ON THE HEREDITARY k-BUCHSBAUM PROPERTY FOR IDEALS I AND in (I)

E. BENJAMIN and H. BRESINSKY

1. InTroduction

For undefined subsequent terminology, we refer to [5]. Throughout $I \subseteq K\left[x_{0}, \ldots, x_{n}\right]=R_{n+1}$ will be a homogeneous polynomial ideal in the polynomial ring R_{n+1} over an infinite field K. Let $\mathfrak{m}=\left(x_{0}, \ldots, x_{n}\right)$. $Y=\left\{y_{0}, \ldots, y_{d}\right\}$ is a system of parameters (s.o.p) for I if $\operatorname{dim}(I)=\operatorname{Krull}-\operatorname{dim}(I)=d+1$ and (I, Y) is \mathfrak{m}-primary. For $k \geq 0, Y$ is said to be an \mathfrak{m}^{k}-weak sequence for I if
(i) $I: y_{0} \subseteq I: \mathfrak{m}^{k}$,
(ii) $\left(I, y_{0}, \ldots, y_{i-1}\right): y_{i} \subseteq\left(I, y_{0}, \ldots, y_{i-1}\right): \mathfrak{m}^{k}, 1 \leq i \leq d$. (For $k=0, \mathfrak{m}^{0}=R_{n+1}$.)
Definition 1.1. I is said to be k-Buchsbaum (k-Bbm), if for every s.o.p $Y=\left\{y_{0}, \ldots, y_{d}\right\} \subseteq \mathfrak{m}^{2 k}$ for I, the system Y is an \mathfrak{m}^{k}-weak sequence for I. If $k=0$ then I is also said to be Cohen-Macaulay or perfect.

Remark 1.2. It suffices for a single s.o.p to be as in Definition 1.1. For this and other equivalent definitions see [6] and the fundamental paper by Trung [11].

Definition 1.3. Let $T_{n+1} \subseteq R_{n+1}$ be the set of terms (i.e. monomials with coefficient 1). An admissible term order $<$ on T_{n+1} satisfies:
(i) $1 \leq t, \quad t \in T_{n+1}$,

Key words and phrases. Admissible term order, homogeneous polynomial ideal, Gröbner basis, initial ideal, k-Buchsbaum property.
(ii) $t_{1}<t_{2}$ implies $t t_{1}<t t_{2}, t \in T_{n+1}$.

From now on all term orders will be admissible. For $0 \neq p(x) \in R_{n+1}, \operatorname{in}(p(x))$ is the largest nonzero term of $p(x)$. For the ideal $I \subseteq R_{n+1}, \operatorname{in}(I)$ is the ideal generated by all $\operatorname{in}(p(x)), p(x) \in I$.

Definition 1.4. A Gröbner basis $G=\left\{G_{1}, \ldots, G_{s}\right\} \subseteq I$ for I is a generating set for I such that (in $\left(G_{1}\right), \ldots$, $\left.\operatorname{in}\left(G_{s}\right)\right)=\operatorname{in}(I)$.

Remark 1.5. For an algorithm to obtain G from a generating set of I see [4] or [2].
By a now classical result in [1], for any term order $<$, in (I) perfect implies I perfect and if $<$ is the reverse lexicographical term order, then the converse is obtained if $x_{0}<x_{1}<\ldots x_{d}$ are the smallest linear terms and form a s.o.p for I. For almost all term orders the converse implication fails (see the discussion in [3]). However as a generalization of the first implication, it was shown in [7], that if in (I) is k_{1} - Bbm , then, for any term order $<, I$ is k_{2} - Bbm for some k_{2}. The main purpose of this paper is to investigate how k_{1} and k_{2} are related, in particular if for a fixed k_{1}, k_{2} can grow without bound.

This can indeed happen; in general "almost anything" can occur and thus perfect ideals I are once again true to their nomenclature. In conclusion we discuss some upper bounds for k_{2} and its relation to the multiplicity $e\left(R_{n+1} / I\right)$ defined by the Hilbert polynomial. In the sequel $k_{i}, i \in\{1,2\}$ will denote strict Buchsbaumness, i.e. k_{i} is minimal.

2. Comparisons of k_{1} And k_{2}

Our examples and constructions are mostly for ideals I with $\operatorname{dim}(I)=1$. We start with an easy but useful Lemma.

Lemma 2.1. Assume $I \subseteq R_{n+1}$ is an ideal, $\mathfrak{J} \subseteq R_{n+1}$ is a monomial ideal and $<$ a term order. Then $i n(I: \mathfrak{J}) \subseteq i n(I): \mathfrak{J}$.

Proof. Let $F \in I: \mathfrak{J}, m=\operatorname{in}(F) \in \operatorname{in}(I: \mathfrak{J}), \bar{m} \in \mathfrak{J}$, a monomial. Since $\operatorname{in}(\bar{m})=\bar{m}$, we have $\bar{m} m=\operatorname{in}(\bar{m} F) \in$ $\operatorname{in}(I)$, thus $m \in \operatorname{in}(I): \bar{m}$. From this the claim follows.

We first give an example such that $k_{1}-k_{2}$ can become arbitrarily large.
Example 2.2. Let $I(r)=\left(x_{0} x_{1}^{r}-x_{2}^{r+1}, x_{0}^{r}\right) \subseteq R_{3}, r \geq 2, x_{1}>x_{2}, x_{0}>x_{2}$. Then $\operatorname{in}(I(r))=\left(x_{0} x_{1}^{r}, x_{0}^{r}, x_{0}^{r-1} x_{2}^{r+1}, x_{0}^{r-2} x_{2}^{2(r+1)}, \ldots, x_{0} x_{2}^{(r-1)(r+1)}, x_{2}^{r(r+1)}\right)$ and $\left\{x_{1}\right\}$ is a s.o.p for $I(r)$ and $\operatorname{in}(I(r))$. Similarly, $\operatorname{in}(I(r)): x_{1}^{r}=\operatorname{in}(I(r)): x_{1}^{r+1}, r$ minimal, $\operatorname{in}(I(r)): x_{1}^{r}=\left(x_{0}, x_{2}^{r(r+1)}\right) . x_{0}\left(x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}\right) \in$ $\operatorname{in}(I(r))$ iff $\alpha_{0} \geq r-1$ or $\alpha_{1} \geq r$ or $\alpha_{0}+1 \geq r-j$ and $\alpha_{2} \geq j(r+1), 1 \leq j \leq r-1$. Therefore $\operatorname{in}(I(r))$ is k_{1} - Bbm , $r^{2}-1 \leq k_{1} \leq(r-1)+(r)+\left(r^{2}-1\right)-2=r^{2}+2 r-4$. But $I(r)$ is k_{2} - Bbm with $k_{2}=0$, which is immediate by using reverse lexicographical term order with x_{1} the smallest linear term (see [5, Proposition 15.12]). For $r=1, k_{1}=k_{2}=0$.

Proposition 2.3. For an ideal $I \subseteq R_{2}=K\left[x_{0}, x_{1}\right]$ assume:
(i) $x_{1}>x_{0}$ for some term order,
(ii) without loss of generality (since K is infinite), $\left\{x_{1}\right\}$ is a s.o.p for I and $\operatorname{in}(I)$,
(iii) $\operatorname{in}(I)$ is $1-B b m$. Then I is $0-B b m$ or $1-B b m$

Proof. By hypothesis

$$
\operatorname{in}(I): \mathfrak{m} \subseteq \operatorname{in}(I): x_{1} \subseteq \operatorname{in}(I): x_{1}^{2} \subseteq \operatorname{in}(I): \mathfrak{m},
$$

thus in $(I): x_{1}=\operatorname{in}(I): x_{1}^{2}=\operatorname{in}(I): \mathfrak{m}$. Let

$$
F=x_{1}^{n-r} x_{0}^{r}+a_{r+1} x_{1}^{n-r-1} x_{0}^{r+1}+\cdots+a_{n} x_{0}^{n} \in I: x_{1}, \quad 0 \leq r \leq n .
$$

Then $x_{1}^{n-r} x_{0}^{r} \in \operatorname{in}\left(I: x_{1}\right) \subseteq \operatorname{in}(I): x_{1}$. Thus

$$
x_{0}^{r} \in \operatorname{in}(I): x_{1}^{n-r+1}=\operatorname{in}(I): x_{1},
$$

from which $x_{1} x_{0}^{r} \in \operatorname{in}(I)$. Therefore either
a) $F \equiv 0 \bmod I$ or
b) $F \equiv A x_{0}^{n} \bmod I, A \neq 0(\equiv$ denotes reduction of F by a Gröbner basis of $I)$.

Assume b). Since $I \subseteq I: x_{1}$ and $F \in I: x_{1}, x_{0}^{n} \in I: x_{1}$, we get

$$
x_{0}^{n} \in \operatorname{in}\left(I: x_{1}\right) \subseteq \operatorname{in}(I): x_{1}=\operatorname{in}(I): \mathfrak{m},
$$

it follows that $x_{0}^{n+1} \in \operatorname{in}(I)$ (otherwise $x_{0}^{n+1} \notin(I)$). Hence $x_{0} F \in I$, thus $I: x_{1} \subseteq I: \mathfrak{m}$.
Next let $F=x_{1}^{n-r} x_{0}^{r}+a_{r-1} x_{1}^{n-r-1} x_{0}^{r+1}+\ldots+a_{n} x_{0}^{n} \in I: x_{1}^{2}$. As before $x_{1} x_{0}^{r} \in \operatorname{in}(I)$ and either a) $F \equiv 0$ $\bmod I$ or b) $F \equiv A x_{0}^{n} \bmod I, \quad A \neq 0$, and $x_{0}^{n+1} \in I$. In both cases $x_{1} F \in I\left(\right.$ for b)) since $x_{1} x_{0}^{r} \in \operatorname{in}(I)$ and $x_{o}^{n+1} \in I$), hence $I: x_{1}^{2} \subseteq I: x_{1}$, thus I is either 0 -Bbm or 1 -Bbm.

We obtain next a family of ideals $I(n), n \geq 2$ such that:
(1) $\{z\}$ is a s.o.p for $I(n)$ and $\operatorname{in}(I(n))$.
(2) $\operatorname{in}(I(n)): z=\operatorname{in}(I(n)): z^{2}=\operatorname{in}(I(n)): \mathfrak{m}$, thus $\operatorname{in}(I(n))$ is 1-Bbm (even Bbm by Proposition 2.12, Chapter I in [10]).
(3) $I(n): z=I(n): z^{2} \subseteq I(n): \mathfrak{m}^{n}, n$ minimal, thus $I(n)$ is strictly n - Bbm .

We assume $x_{1}>x_{2}>\ldots>x_{n}$ and for notational convenience we set $z=x_{0} . s$-polynomials are the successor polynomials of a Gröbner algorithm. m or \bar{m} will be monomials, $\partial_{x_{k}}(m)$ is the degree of m with respect to x_{k}, $\partial(m)$ its degree.

Theorem 2.4. Let

$$
I(n)=\left(z\left(x_{1}+\ldots+x_{n}\right), M_{1}(n), \ldots, M_{h}(n), \ldots, M_{n}(n)\right),
$$

be an ideal of R_{n+1}, where

$$
M_{h}(n)=\left\{m \in R_{n+1}: z / m, x_{j} \nmid m, 1 \leq j \leq h-1, x_{h} \mid m, \partial(m)=h+1\right\}
$$

for $1 \leq h \leq n$. Then $I(n)$ satisfies the conditions (1), (2), and (3).

Proof. By construction of $I(n)$, the (1) is obtained. If $m \in \operatorname{in}(I(n))$, then $z^{2} \nmid m$, thus $\operatorname{in}(I(n)): z=\operatorname{in}(I(n)): z^{2}$. $\operatorname{in}(I(n)): z=\operatorname{in}(I(n)): \mathfrak{m}$ iff $m \in \operatorname{in}(I(n)): z \operatorname{implies}\left(x_{1}, \ldots, x_{n}\right) m \subseteq \operatorname{in}(I(n))$. We show that the monomial sets $M_{i}(n)$ have enough monomials to satisfy this requirement. Since $M_{1}(n)$ is as claimed, we assume it to be true for $M_{j}(n), 1 \leq j \leq i-1$. Assume $m \in \operatorname{in}(I(n)): z, \partial(m)=i+1$. If $x_{j} \mid m, 1 \leq j<i, j$ minimal, then, by construction, for some $\tilde{m} \in M_{j}(n), \tilde{m} \mid m$, thus m is as required. It remains to be shown that $x_{i} \mid m$ otherwise. Assuming inductively that the monomials $M_{j}(n), 1 \leq j \leq i-1$, are obtained from nonzero polynomials $\left.z m_{j}\left(x_{j}+x_{j+1}+\ldots+x_{n}\right), x_{h}\right\rangle m_{j}, 1 \leq h<j$, it follows that also modulo reduction the $i^{t h}$ nonzero s-polynomials are of the form $z m_{i}\left(x_{i}+\ldots+x_{n}\right), x_{h} \nmid m_{i}, 1 \leq h<i$, from which the claim. Therefore (2). By construction of $M_{i}(n)$ and the point (2), if $z x_{n}^{d} \in \operatorname{in}(I(n))$ is of smallest degree, then $d=n$. We induct on n to show that such a monomial exists. For $n=2$ it is true. Assume it true for $n \geq 2$ and note that $\left(I(n+1), x_{n+1}\right)=\left(I(n), x_{n+1}\right)$. Therefore $\operatorname{in}\left(I(n+1), x_{n+1}\right)=\operatorname{in}\left(I(n), x_{n+1}\right)=\left(\operatorname{in}(I(n)), x_{n+1}\right) \supseteq \operatorname{in}(I(n))$.

By induction hypothesis $z x_{n}^{n} \in \operatorname{in}(I(n))$, thus $z x_{n}^{n} \in \operatorname{in}\left(I(n+i), x_{n+1}\right)$, hence $z x_{n}^{n} \in \operatorname{in}(I(n+1))$. From the proof of (2) we get $z x_{n}\left(x_{n}+x_{n+1}\right) \in I(n+1)$. Since $x_{n} x_{n+1}^{n} \in M_{n}(n+1), z x_{n+1}^{n+1} \in \operatorname{in}(I(n+1))$, thus $M_{n+1}(n+1)=\left\{x_{n+1}^{n+2}\right\}$, which implies (3).

Remark 2.5. (0) It is possible to show that every monomial $m \in M_{i}(n)$ is actually obtained from a $z m \in \operatorname{in}(I(n))$.
(1) If M_{n} is replaced by $M_{n+k_{1}}=\left\{x_{n}^{n+1+k_{1}}\right\}, k_{1} \geq 1$, then for the resulting ideal $I\left(n, k_{1}\right)$, in $\left(I\left(n, k_{1}\right)\right)$ is strictly k_{1} - Bbm and $I\left(n, k_{1}\right)$ is strictly $\left(n+k_{1}\right)$ - Bbm .
(2) For $R_{n+d}=K\left[z, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{d-1}\right]$ and $I(n)$ as in Theorem 2.4, $\operatorname{dim}(I(n))=d$ and (2) and (3) of Theorem 2.4 apply to $I(n)$.

For the next family of 1-dimensional ideals $I(k), k \geq 1$, we restrict ourselves to three variables, x, y, z for notational convenience. We obtain $\operatorname{in}(I(k))$ has $k_{1}=1$, i.e. is $1-\mathrm{Bbm}$, and $I(k)$ is strictly $k_{2}-\mathrm{Bbm}, k_{2}=k+1$. We do not obtain the results of Remark 2.5 (1) in this case.

Theorem 2.6. Let $k \geq 1$,
$P_{0}(k)=z\left(x^{2 k+1}+x^{(2 k+1)-1} y+\ldots+x y^{2 k}+y^{2 k+1}\right)$ and $I(k)=\left(P_{0}(k), M_{k}\right)$,
$M_{k}=\left\{x^{2 k+2}, x^{2 k+1} y, x^{(2 k+1)-1} y^{3}, \ldots, x^{k+1} y^{2 k+1}, x y^{2 k+2}, y^{2 k+3}\right\}$. Assume $x>y$. Then:

1. $\{z\}$ is a s.o.p for $I(k)$ and $\operatorname{in}(I(k))$.
2. $\operatorname{in}(I(k)): z=\operatorname{in}(I(k)): z^{2}=\operatorname{in}(I(k)): \mathfrak{m}$, thus $k_{1}=1$.
3. $I(k)$ is strictly $k_{2}-B b m$, and $k_{2}=k+1$.

Proof. For m and \tilde{m} in M_{k}, we write $m<\tilde{m}$ if $\partial_{y}(m)<\partial_{y}(\tilde{m})$ (or equivalently $\partial_{x}(m)>\partial_{x}(\tilde{m})$). We proceed inductively by different steps of a Gröbner algorithm with \rightarrow denoting "reduces to" and $s\left(F_{1}, F_{2}\right)$ the successor polynomial of F_{1}, F_{2}.

Step (1): $s\left(P_{0}(k), x^{2 k+2}\right) \rightarrow P_{1}(k)=z\left(x^{(2 k+1)-1} y^{2}+\ldots+x^{2} y^{2 k}+x y^{2 k+1}\right), s\left(P_{0}(k), m=x^{2 k+1} y\right) \rightarrow z y^{2 k+2}$, thus $s\left(P_{0}(k), \tilde{m}>m\right) \rightarrow 0$ since $y^{2 k+3} \in M_{k}$.

Step (2): $s\left(P_{1}(k), P_{0}(k)\right) \rightarrow 0$,
$s\left(\overline{P_{1}(k), m}=x^{(2 k+1)-1} y^{3}\right) \rightarrow P_{2}(k)=z\left(x^{(2 k+1)-2} y^{4}+\ldots+x^{2} y^{2 k+1}\right)$, thus
$s\left(P_{1}(k), \tilde{m}>m\right) \rightarrow 0 . s\left(P_{1}(k), \hat{m}=x^{2 k+1} y\right) \rightarrow 0$, thus $s\left(P_{1}(k), \tilde{m}<\hat{m}\right) \rightarrow 0$.
Step (i), $2 \leq i<k$: Assume for $j \leq i$ we have obtained polynomials $P_{j} \overline{(k)}=z\left(x^{(2 k+1)-j} y^{2 j}+x^{(2 k+1)-(j+1)} y^{2 j+1}+\ldots+x^{j} y^{2 k+1}\right)$ such that for $j<i$
(i) $s\left(P_{h}(k), P_{j}(k)\right) \rightarrow 0, \quad h<j, h \neq j$.
(ii) $s\left(P_{j}(k), x^{(2 k+1)-j} y^{2 j+1}=m\right) \rightarrow P_{j+1}(k)$

$$
s\left(P_{j}(k), \tilde{m}>m\right) \rightarrow 0, s\left(P_{j}(k), \tilde{m}<m\right) \rightarrow 0
$$

For $i>j \geq 0, i \geq j+1$, thus $2 i>j+1$ or $2 i-j-1>0$.
Therefore

$$
\begin{aligned}
s\left(P_{j}(k), P_{i}(k)\right) & =y^{2 i-2 j} P_{j}(k)-x^{i-j} P_{j}(k) \\
& =z\left(x^{2 i-j-1} y^{2 k+2}+\ldots+x^{j} y^{2 k+1+2(i-j)}\right) \rightarrow 0
\end{aligned}
$$

(Note this remains true for $i=k$.)

$$
s\left(P_{i}(k), m=x^{(2 k+1)-i} y^{2 i+1}\right)=z x^{i} y^{2 k+2}+P_{i+1}(k) \rightarrow P_{i+1}(k),
$$

thus $s\left(P_{i}(k), \tilde{m}>m\right) \rightarrow 0$.

$$
s\left(P_{i}(k), \hat{m}=x^{(2 k+1)-i+1} y^{2 i-1}\right)=z x^{(2 k+1)-i} y^{2 i+1}+P_{i+1}(k) \rightarrow 0,
$$

thus $s\left(P_{i}(k), \tilde{m}<\bar{m}\right) \rightarrow 0$. This completes the induction.
To finish the proof we calculate first $s\left(P_{k}(k), m\right)$, for $m \in M_{k}$, where $P_{k}(k)=z\left(x^{(2 k+1)-k} y^{2 k}+x^{k} y^{2 k+1}\right) . \quad$ Since

$$
s\left(P_{k}(k), m=x^{k+1} y^{2 k+1}\right)=z x^{k} y^{2 k+2} \rightarrow 0,
$$

we get $s\left(P_{k}(k), \tilde{m}>m\right) \rightarrow 0$.
Similarly

$$
s\left(P_{k}(k), \hat{m}=x^{2 k+2} y^{2 k-1}\right)=z x^{k+1} y^{2 k+1} \rightarrow 0,
$$

implies $s\left(P_{k}(k), \tilde{m}<\hat{m}\right) \rightarrow 0$.
Therefore

$$
\begin{aligned}
\operatorname{in}(I(k))= & \left\{z x^{2 k+1}, z x^{(2 k+1)-1} y^{2}, \ldots, z x^{k+1} y^{2 k}, z y^{2 k+2}, x^{2 k+2}, x^{2 k+1} y,\right. \\
& \left.x^{(2 k+1)-1} y^{3}, \ldots, x^{k+1} y^{2 k+1}, x y^{2 k+2}, y^{2 k+3}\right\} .
\end{aligned}
$$

This implies conditions 1. and 2. Also $I(k): z=I(k): z^{2}=\left(P_{0}(k) / z, M_{k}\right)$. By $[7], I(k): z^{2} \subseteq I(k): m^{k_{2}}$. Since $y^{k}\left(P_{0}(k) / z\right) \rightarrow x^{k+1} y^{2 k}+\ldots+y^{3 k}$, but $x^{k+1} y^{2 k} \notin \operatorname{in}(I(k)), k_{2}>k . k_{2}=k+1$ is readily verified.

3. Upper bounds for k_{2}.

We assume as before $<$ is a term order, $I \subseteq R_{n+1}=K\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous ideal, $\operatorname{dim}(\operatorname{in}(I))=\operatorname{dim}(I)=$ 1 , the field K is infinite and therefore without loss of generality $\left\{x_{0}\right\}$ is a s.o.p for I and $\operatorname{in}(I)$. Under these
assumptions $x_{i}^{\delta_{i}} \in \operatorname{in}(I), \delta_{i} \geq 1, \delta_{i}$ minimal, $1 \leq i \leq n$. Let $\mathfrak{K}=\left[\sum_{i=1}^{n}\left(\delta_{i}-1\right)\right]+1$. Let δ_{0} be minimal such that $I: x_{0}^{\delta_{0}}=I: x_{0}^{\delta_{0}+1}$ and let $\nu=\left(\nu_{1}, \ldots, \nu_{l}\right), \nu_{i} \leq \nu_{i+1}$ be the degree vector of $I: x_{0}^{\delta_{0}}$. Assume $I=(G)$, $G=\left\{G_{1}, \ldots, G_{l}\right\}$ is a Gröbner basis of I for the term order $<$ and let $F \xrightarrow{G_{i}} H$ denote " G_{i} reduces F to H " (reduction is on the initial term).

An elementary but useful bound for k_{2} follows from:
Theorem 3.1. Assume $\operatorname{in}(I)$ is $k_{1}-B b m, k_{1} \geq 1$. Let $L=\mathfrak{K}+\left(k_{1}-1\right)-\nu_{1}$. Then $\mathfrak{J}=\mathfrak{m}^{L}\left(I: x_{0}^{\delta_{0}}\right) \subseteq I$.
Proof. Let $F \in \mathfrak{J}$, then $\partial(F)=$ degree $(F) \geq \mathfrak{K}+k_{1}-1 \geq \mathfrak{K}$. Let $\operatorname{in}\left(F d_{t_{j}}=x_{0}^{\alpha_{0}} m, x_{0}\right\rangle m$.
(i) $\alpha_{0}=0$. Since $x_{i}^{\delta_{i}} \in \operatorname{in}(I)$, there exists $G_{j} \in G$ such that $F \xrightarrow{\rightarrow} F^{\prime}$, in $(F)>\operatorname{in}\left(F^{\prime}\right), \partial\left(F_{1}\right)=\partial(F) \geq$ $\mathfrak{K}+k_{1}-1 \geq \mathfrak{K}$.
(ii) $\alpha_{0}>0$. If $\alpha_{0}<k_{1}$, then $\partial(m) \geq \mathfrak{K}$, therefore as in (i) $F \xrightarrow{G_{i}} F^{\prime}, \quad \operatorname{in}(F)>\operatorname{in}\left(F^{\prime}\right), \partial(F)=\partial\left(F^{\prime}\right) \geq$ $\mathfrak{K}+k_{1}-1 \geq \mathfrak{K}$.
If $\alpha_{0} \geq k_{1}$, then, since

$$
\begin{aligned}
m \in \operatorname{in}\left(I: x_{0}^{\delta_{0}}\right): x_{0}^{\alpha_{0}} \subseteq \operatorname{in}(I): x_{0}^{\delta_{0}+\alpha_{0}} & =\operatorname{in}(I): x_{0}^{k_{1}}=\operatorname{in}(I): x_{0}^{k_{1}+1} \\
& =\operatorname{in}(I): \mathfrak{m}^{k_{1}}=\operatorname{in}(I): \mathfrak{m}^{k_{1}+1}
\end{aligned}
$$

(since $\operatorname{in}(I)$ is k_{1} - Bbm$), x_{0}^{k_{1}} m \in \operatorname{in}(I)$, thus $F \xrightarrow{G_{i}} F^{\prime}, \quad \operatorname{in}(F)>\operatorname{in}\left(F^{\prime}\right), \quad \partial(F)=\partial\left(F_{1}\right) \geq \mathfrak{K}+k_{1}-1 \geq \mathfrak{K}$. From this $F \in I$.

Corollary 3.2. Under the hypothesis of Theorem 3.1, $k_{2} \leq L$. In particular if $k_{1}=1$, then $k_{2} \leq L=\mathfrak{K}-\nu_{1}$. Proof. This follows immediately from Theorem 3.1.
Definition 3.3. $e\left(R_{n+1} / I\right)$ will denote the multiplicity as defined by the Hilbert polynomial.
An important result due to Macaulay is $e\left(R_{n+1} / I\right)=e\left(R_{n+1} / i n(I)\right)$. By [8] if in (I) is 1-Bbm and $\operatorname{dim}(i n(I))=$ 1 , then $k_{2} \leq e\left(R_{n+1} / I\right)=e\left(R_{n+1} / i n(I)\right)$. (The proof uses the fact that $\left[H_{\mathfrak{m}}^{0}\left(R_{n+1} / I\right)\right]_{n}=\left[H_{\mathfrak{m}}^{0}\left(R_{n+1} / \operatorname{in}(I)\right]_{n}=0\right.$
for $n \leq 0, n$ denoting the $n^{t h}$ graded piece of the $0^{t h}$ local cohomology module $H_{\mathfrak{m}}^{0}(\ldots)$, and $k_{2} \leq a\left(H_{\mathfrak{m}}^{0}\left(R_{n+1} / I\right)\right)$ $\leq a\left(H_{\mathfrak{m}}^{0}\left(R_{n+1} / \operatorname{in}(I)\right)\right) \leq e\left(R_{n+1} /(\operatorname{in}(I))\right.$ by Lemma 3.1 in [8], $a(\ldots)$ denoting the last nonzero graded piece.) We will improve on this bound in the sequel. Presently we relate the multiplicity to the bound L of Corollary 3.2 .

Lemma 3.4. Assume $\mathfrak{Q}_{0} \neq\left(x_{1}, \ldots, x_{n}\right) \subseteq R_{n+1}$ is a $\left(x_{1}, \ldots, x_{n}\right)$-primary monomial ideal with $\left\{x_{0}\right\}$ a s.o.p.
Let $\mathfrak{Q}_{0}=\left(x_{1}^{\alpha_{1}}, \ldots, \quad x_{n}^{\alpha_{n}}, M\right), \quad \alpha_{i} \geq 1, \quad 1 \leq i \leq n$, and $m \in M$ implies $m=x_{0}^{\beta_{0}} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}, \beta_{i}<\alpha_{i}, 1 \leq i \leq n$. Then, if $l(\ldots)$ denotes length, we have:
(i) $l\left(\left(x_{1}, \ldots, x_{n}\right) / \mathfrak{Q}_{0}\right) \geq \sum_{i=1}^{n}\left(\alpha_{i}-1\right)$,
(ii) $l\left(x_{1}, \ldots, x_{n} / \mathfrak{Q}_{0}\right)=\sum_{i=1}^{u}\left(\alpha_{i}-1\right)$ iff $x_{i} x_{j} \in \mathfrak{Q}_{0}, i \neq j, 1 \leq i, j \leq n$.

Proof. (i) Lowering the exponent in $x_{i}^{\alpha_{i}}$ by one, results in a proper inclusion, thus (i).
(ii) \Leftarrow. For $\sum_{i=1}^{n}\left(\alpha_{i}-1\right)=1, \mathfrak{Q}_{0} \subset\left(x_{1}, \ldots, x_{n}\right)$ is a saturated chain. Let $\sum_{i=1}^{n}\left(\alpha_{i}-1\right)=h+1, h \geq 1$. Without loss of generality assume $\delta_{1} \geq 2$. Consider $\mathfrak{Q}_{0} \subset\left(\mathfrak{Q}_{0}, x_{1}^{\delta_{1}-1}\right)=\mathfrak{Q}_{1} . x_{i} x_{j} \in \mathfrak{Q}_{0}, i \neq j, 1 \leq i, j \leq n$, implies if $m \notin \mathfrak{Q}_{0}$ and $m \neq x_{1}^{\delta_{1}-1}$, then

$$
m=x_{j}^{\delta_{j}-\beta_{j}}, \quad 1 \leq \beta_{j}, \quad 2 \leq j \leq n, \quad \text { or } \quad m=x_{1}^{\delta_{1}-\beta_{1}}, \quad 2 \leq \beta_{1}
$$

thus $\mathfrak{Q}_{0} \subset \mathfrak{Q}_{1}$ is saturated, from which the implication by induction.
\Rightarrow. Suppose without loss of generality that $x_{1} x_{2} \notin \mathfrak{Q}_{0}$, thus $\alpha_{1} \geq 2$ and $\alpha_{2} \geq 2$. But then

$$
\left(\mathfrak{Q}_{0}, x_{1}^{2}\right) \subset\left(\mathfrak{Q}_{0}, x_{1}^{2}, x_{1} x_{2}\right) \subset\left(\mathfrak{Q}_{0}, x_{1}\right)
$$

which constradicts the hypothesis.

Assume $\left\{x_{0}\right\}$ is a s.o.p for $\operatorname{in}(I)$ and $\operatorname{in}(I)$ is strictly $k_{1}-\mathrm{Bbm}$, i.e.

$$
\operatorname{in}(I): x_{0}^{k_{1}}=\operatorname{in}(I): x_{0}^{k_{1}+1}=\operatorname{in}(I): \mathfrak{m}^{k_{1}}=\operatorname{in}(I): \mathfrak{m}^{k_{1}+1}
$$

and k_{1} is minimal. Let $\operatorname{in}(I)=\left(x_{1}^{\delta_{1}}, \ldots, x_{n}^{\delta_{n}}, M\right), 1 \leq \delta_{i}, 1 \leq i \leq n$, and for $m \in M, m=x_{0}^{\beta_{0}} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}, \beta_{0} \leq k_{1}$, $\beta_{i}<\delta_{i}, 1 \leq i \leq n$. Then $\operatorname{in}(I)=\left(\mathfrak{Q}_{0}=\left(x_{1}^{\delta_{1}}, \ldots, x_{n}^{\delta_{n}},\left.M\right|_{x_{0}=1}\right)\right) \cap \mathfrak{Q}_{1}, \mathfrak{Q}_{1}=R_{n+1}$ or a trivial component.

Definition 3.5. Let

$$
\begin{aligned}
D\left(k_{1}\right)=\{m: m= & x_{0}^{\beta_{0}} x_{j}^{\delta_{j}-\varepsilon_{j}}, \quad 1 \leq \beta_{0}, \varepsilon_{j} \leq k_{1}, \quad \varepsilon_{j}<\delta_{j}, \quad \varepsilon_{j} \text { maximal, } \\
& 1 \leq j \leq n, m \in M\} .
\end{aligned}
$$

Define $\sigma\left(k_{1}\right)=\sum_{j=1}^{n} \varepsilon_{j}$. Put $\varepsilon_{j}=0$, if ε_{j} does not occur in $D\left(k_{1}\right)$.
Theorem 3.6. $e\left(R_{n+1} / I\right) \geq \mathfrak{K}-\sigma\left(k_{1}\right)$.
Proof. Let in $(I)=\mathfrak{Q}_{0} \cap \mathfrak{Q}_{1}$ be a primary decomposition with $\mathfrak{Q}_{0}\left(x_{1}, \ldots, x_{n}\right)$-primary (thus unique), \mathfrak{Q}_{1} either the trivial component or R_{n+1}. By [9] (see also the monomial construction there) and Lemma 3.4

$$
\begin{aligned}
e & =e\left(R_{n+1} / \operatorname{in}(I)\right)=1+l\left(\left(x_{1}, \ldots, x_{n}\right) / \mathfrak{Q}_{0}\right) \\
& \geq 1+\sum_{j=1}^{n}\left[\left(\delta_{i}-\varepsilon_{i}\right)-1\right]=1+\sum_{j=1}^{n}\left(\delta_{i}-1\right)-\sigma\left(k_{1}\right)=\mathfrak{K}-\sigma\left(k_{1}\right) .
\end{aligned}
$$

Corollary 3.7. For $k_{1}=1, n$ fixed, $e-k_{2}$ increases beyond bound with increasing ν_{1}.
Proof. For $k_{1}=1, L$ of Corollary 3.2 is $\mathfrak{K}-\nu_{1}$. By Theorem 3.6

$$
e=e\left(R_{n+1} / I\right) \geq\left(\mathfrak{K}-\nu_{1}\right)+\left(\nu_{1}-\sigma(1)\right) \geq k_{2}+\nu_{1}-\sigma(1) .
$$

Since $\sigma(1) \leq n, \quad e-k_{2} \geq \nu_{1}-n$, we get the claim.
Example 3.8. Let $I(m, m, p)=\left(x_{1}^{m-1}\left(x_{1}^{p}+x_{0}^{p}\right), x_{0}\left(x_{1}^{p}+x_{0}^{p}\right), x_{2}, \ldots, x_{n-1}\right), p \geq 1, n \geq 2, m \geq 2$. Assume $x_{1}>x_{0}$. It follows readily that $\operatorname{in}(I(m, n, p))=\left(x_{1}^{p+m-1}, x_{0} x_{1}^{p}, x_{2}, \ldots, x_{n-1}\right)$, therefore $\left\{x_{0}\right\}$ is a s.o.p for $I(m, n, p)$ and $\operatorname{in}(I(m, n, p)) . \quad \operatorname{in}(I(m, n, p)): x_{0}=\left(x_{1}^{p}, x_{2}, \ldots, x_{n-1}\right)=\operatorname{in}(I(m, n, p)): x_{0}^{2} \subseteq \operatorname{in}(I(m, n . p)):$ $\mathfrak{m}^{m-1},(m-1)$ minimal. $I(m, n, p): x_{0}=\left(x_{1}^{p}+x_{0}^{p}, x_{2}, \ldots, x_{n-1}\right)=I(m, n, p): x_{0}^{2} \subseteq I(m, n, p): \mathfrak{m}^{m-1},(m-1)$ minimal. Thus $k_{1}=k_{2}=m-1$. Also always $e=e\left(R_{n} / I(m, n, p)\right)=p$. Therefore, since m and p are independent parameters, in general there is no relationship between e and k_{1}, k_{2}. We calculate next L of Corollary 3.2. We consider two cases:
(i) $n>2$. Then $L=\mathfrak{K}+k_{1}-\nu_{1}-1=(p+m-1)+(m-1)-1-1=(p-1)+2 m-3 \geq k_{2}=m-1$. For $m=2$ and $k_{1}=k_{2}=1, L=p=e$.
(ii) $n=2$. Then $L=(p+m-1)+(m-1)-p-1=2 m+3 \geq m-1$.

For $m=2$, thus $k_{1}=k_{2}=1, L=1 \leq p=e$, thus the difference between L and e becomes arbitrarily large with increasing p.

Example 3.9. The ideals $I(k)$ of Theorem 2.6 are as in Corollary 3.7.
For $I(n)$ in Theorem 2.4, n is not fixed. We therefore investigate for $k_{1}=1$ another relation between k_{2} and $e\left(R_{n+1} / i n(I)\right)=e$ (from now on). For this we separate monomials m into:
(i) $m \in \operatorname{in}(I)$.
(ii) $m \notin \operatorname{in}(I)$, but $m \in \operatorname{in}(I): x_{0}\left(\left\{x_{0}\right\}\right.$ a s.o.p for $\operatorname{in}(I)$ and $\left.I\right)$.
(iii) $m \notin \operatorname{in}(I): x_{0}$.

Note that a monomial m such that $m \in \operatorname{in}(I): x_{0}$ and $x_{0} \mid m$ implies $m \in \operatorname{in}(I)$.
Definition 3.10. A monomial m as in (ii) is called an obstruction.

Lemma 3.11. If $m=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{i}^{\alpha_{i}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}, \alpha_{i} \geq 1$, is an obstruction, then

$$
x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{i}^{\alpha_{i}-1} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \notin \operatorname{in}(I): x_{0}
$$

Proof. $x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{i}^{\alpha_{i}-1} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \in \operatorname{in}(I): x_{0}$ implies $x_{0} x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{i}^{\alpha_{i}-1} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \in \operatorname{in}(I)$, thus $x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{i}^{\alpha_{i}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \in$ in (I), a contradiction.

In what follows, $\operatorname{in}(I)=\mathfrak{Q}_{0} \cap \mathfrak{Q}_{1}, \mathfrak{Q}_{0}\left(x_{1}, \ldots, x_{n}\right)$-primary, \mathfrak{Q}_{1} a trivial component. Note : (i) in $(I): x_{0}=\mathfrak{Q}_{0}$. (ii) If $\mathfrak{Q}_{1}=R_{n+1}$, then $\operatorname{in}(I)$ is perfect, which, since $k_{1}=1$, is not the case.

Lemma 3.12. (i) $1 \notin \operatorname{in}(I): x_{0}$.

(ii) m an obstruction and $x_{i}\left|m, x_{j}\right| m, i \neq j$ implies $m / x_{i} \neq m / x_{j}$ are not in $\operatorname{in}(I): x_{0}$.
(iii) $x_{i}^{\alpha_{i}}, \alpha_{i} \geq 2$, such that $x_{i}^{\alpha_{i}-1}$ is the only monomial of degree $\alpha_{i}-1$ not in $\operatorname{in}(I): x_{0}$, implies $x_{i}^{\alpha_{i}}$ is the only monomial of degree α_{i} not in $\operatorname{in}(I)$ and $k_{2} \leq \alpha_{i}+1-\nu_{1}$.

Proof. (i) is true since $\left\{x_{0}\right\}$ is a s.o.p for in (I). (ii) follows from Lemma 3.11.
(iii) Let $\tilde{m} \neq x_{i}^{\alpha_{i}}$ be of degree $\alpha_{i} . x_{i} \mid \tilde{m}$ implies $\tilde{m} / x_{i} \neq x_{i}^{\alpha_{i}-1}$, thus $\tilde{m} / x_{i} \in \operatorname{in}(I): x_{0}$, hence $x_{i} \tilde{m} / x_{i}=\tilde{m} \in$ $\operatorname{in}(I) . x_{i} \nmid \tilde{m}$, then for some $x_{j} \neq x_{i} \tilde{m} / x_{j} \neq x_{i}^{\alpha_{i}-1}$, thus, as before, $x_{j} \tilde{m} / x_{j}=\tilde{m} \in \operatorname{in}(I)$. Consider

$$
\begin{aligned}
m \in \operatorname{in}\left(\mathfrak{m}^{\alpha_{i}+1-\nu_{1}}\left(I: x_{0}^{\delta_{0}}=I: x_{0}^{\delta_{0}+1}\right)\right) & \cap K\left[x_{1}, \ldots, x_{n}\right] \subseteq \operatorname{in}\left(I: x_{0}^{\delta_{0}}\right) \subseteq \operatorname{in}(I): x_{0}^{\delta_{0}} \\
& =\operatorname{in}(I): x_{0}, \partial(m)=\alpha_{i}+1
\end{aligned}
$$

thus of minimal degree. By the above and since $k_{1}=1$, we get $m \in \operatorname{in}(I)$; thus $\operatorname{in}\left(\mathfrak{m}^{\alpha_{i}+1-\nu_{1}}\left(I: x_{0}^{\delta_{0}}\right)\right) \subseteq \operatorname{in}(I)$ since if $m \in \operatorname{in}(I): x_{0}$ and $x_{0} \mid m$, then $m \in \operatorname{in}(I)$. Therefore $k_{2} \leq \alpha_{i}+1-\nu_{1}$.

Theorem 3.13. For $k_{1}=1, k_{2} \leq e / 2$ if $2 \leq \nu_{1}$ and, $k_{2} \leq(e+2) / 2$ if $\nu_{1}=1$.
Proof. For $k_{2}=0$, the bounds obviously are correct. Let $k_{2}=1$. If $\nu_{1}=1$, the bound is correct. If $2 \leq \nu_{1}$ and $\operatorname{in}(I): x_{0}=\mathfrak{Q}_{0} \neq\left(x_{1}, \ldots, x_{n}\right)$, the bound is correct. If $\mathfrak{Q}_{0}=\left(x_{1}, \ldots, x_{n}\right)=\operatorname{in}(I): x_{0}$ and $\nu_{1} \geq 2$, then all
quadratic monomials, except x_{0}^{2}, are in in (I). Therefore, $I: x_{0} \subseteq I$, by reduction with a Gröbner basis in (I), thus $k_{2}=0$ which contradics $k_{2}=1$.

Assume $k_{2} \geq 2$. We consider the obstructions of lowest degree in

$$
\operatorname{in}\left(\mathfrak{m}^{\rho}\left(I: x_{0}^{\delta_{0}}\right)\right) \subseteq \operatorname{in}\left(I: x_{0}^{\delta_{0}}\right) \subseteq \operatorname{in}(I): x_{0}^{\delta_{0}}=\operatorname{in}(I): x_{0}, 0 \leq \rho \leq k_{2}-1 .
$$

Starting with $\rho=0$, we obtain obstructions m_{0} of degree d_{0}, giving rise to monomials $\tilde{m}_{0} \notin \operatorname{in}(I): x_{0}$ of degree $d_{0}-1$. Since $\mathfrak{m}\left(m_{0}\right) \subseteq \operatorname{in}(I)$, we obtain a sequence of monomials $\tilde{m} \notin \operatorname{in}(I): x_{0}$ of degrees $d_{0}-1<d_{1}-1<$ $\cdots<d_{k_{2}-1}-1$. Possibilities for a single such monomial, by Lemma 3.12 are:
(i) $d_{0}=\nu_{1}=1, m_{0}=1$,
(ii) $x_{i}^{\alpha_{i}-1}=x_{1}^{d_{k_{2}-1}-1}$.

If $\nu_{1} \geq 2$, we can add the monomial 1 to the possibility (ii), thus $2 k_{2} \leq e$ (the count starts at 0). If $\nu_{1}=1$, we obtain $2\left(k_{2}-1\right) \leq e$, which finishes the proof.

Example 3.14. For I and $\operatorname{in}(I)$ as in Theorem 3.13, if $2<e$, then $k_{2}<e$. We give two examples with $e=k_{2}=1$ and $e=k_{2}=2$.

1. If $m=2, p=1, n>2$ in Example 3.8, then $k_{1}=k_{2}=e=1=\nu_{1}$.
2. Let $n=2$ for $I(n)$ of Theorem 2.4. Then $I(2)=\left(z\left(x_{1}+x_{2}\right), M_{1}=\left\{x_{1}^{2}, x_{1} x_{2}\right\}, \quad M_{2}=\left\{x_{3}^{3}\right\}\right), \operatorname{in}(I(2))=$ $\left(z x_{1}, z x_{1}^{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{3}\right)$. Therefore $\nu_{1}=k_{1}=1$ and $k_{2}=e=2$.
3. Bayer D. and Stillman M., A criterion for detecting m-regularity, Invent. Math. 87 (1987), 1-11.
4. Becker, Th., V. Weispfenning: Gröbner Bases, Graduate Texts in Math., Vol. 141, Springer Verlag (1993).
5. Bresinsky H., and Vogel W., Computational aspects for Cohen-Macaulay and Buchsbaum ideals, Ann. Univ. Ferrara-Sez. VII-Sc. Mat., 39 (1993), 143-159.
6. Cox D., Little J. and O'Shea D., Ideals, Varieties and Algorithms, Undergraduate Texts in Math., Springer Verlag 1992.
7. Eisenbud D., Commutative Algebra, Graduate Texts in Math., Vol. 150, Springer Verlag 1995.
8. Fiorentini M. and Vogel W., Old and new results and problems on Buchsbaum modules I, Semin. Geom., Univ. Studi Bologna 1988-1991, Bologna (1991), 53-61.
9. Gräbe H.-G., Moduln über Streckungsringen, Results in Mathematics 15 (1989), 202-220.
10. Hoa L.T. and Miyazaki Ch., Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings, Math. Ann. 30 (1995), 587-598.
11. Kummer R. and Renschuch B., Potenzproduktideale I. Publicationes Mathematicae Debrecen 17 (1970), 81-98.
12. Stückrad J. and Vogel W., Buchsbaum rings and applications, Springer Verlag, Berlin 1986.
13. Trung N. V., Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.
E. Benjamin, Dept. of Mathematics University of Maine, Orono Maine, 414 Neville Hall, 04469-5752, USA
H. Bresinsky, Dept. of Mathematics University of Maine, Orono Maine, 414 Neville Hall, 04469-5752, USA
