weak L (w).

Theorem 4. Let D*A € BMO(R") for || =m and w € A;.
(i) If for any H'(w)-atom a supported on certain cube Q and u € 3Q \ 2Q,

there is
t nu/2 1 (x—u)a/
PR T — 2)DYA(2)a(2)dz|w(z)dz < C,
/(4Q)c <t+|xy|) Z al |$7u‘m Q’(/}t(y ) ( ) ( ) ( ) >

|a]=m

then g} is bounded from H'(w) to L'(w);
(i) If for any cube Q and u € 3Q \ 2Q, there is

| >/ S (P4~ (")

t+ |z -y

|a]=m

/ th(y—z)f(z)dz w(z)dx
(4Q)°

u— 2™

< Cllfllze )
then g} is bounded from L>(w) to BMO(w).
Remark. In general, g7 is not bounded from H'(w) to L'(w).

2. SOME LEMMAS

We begin with two preliminary lemmas.

Lemma 1. (see [7].) Let A be a function on R™ and D*A € Li(R"™) for
|| =m and some g > n. Then

1/q
1
ratr s <0 =" 2 (g P Ae)
’ z,y

la]=m
where Q(x, y) is the cube centered at x and having side length 5\/n|z — y|.

Lemma 2. Let w € A, 1 < p< ool <r <oo, 1/g=1/p+1/r and
D*A € BMO(R"™) for |a| =m. Then g,‘:‘ is bounded from LP(w) to L9(w), that is

g (Dl ey < C Z [1D* AllBmol| f[|Lr (w)-

la]=m



58 LIU LANZHE

Proof. By Minkowski inequality and the condition of v, we have
g (f)()

n 1/2
|f()]|Rm+1(A; 2, 2)| / ) t * dydt
< - d
< [ e =P () ) @
o o HEIRwa(4z,2) (/ [ —
= e moam W A+ Jy— 26T
ny dydt 1/2dz
t+|x—y| titn
<

f R [/f (. (=)

dy 1/2
N y—z|>2"+2> tdt} az

t—n/ ( t )n# dy
re \tH|z—yl) (t+|y—z[)*?

noting that

1 1
M{— <Co
< oM (G ) @ < C g e
and
o tdt o
| e = e
we obtain
o 1/2
A < £l ano( vt ;
9u (f)(x) < C - ‘.Z‘—Z‘m|Rm+1( ,:E,Z)‘ 0 (t+|x—z|)2”+2 <
_ C/ [f B (452, 2)]
" |z — 2|t ’
thus, the lemma follows from [8] [9]. O

3. PROOF OF THEOREMS

Proof of Theorem 1. It is only to prove that there exists a constant Cg such
that

1

@) L 19)@) — Calwte)ds < Clflli o

holds for any cube Q. Fix a cube @Q = Q(zo,1). Let ~Q = 5/nQ and

Az) = A(z) — > i(DO‘A) sx®, then R, (A;z,y) = Rn(A;z,y) and D*A =
la]=m

DA — (D*A)g for |a| = m. We write FA(f) = FA(f1) + FA(f,) for f1 = fxo
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and fo = fXRn\Qv then
w0 L 19E) — gl o)

-l \|<m_m>““/2FtA<f><x,y>||\

: nu/ 2)dzx
) el )

1 A
L /Q g2 (f1) @) (x)da

w(Q)
n np/2 "
(t—|—|x—y> FE(f2)(x,y)

- (t)WFﬂfz)(xo,y)

t+ |zo — ¥

IN

L1
w(Q) Q

w(z)dx

I(z) + II(x).

99

Now, let us estimate I and II. First, by the L> boundedness of g;‘ (Lemma 2),

we gain
L < Nl ()l uy < Ol oo -

To estimate I1, we write

t /2 A t np/2 .
(t-I—lfU—yl) F(f2) (@) = (t—l—lxo—y> FP(f2)(@o,y)

(=) [ - e = Ratin e
+ ( t )num/wmm(;l;x,z)—Rm(fl;xmz)]dz

Ui(y — 2) R (A; 30, 2) f2(2)

R 02"

dz

M=) )™
_|_ - e
t+ |z —yl t+]xzo —yl

-3 o ==

|al=m
( ¢ )nu/2 (20 — 2)®
t+ |zo — yl |lzg — 2™

= II{(z) + II5(x) + IT(2) + I1}(z),

lzo — 2|™

—_ 1

Ve(y — 2) D A(2) fa(2)dz
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Note that |z — z| ~ |z — 2| for € Q and z € R*\Q, similar to the proof of
Lemma 2 and by Lemma 1, we have

1 t X wlx)ax
@)/Qllﬂl( Jlw(z)d

¢ = 2ollf @] i 1 ) (e
= w(Q) /Q (/Rn\Q |z — z|ntm+l |Ry(A; 2, 2)|d > (v)d

¢ / °°/ @ = wollf G, 5
R )] o [ R (A 2, 2)|d2 | w(z)de

U)(Q) Q <kZO 2k+1Q\2k |x_z|n+m+1| ( )‘ ( )
< Ci s Y D Alswo( [ 171
> 2kl n+m+1 ot BMO P15 z)ldz
< > I Allpyollf Il Y k27

la|=m k=0

< € > D Allpyiollf e wy;

|a]=m

For IT4(z), by the formula (see [7]):

Rm(A;x,z)—Rm(;l; Z0,2) = R A x, o)+ Z 5' —18/( D Az, 2 )(m—xo)ﬂ

0<|Bl<m
and Lemma 1, we get
|Rm(A;2,2) — Rp(A;x0,2)|
< C Y ID*Allyo(lz —zo™ + D w0 — 2™ e — w7,
la|=m 0<|Bl<m
thus, for z € Q,
IT15(2)]|
< C M|Rm(/~l;m,z) — R (A; g, 2)|dz=

e T — z|mt

|x — xo|™ + > o |0 — 2|18l — o |1P
¢ 3 1Dl [ olols a(2)ldz

IN

jal= o — 2
< C DA d
<oyl ||BMOZ i ., )
< C Z ||D°“A||BMo||f||L<><>(w)231624€m

|a]=m k=1
< C Z [[D* AllBMmo | f1] Lo (w);

loe|=m
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For IIi(x), by the inequality: a'/2—b'/2 < (a—b)'/2 for a >b >0, we obtain,
similar to the estimate of Lemma 2 and I 11,

T T3()]|
2w — o2 (y — 2)| f2(2)] T * dydt v
< C / | R (A; g, 2)] dz
e\ JR7H1 (t + |z — y|)(ntD/2| 25 — 2™ tn+l

< C’/ |f2(z)\|l’fx0\1/2|Rm(/~1;xo,z)\

|zo — 2|™

1/2
(o o)™ )
pa \tHle—yl) Ty — )

| fo(2) ||z — 20| Y/2| Ry (A; mg, )| e dt 1/2
= ¢ — e @
n |z — 2] o (t+l]z—2])
|f2(2) ||z = wo| /2| R (A; w0, 2)|
< C d
B R |zg — 2|mHnt1/2 ¢
o kIY/2(2k7) N
< CY G 3 Al Ve
k=0
< C ) ||D°YA||BMO||f||Lo<>(w)Z:ka/2
la|=m k=0
< C ) D AllmolIfl Lo (w)
|a]=m

For IT{(z), similar to the estimates of IT{(z) and II%(z), we have

_ — xall/2
I < C [z =20l Jo = ol DYA(z d
I < o f (G e T i ali e
< C Y ID%Allsnol| fllpew) Y k27F +2772)
|a]=m k=0
< C Y IDAllsymollfl L (w)
|a]=m
Combining these estimates, we complete the proof of Theorem 1. O

Proof of Theorem 2. It suffices to show that there exists a constant C' > 0 such
that for every Hl( )-atom a (that is that a satisfies: suppa C Q = Q(zo,7),
la|]Loo (w) < w(Q)™ I and J a(y)dy = 0 (see [8])), we have

||§,‘f(a)||L1(w) <C.
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We write

i (a)(z)w(z)dr = G2 (a)(2)w(z)dz = .
| @@ [/|+/|] 5 @@y = T + 17

For J, by the following equality

1

Qm+1(A;2,y) = Rny1(Ajz,y) — Z 5(33 —y)*(D"A(z) — D" A(y)),
la|l=m
we have, similar to the proof of Lemma 2,
. D*A(x) — D*A(y
G0 < gi@@) + 0 Y /' 2=ty

lee|=
thus, gf} is L*°-bounded by Lemma 2 and [3]. We see that
J <0G (@) L (uyw(2Q) < Cllal| L= wyw(Q) < C.

To obtain the estimate of .J.J, we denote that A(z) = A@) =3 a)=m L(D>A)spxe.

Then Qun(A4;z,y) = Qm(A;x,y). We write, by the vanishing moment of a and
Q1 (Ai2,9) = Rn(Ai2,9) — 3 oy 21(@ — 1)* DO A(2), for @ € (2Q)°,

F'(a)

n ‘(I}—Z|m

wt m(As,2) Uiy — 2)D*A(2)(z — 2)*
/ |x—z\7 a(z) 2 a'/ a(z)dz

|z — 2™ |z — o™

S / [1/% (x—2)"  h(y —o)(z — T/o)a} D*A(z)a(z)dz,

x—z\m |z — zo|™

/ [wt@Z>Rm(fi;x’z>—“’t(y%) M;I’IO)LWZ

laj=m

thus, similar to the proof of IT in Theorem 1, we obtain

1F (@)l
QU

< C w(0) (> ID*Allpmola — zo| ™! + |z — zo| "D A(=)]),

|a]=m

note that if w € A;, then |EQQ2|) wl% < C for all cubes Q1,Q2 with Q1 C @-.

Thus, by Holder’ inequality and the reverse of Holder’ inequality for w € Aj,
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taking p > 1 and 1/p + 1/p’ = 1, we obtain

2k+1
JJ < C Y |ID*Allsuo 22_ <w|Q| M)

|a]=m

7k: |Q| 1 af p Y
+C Z Z <|2k+1Q| 2k+1Q|D A(xz)] d:c>

=m k=1
1 , 1/17
| = w(z)P dz
(|2k+1Q| 2k+1Q (@) )

o - 2*1Q) Q|
< C Z ||D AHBMOZk2 (2]“+1Q| ( )> SC»

| =

which together with the estimate for J yields the desired result. This finishes the
proof of Theorem 2. O

Proof of Theorem 3. By the equality

1
al

R77L+1(A; z, y) = Qm-{-l(A; z, Z/) + Z (1‘ - y)a(DaA(x) - DaA(y))

|a|=m

and similar to the proof of Lemma 2, we get

PH@ <N +C Y /”DQA AW ) ay,

n
o yl

by Theorem 1 and 2 with [3], we obtain

w({z € R": g/ (f)(x) > A})
< w({z e R": g} (f)(z) > /\/2})

D~ A
fulfre R Y &ﬁ 0= 20 lay > o)
jl= Y
< Cllflla w) /A
This completes the proof of Theorem 3. O

Proof of Theorem 4. (i) It suffices to show that there exists a constant C' > 0
such that for every H'(w)-atom a with suppa C Q = Q(z¢,d), there is

||9,‘f(a)||L1(w) <C.
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Let A(z) = A(z) — 3 %(DOZA)Q.Z'O‘. We write, by the vanishing moment of a
|a]=m

and for u € 3Q \ 2Q,

FtA(a)(‘rvy)
= xaQ(@)F/(a)(x,

+ X(1@)( /

Xty Zai [ [ - e v - 902 aatse:

|z —z|™ |z

“X@Qr (@) Y 1. i (@~ )

|z = z[™ |z — uf™

A x,2)(y — 2) Rm(A;x’U)wt(y - U)] a(z)dz

|a]=m
then
gp (a)(x)
¢ nu/2 .
= <t+|x—y|> Ff(a)(z,y)
n np/2 "
< xaq() (t—I—lfv—yl) Ff (a)(z,y)
t ni/2 Rm(/i; x, 2)0e(y — 2)
+X(4Q)c(33) <t+x—y|> /n |5L‘—Z|m
_ Ru(Asz u)inly - u)] a(2)dz
|z — ™
t ni/2 1 (x—2)* (x—u)®
+ X(4Q)e (5[5) (t—i—m—y|> lalz::m al Rn |:|l‘ _ Z|m - |$ _ u|m:|
“thi(y — 2) D A(2)a(z)dz||
t /2 1 (z — )"
+ X (1) (x) <t—|—$c—y|> Ialz_m o e ulmwt(y — 2)a(z)dz

= Li(x)+ Lo(x) + Ls(x,u) + La(z, u).
By the L*(w)-boundedness of gl‘?7 we get

/ Li(@)w(z)de = / g2 (@) (@) (e)de < [|g (@)~ (oyw(4Q)
R 4Q
Cllal| o wyw(Q) < C;

IN
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Similar to the proof of Theorem 1, we obtain

/n Ly(z)w(z)de < C
and
/n Li(z,vw)w(z)dz < C.

Thus, using the condition of L4(z,u), we obtain
/ gl‘?(a)(x)w(z)daz <C.

(ii) For any cube Q = Q(zo,d), let A(z) = A(z) — 3 %(DO‘A)Q{L‘&. We

|a]=m

write, for f = fxaq + fxuq)y: = fi + f2 and u € 3Q \ 2Q,

F{A () ()

= By [ Eedin

re |z —2z|™

Uiy — 2) fa(2)dz

- X a0ma) - o) [ [EZI Ay - s
|al=m
- ¥ 0w - (0°a)g) [ = - )l

la]=m

then

(@) — g, <R7"(A)f> (o)
¢ np/2 -
(M) F (f)(%y)
< t e FA
< H(Hl_y) A()y)

wo — ™
t ni/2 Rm (A7 Zo, )
- ’ (Fro=w) F( oo — 72 ) (%)
t ni/2 Rm (A~a xo, )
G F( e — - 2] ()
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t+ |z — vyl

< H(t)/ A ()

¢ i Rm(A;l’,Z)
+ /Rn (t—|—|1‘—y|> th(y—z)
t nu/2 Rm(A;ﬁro,Z)
- (t + |zo — y> |z — 2|™ Yi(zo — 2) | fa(2)dz
t nu/2
|| (=)
1 o o <y_ z)a (u_ Z)O‘:|
N = Alz)— A - . )
Ialz_ma!(D (CC) (D >Q)/Rn|:|y2’|m lu— z[™ (0 (y Z)fg(z) >
t np/2
i)

¥ 04w - 0a)) [ =y - ) alela:

|a]=m

= Mi(z) + Ma(z) + Ms(z,u) + My(z,u).

By the L*(w)-boundedness of gf}, we get
/ My (z)w(z)dz < |7 (Foll Lo ) < ClFIloo (w):
Similar to the proof of Theorem 1, we obtain
/ My(@)w(@)dz < C|[ ]|~

and

/ M3 x, u dl‘ < CHf||L°°(w)

Thus, using the condition of My (z,u), we obtain

@ /Q (@) — (R(A)f> (20)

w(zx)dr < C o< (w) -
‘xO_"m ( ) = Hf”L (w)
This completes the proof of Theorem 4. O
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