ON THE HEREDITARY k-BUCHSBAUM PROPERTY FOR IDEALS I AND in(I)

E. BENJAMIN AND H. BRESINSKY

1. INTRODUCTION

For undefined subsequent terminology, we refer to [5]. Throughout $I \subseteq K[x_0, \ldots, x_n] = R_{n+1}$ will be a homogeneous polynomial ideal in the polynomial ring R_{n+1} over an infinite field K. Let $\mathfrak{m} = (x_0, \ldots, x_n)$. $Y = \{y_0, \ldots, y_d\}$ is a system of parameters (s.o.p) for I if dim(I) = Krull-dim(I) = d+1 and (I, Y) is \mathfrak{m} -primary. For $k \geq 0$, Y is said to be an \mathfrak{m}^k -weak sequence for I if

(i) $I: y_0 \subseteq I: \mathfrak{m}^k$, (ii) $(I, y_0, \dots, y_{i-1}): y_i \subseteq (I, y_0, \dots, y_{i-1}): \mathfrak{m}^k, 1 \le i \le d$. (For $k = 0, \mathfrak{m}^0 = R_{n+1}$.)

Definition 1.1. *I* is said to be *k*-Buchsbaum (*k*-Bbm), if for every s.o.p $Y = \{y_0, \ldots, y_d\} \subseteq \mathfrak{m}^{2k}$ for *I*, the system *Y* is an \mathfrak{m}^k -weak sequence for *I*. If k = 0 then *I* is also said to be Cohen-Macaulay or perfect.

Remark 1.2. It suffices for a single s.o.p to be as in Definition 1.1. For this and other equivalent definitions see [6] and the fundamental paper by Trung [11].

Definition 1.3. Let $T_{n+1} \subseteq R_{n+1}$ be the set of terms (i.e. monomials with coefficient 1). An admissible term order < on T_{n+1} satisfies:

(i) $1 \le t, t \in T_{n+1},$

2000 Mathematics Subject Classification. Primary 13H10; Secondary 13M10.

Key words and phrases. Admissible term order, homogeneous polynomial ideal, Gröbner basis, initial ideal, k-Buchsbaum property.

Received October 10, 2002.

(ii) $t_1 < t_2$ implies $tt_1 < tt_2, t \in T_{n+1}$.

From now on all term orders will be admissible. For $0 \neq p(x) \in R_{n+1}$, in(p(x)) is the largest nonzero term of p(x). For the ideal $I \subseteq R_{n+1}$, in(I) is the ideal generated by all $in(p(x)), p(x) \in I$.

Definition 1.4. A Gröbner basis $G = \{G_1, \ldots, G_s\} \subseteq I$ for I is a generating set for I such that $(in(G_1), \ldots, in(G_s)) = in(I)$.

Remark 1.5. For an algorithm to obtain G from a generating set of I see [4] or [2].

By a now classical result in [1], for any term order <, in(I) perfect implies I perfect and if < is the reverse lexicographical term order, then the converse is obtained if $x_0 < x_1 < \ldots x_d$ are the smallest linear terms and form a s.o.p for I. For almost all term orders the converse implication fails (see the discussion in [3]). However as a generalization of the first implication, it was shown in [7], that if in(I) is k_1 -Bbm, then, for any term order <, Iis k_2 -Bbm for some k_2 . The main purpose of this paper is to investigate how k_1 and k_2 are related, in particular if for a fixed k_1, k_2 can grow without bound.

This can indeed happen; in general "almost anything" can occur and thus perfect ideals I are once again true to their nomenclature. In conclusion we discuss some upper bounds for k_2 and its relation to the multiplicity $e(R_{n+1}/I)$ defined by the Hilbert polynomial. In the sequel $k_i, i \in \{1, 2\}$ will denote strict Buchsbaumness, i.e. k_i is minimal.

2. Comparisons of k_1 and k_2

Our examples and constructions are mostly for ideals I with $\dim(I) = 1$. We start with an easy but useful Lemma.

Lemma 2.1. Assume $I \subseteq R_{n+1}$ is an ideal, $\mathfrak{J} \subseteq R_{n+1}$ is a monomial ideal and $\langle a \text{ term order. Then } in(I : \mathfrak{J}) \subseteq in(I) : \mathfrak{J}.$

Proof. Let $F \in I : \mathfrak{J}, m = in(F) \in in(I : \mathfrak{J}), \overline{m} \in \mathfrak{J}$, a monomial. Since $in(\overline{m}) = \overline{m}$, we have $\overline{m}m = in(\overline{m}F) \in in(I)$, thus $m \in in(I) : \overline{m}$. From this the claim follows.

We first give an example such that $k_1 - k_2$ can become arbitrarily large.

Example 2.2. Let $I(r) = (x_0x_1^r - x_2^{r+1}, x_0^r) \subseteq R_3, r \ge 2, x_1 > x_2, x_0 > x_2$. Then $in(I(r)) = (x_0x_1^r, x_0^r, x_0^{r-1}x_2^{r+1}, x_0^{r-2}x_2^{2(r+1)}, \dots, x_0x_2^{(r-1)(r+1)}, x_2^{r(r+1)})$ and $\{x_1\}$ is a s.o.p for I(r) and in(I(r)). Similarly, $in(I(r)) : x_1^r = in(I(r)) : x_1^{r+1}, r$ minimal, $in(I(r)) : x_1^r = (x_0, x_2^{r(r+1)})$. $x_0(x_0^{\alpha_0}x_1^{\alpha_1}x_2^{\alpha_2}) \in in(I(r))$ iff $\alpha_0 \ge r-1$ or $\alpha_1 \ge r$ or $\alpha_0 + 1 \ge r-j$ and $\alpha_2 \ge j(r+1), 1 \le j \le r-1$. Therefore in(I(r)) is k_1 -Bbm, $r^2 - 1 \le k_1 \le (r-1) + (r) + (r^2 - 1) - 2 = r^2 + 2r - 4$. But I(r) is k_2 -Bbm with $k_2 = 0$, which is immediate by using reverse lexicographical term order with x_1 the smallest linear term (see [5, Proposition 15.12]). For $r = 1, k_1 = k_2 = 0$.

Proposition 2.3. For an ideal $I \subseteq R_2 = K[x_0, x_1]$ assume:

- (i) $x_1 > x_0$ for some term order,
- (ii) without loss of generality (since K is infinite), $\{x_1\}$ is a s.o.p for I and in(I),
- (iii) in(I) is 1-Bbm. Then I is 0-Bbm or 1-Bbm

Proof. By hypothesis

$$\operatorname{in}(I): \mathfrak{m} \subseteq \operatorname{in}(I): x_1 \subseteq \operatorname{in}(I): x_1^2 \subseteq \operatorname{in}(I): \mathfrak{m},$$

thus $in(I) : x_1 = in(I) : x_1^2 = in(I) : \mathfrak{m}$. Let

$$F = x_1^{n-r} x_0^r + a_{r+1} x_1^{n-r-1} x_0^{r+1} + \dots + a_n x_0^n \in I : x_1, \quad 0 \le r \le n.$$

Then $x_1^{n-r} x_0^r \in in(I:x_1) \subseteq in(I):x_1$. Thus

$$x_0^r \in in(I) : x_1^{n-r+1} = in(I) : x_1$$

from which $x_1 x_0^r \in in(I)$. Therefore either

a) $F \equiv 0 \mod I$ or

b) $F \equiv Ax_0^n \mod I, A \neq 0$ (\equiv denotes reduction of F by a Gröbner basis of I).

Assume b). Since $I \subseteq I : x_1$ and $F \in I : x_1, x_0^n \in I : x_1$, we get

$$x_0^n \in \operatorname{in}(I:x_1) \subseteq \operatorname{in}(I): x_1 = \operatorname{in}(I): \mathfrak{m}$$

it follows that $x_0^{n+1} \in in(I)$ (otherwise $x_0^{n+1} \notin (I)$). Hence $x_0 F \in I$, thus $I : x_1 \subseteq I : \mathfrak{m}$. Next let $F = x_1^{n-r} x_0^r + a_{r-1} x_1^{n-r-1} x_0^{r+1} + \ldots + a_n x_0^n \in I : x_1^2$. As before $x_1 x_0^r \in in(I)$ and either a) $F \equiv 0$ mod I or b) $F \equiv Ax_0^n \mod I$, $A \neq 0$, and $x_0^{n+1} \in I$. In both cases $x_1F \in I$ (for b)) since $x_1x_0^r \in in(I)$ and $x_{\alpha}^{n+1} \in I$), hence $I: x_1^2 \subseteq I: x_1$, thus I is either 0-Bbm or 1-Bbm.

We obtain next a family of ideals $I(n), n \ge 2$ such that:

- (1) $\{z\}$ is a s.o.p for I(n) and in(I(n)).
- (2) $\operatorname{in}(I(n)): z = \operatorname{in}(I(n)): z^2 = \operatorname{in}(I(n)): \mathfrak{m}$, thus $\operatorname{in}(I(n))$ is 1-Bbm (even Bbm by Proposition 2.12, Chapter I in [10]).
- (3) $I(n): z = I(n): z^2 \subseteq I(n): \mathfrak{m}^n, n \text{ minimal, thus } I(n) \text{ is strictly } n\text{-Bbm.}$

We assume $x_1 > x_2 > \ldots > x_n$ and for notational convenience we set $z = x_0$. s-polynomials are the successor polynomials of a Gröbner algorithm. m or \bar{m} will be monomials, $\partial_{x_k}(m)$ is the degree of m with respect to x_k , $\partial(m)$ its degree.

Theorem 2.4. Let

$$I(n) = (z(x_1 + ... + x_n), M_1(n), ..., M_h(n), ..., M_n(n)),$$

be an ideal of R_{n+1} , where

$$M_h(n) = \{ m \in R_{n+1} : z \not| m, \ x_j \not| m, \ 1 \le j \le h-1, \ x_h | m, \ \partial(m) = h+1 \},\$$

for $1 \le h \le n$. Then I(n) satisfies the conditions (1), (2), and (3).

Proof. By construction of I(n), the (1) is obtained. If $m \in in(I(n))$, then $z^2 \not m$, thus $in(I(n)) : z = in(I(n)) : z^2$. $in(I(n)) : z = in(I(n)) : \mathfrak{m}$ iff $m \in in(I(n)) : z$ implies $(x_1, \ldots, x_n)m \subseteq in(I(n))$. We show that the monomial sets $M_i(n)$ have enough monomials to satisfy this requirement. Since $M_1(n)$ is as claimed, we assume it to be true for $M_j(n), 1 \leq j \leq i-1$. Assume $m \in in(I(n)) : z, \partial(m) = i+1$. If $x_j \mid m, 1 \leq j < i, j$ minimal, then, by construction, for some $\tilde{m} \in M_j(n), \tilde{m} \mid m$, thus m is as required. It remains to be shown that $x_i \mid m$ otherwise. Assuming inductively that the monomials $M_j(n), 1 \leq j \leq i-1$, are obtained from nonzero polynomials $zm_j(x_j + x_{j+1} + \ldots + x_n), x_h \not m_j, 1 \leq h < j$, it follows that also modulo reduction the i^{th} nonzero s-polynomials are of the form $zm_i(x_i + \ldots + x_n), x_h \not m_i, 1 \leq h < i$, from which the claim. Therefore (2). By construction of $M_i(n)$ and the point (2), if $zx_n^d \in in(I(n))$ is of smallest degree, then d = n. We induct on n to show that such a monomial exists. For n = 2 it is true. Assume it true for $n \geq 2$ and note that $(I(n+1), x_{n+1}) = (I(n), x_{n+1})$. Therefore $in(I(n+1), x_{n+1}) = in(I(n), x_{n+1}) = (in(I(n)), x_{n+1}) \supseteq in(I(n))$.

By induction hypothesis $zx_n^n \in in(I(n))$, thus $zx_n^n \in in(I(n+i), x_{n+1})$, hence $zx_n^n \in in(I(n+1))$. From the proof of (2) we get $zx_n(x_n + x_{n+1}) \in I(n+1)$. Since $x_n x_{n+1}^n \in M_n(n+1), zx_{n+1}^{n+1} \in in(I(n+1))$, thus $M_{n+1}(n+1) = \{x_{n+1}^{n+2}\}$, which implies (3).

- **Remark 2.5.** (0) It is possible to show that every monomial $m \in M_i(n)$ is actually obtained from a $zm \in in(I(n))$.
- (1) If M_n is replaced by $M_{n+k_1} = \{x_n^{n+1+k_1}\}, k_1 \ge 1$, then for the resulting ideal $I(n, k_1), in(I(n, k_1))$ is strictly k_1 -Bbm and $I(n, k_1)$ is strictly $(n + k_1)$ -Bbm.
- (2) For $R_{n+d} = K[z, x_1, ..., x_n, y_1, ..., y_{d-1}]$ and I(n) as in Theorem 2.4, dim(I(n)) = d and (2) and (3) of Theorem 2.4 apply to I(n).

For the next family of 1-dimensional ideals $I(k), k \ge 1$, we restrict ourselves to three variables, x, y, z for notational convenience. We obtain in(I(k)) has $k_1 = 1$, i.e. is 1-Bbm, and I(k) is strictly k_2 -Bbm, $k_2 = k + 1$. We do not obtain the results of Remark 2.5 (1) in this case.

Theorem 2.6. Let $k \ge 1$, $P_0(k) = z(x^{2k+1} + x^{(2k+1)-1}y + \ldots + xy^{2k} + y^{2k+1})$ and $I(k) = (P_0(k), M_k)$, $M_k = \{x^{2k+2}, x^{2k+1}y, x^{(2k+1)-1}y^3, \ldots, x^{k+1}y^{2k+1}, xy^{2k+2}, y^{2k+3}\}$. Assume x > y. Then: 1. $\{z\}$ is a s.o.p for I(k) and in(I(k)). 2. $in(I(k)) : z = in(I(k)) : z^2 = in(I(k)) : \mathfrak{m}$, thus $k_1 = 1$. 3. I(k) is strictly k_2 -Bbm, and $k_2 = k + 1$.

Proof. For m and \tilde{m} in M_k , we write $m < \tilde{m}$ if $\partial_y(m) < \partial_y(\tilde{m})$ (or equivalently $\partial_x(m) > \partial_x(\tilde{m})$). We proceed inductively by different steps of a Gröbner algorithm with \rightarrow denoting "reduces to" and $s(F_1, F_2)$ the successor polynomial of F_1, F_2 .

 $\begin{array}{l} \underbrace{\operatorname{Step}(1):}_{s(P_0(k), x^{2k+2}) \to P_1(k) = z(x^{(2k+1)-1}y^2 + \ldots + x^2y^{2k} + xy^{2k+1}), \ s(P_0(k), \ m = x^{2k+1}y) \to zy^{2k+2}, \\ \operatorname{thus} \overline{s(P_0(k), \tilde{m} > m)} \to 0 \quad \operatorname{since} y^{2k+3} \in M_k. \\ \underbrace{\operatorname{Step}(2):}_{s(P_1(k), m = x^{(2k+1)-1}y^3) \to P_2(k) = z(x^{(2k+1)-2}y^4 + \ldots + x^2y^{2k+1}), \ \operatorname{thus} \\ s(P_1(k), \overline{m} > m) \to 0. \ s(P_1(k), \widehat{m} = x^{2k+1}y) \to 0, \ \operatorname{thus} s(P_1(k), \widetilde{m} < \widehat{m}) \to 0. \\ \underbrace{\operatorname{Step}(i), 2 \leq i < k:}_{s \text{ssume for} \ j \leq i \text{ we have obtained polynomials} \\ P_j(k) = z(x^{(2k+1)-j}y^{2j} + x^{(2k+1)-(j+1)}y^{2j+1} + \ldots + x^jy^{2k+1}) \ \operatorname{such} \ \operatorname{that} \ \operatorname{for} \ j < i \\ (i) \ s(P_h(k), P_j(k)) \to 0, \ h < j, h \neq j. \\ (ii) \ s(P_j(k), x^{(2k+1)-j}y^{2j+1} = m) \to P_{j+1}(k) \\ \ s(P_j(k), \widetilde{m} > m) \to 0, \ s(P_j(k), \widetilde{m} < m) \to 0. \\ \end{array}$ For \ i > j \ge 0, \ i \ge j + 1, \ \operatorname{thus} 2i > j + 1 \ \operatorname{or} 2i - j - 1 > 0. \\ \operatorname{Therefore} 2i \ 2i = (i) = x^{2i-2i} = x^{2i-2i} = (i) = x^{2i-2i} = x

$$s(P_j(k), P_i(k)) = y^{2i-2j} P_j(k) - x^{i-j} P_j(k)$$

= $z(x^{2i-j-1}y^{2k+2} + \dots + x^j y^{2k+1+2(i-j)}) \to 0$

(Note this remains true for i = k.)

$$s(P_i(k), m = x^{(2k+1)-i}y^{2i+1}) = zx^iy^{2k+2} + P_{i+1}(k) \to P_{i+1}(k),$$

thus $s(P_i(k), \tilde{m} > m) \rightarrow 0$.

$$s(P_i(k), \hat{m} = x^{(2k+1)-i+1}y^{2i-1}) = zx^{(2k+1)-i}y^{2i+1} + P_{i+1}(k) \to 0,$$

thus $s(P_i(k), \tilde{m} < \bar{m}) \to 0$. This completes the induction.

To finish the proof we calculate first $s(P_k(k), m)$, for $m \in M_k$, where $P_k(k) = z(x^{(2k+1)-k}y^{2k} + x^ky^{2k+1})$. Since

$$s(P_k(k), m = x^{k+1}y^{2k+1}) = zx^ky^{2k+2} \to 0,$$

we get $s(P_k(k), \tilde{m} > m) \to 0$. Similarly

$$s(P_k(k), \hat{m} = x^{2k+2}y^{2k-1}) = zx^{k+1}y^{2k+1} \to 0,$$

implies $s(P_k(k), \tilde{m} < \hat{m}) \rightarrow 0$. Therefore

$$\begin{split} &\text{in}(I(k)) = \! \{ zx^{2k+1}, zx^{(2k+1)-1}y^2, \dots, zx^{k+1}y^{2k}, zy^{2k+2}, x^{2k+2}, x^{2k+1}y^2, \\ & x^{(2k+1)-1}y^3, \dots, x^{k+1}y^{2k+1}, xy^{2k+2}, y^{2k+3} \}. \end{split}$$

This implies conditions 1. and 2. Also $I(k) : z = I(k) : z^2 = (P_0(k)/z, M_k)$. By [7], $I(k) : z^2 \subseteq I(k) : m^{k_2}$. Since $y^k(P_0(k)/z) \to x^{k+1}y^{2k} + \ldots + y^{3k}$, but $x^{k+1}y^{2k} \notin in(I(k)), k_2 > k$. $k_2 = k + 1$ is readily verified. \Box

3. Upper bounds for k_2 .

We assume as before < is a term order, $I \subseteq R_{n+1} = K[x_0, \ldots, x_n]$ is a homogeneous ideal, dim(in(I)) = dim(I) = 1, the field K is infinite and therefore without loss of generality $\{x_0\}$ is a s.o.p for I and in(I). Under these

assumptions $x_i^{\delta_i} \in in(I), \delta_i \ge 1, \delta_i$ minimal, $1 \le i \le n$. Let $\mathfrak{K} = [\sum_{i=1}^n (\delta_i - 1)] + 1$. Let δ_0 be minimal such that $I : x_0^{\delta_0} = I : x_0^{\delta_0+1}$ and let $\nu = (\nu_1, \dots, \nu_l), \nu_i \le \nu_{i+1}$ be the degree vector of $I : x_0^{\delta_0}$. Assume $I = (G), G = \{G_1, \dots, G_l\}$ is a Gröbner basis of I for the term order < and let $F \xrightarrow{G_i} H$ denote " G_i reduces F to H" (reduction is on the initial term).

An elementary but useful bound for k_2 follows from:

Theorem 3.1. Assume $\operatorname{in}(I)$ is $k_1 \operatorname{-Bbm}$, $k_1 \ge 1$. Let $L = \mathfrak{K} + (k_1 - 1) - \nu_1$. Then $\mathfrak{J} = \mathfrak{m}^L(I : x_0^{\delta_0}) \subseteq I$. Proof. Let $F \in \mathfrak{J}$, then $\partial(F) = \operatorname{degree}(F) \ge \mathfrak{K} + k_1 - 1 \ge \mathfrak{K}$. Let $\operatorname{in}(F) = x_0^{\alpha_0}m$, $x_0 \not\mid m$. (i) $\alpha_0 = 0$. Since $x_i^{\delta_i} \in \operatorname{in}(I)$, there exists $G_j \in G$ such that $F \to F'$, $\operatorname{in}(F) > \operatorname{in}(F')$, $\partial(F_1) = \partial(F) \ge \mathfrak{K} + k_1 - 1 \ge \mathfrak{K}$. (ii) $\alpha_0 > 0$. If $\alpha_0 < k_1$, then $\partial(m) \ge \mathfrak{K}$, therefore as in (i) $F \to F'$, $\operatorname{in}(F) > \operatorname{in}(F')$, $\partial(F) = \partial(F') \ge \mathfrak{K} + k_1 - 1 \ge \mathfrak{K}$. If $\alpha_0 \ge k_1$, then, since $m \in \operatorname{in}(I : x_0^{\delta_0}) : x_0^{\alpha_0} \subseteq \operatorname{in}(I) : x_0^{\delta_0 + \alpha_0} = \operatorname{in}(I) : x_0^{k_1} = \operatorname{in}(I) : x_0^{k_1 + 1} = \operatorname{in}(I) : \mathfrak{m}^{k_1 + 1}$

(since in(I) is k_1 -Bbm), $x_0^{k_1}m \in in(I)$, thus $F \xrightarrow{G_i} F'$, in(F) > in(F'), $\partial(F) = \partial(F_1) \ge \Re + k_1 - 1 \ge \Re$. From this $F \in I$.

Corollary 3.2. Under the hypothesis of Theorem 3.1, $k_2 \leq L$. In particular if $k_1 = 1$, then $k_2 \leq L = \Re - \nu_1$. Proof. This follows immediately from Theorem 3.1.

Definition 3.3. $e(R_{n+1}/I)$ will denote the multiplicity as defined by the Hilbert polynomial.

An important result due to Macaulay is $e(R_{n+1}/I) = e(R_{n+1}/in(I))$. By [8] if in(I) is 1-Bbm and $\dim(in(I)) = 1$, then $k_2 \leq e(R_{n+1}/I) = e(R_{n+1}/in(I))$. (The proof uses the fact that $[H^0_{\mathfrak{m}}(R_{n+1}/I)]_n = [H^0_{\mathfrak{m}}(R_{n+1}/in(I)]_n = 0$

for $n \leq 0$, n denoting the n^{th} graded piece of the 0^{th} local cohomology module $H^0_{\mathfrak{m}}(\ldots)$, and $k_2 \leq a(H^0_{\mathfrak{m}}(R_{n+1}/I)) \leq a(H^0_{\mathfrak{m}}(R_{n+1}/\operatorname{in}(I))) \leq e(R_{n+1}/(\operatorname{in}(I)))$ by Lemma 3.1 in [8], $a(\ldots)$ denoting the last nonzero graded piece.) We will improve on this bound in the sequel. Presently we relate the multiplicity to the bound L of Corollary 3.2.

Lemma 3.4. Assume $\mathfrak{Q}_0 \neq (x_1, \ldots, x_n) \subseteq R_{n+1}$ is a (x_1, \ldots, x_n) -primary monomial ideal with $\{x_0\}$ a s.o.p. Let $\mathfrak{Q}_0 = (x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}, M)$, $\alpha_i \geq 1$, $1 \leq i \leq n$, and $m \in M$ implies $m = x_0^{\beta_0} x_1^{\beta_1} \ldots x_n^{\beta_n}$, $\beta_i < \alpha_i$, $1 \leq i \leq n$. Then, if $l(\ldots)$ denotes length, we have:

(i)
$$l((x_1, ..., x_n)/\mathfrak{Q}_0) \ge \sum_{i=1}^n (\alpha_i - 1),$$

(ii) $l(x_1, ..., x_n/\mathfrak{Q}_0) = \sum_{i=1}^u (\alpha_i - 1)$ iff $x_i x_j \in \mathfrak{Q}_0, i \ne j, 1 \le i, j \le n.$

Proof. (i) Lowering the exponent in $x_i^{\alpha_i}$ by one, results in a proper inclusion, thus (i).

(ii) \leftarrow . For $\sum_{i=1}^{n} (\alpha_i - 1) = 1$, $\mathfrak{Q}_0 \subset (x_1, \dots, x_n)$ is a saturated chain. Let $\sum_{i=1}^{n} (\alpha_i - 1) = h + 1$, $h \ge 1$. Without loss of generality assume $\delta_1 \ge 2$. Consider $\mathfrak{Q}_0 \subset (\mathfrak{Q}_0, x_1^{\delta_1 - 1}) = \mathfrak{Q}_1$. $x_i x_j \in \mathfrak{Q}_0, i \ne j, 1 \le i, j \le n$, implies if $m \notin \mathfrak{Q}_0$ and $m \ne x_1^{\delta_1 - 1}$, then

$$m = x_j^{\delta_j - \beta_j}, \quad 1 \le \beta_j, \quad 2 \le j \le n, \text{ or } m = x_1^{\delta_1 - \beta_1}, \quad 2 \le \beta_1,$$

thus $\mathfrak{Q}_0 \subset \mathfrak{Q}_1$ is saturated, from which the implication by induction. \Rightarrow . Suppose without loss of generality that $x_1x_2 \notin \mathfrak{Q}_0$, thus $\alpha_1 \geq 2$ and $\alpha_2 \geq 2$. But then

$$(\mathfrak{Q}_0, x_1^2) \subset (\mathfrak{Q}_0, x_1^2, x_1 x_2) \subset (\mathfrak{Q}_0, x_1),$$

which constradicts the hypothesis.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Assume $\{x_0\}$ is a s.o.p for in(I) and in(I) is strictly k_1 -Bbm, i.e.

$$\mathrm{in}(I): x_0^{k_1} = \mathrm{in}(I): x_0^{k_1+1} = \mathrm{in}(I): \mathfrak{m}^{k_1} = \mathrm{in}(I): \mathfrak{m}^{k_1+1}$$

and k_1 is minimal. Let $in(I) = (x_1^{\delta_1}, \dots, x_n^{\delta_n}, M), 1 \leq \delta_i, 1 \leq i \leq n$, and for $m \in M, m = x_0^{\beta_0} x_1^{\beta_1} \dots x_n^{\beta_n}, \beta_0 \leq k_1, \beta_i < \delta_i, 1 \leq i \leq n$. Then $in(I) = (\mathfrak{Q}_0 = (x_1^{\delta_1}, \dots, x_n^{\delta_n}, M|_{x_0=1})) \cap \mathfrak{Q}_1, \mathfrak{Q}_1 = R_{n+1}$ or a trivial component.

Definition 3.5. Let

$$D(k_1) = \{ m : m = x_0^{\beta_0} x_j^{\delta_j - \varepsilon_j}, \ 1 \le \beta_0, \varepsilon_j \le k_1, \ \varepsilon_j < \delta_j, \ \varepsilon_j \text{ maximal}, \\ 1 \le j \le n, \ m \in M \}.$$

Define $\sigma(k_1) = \sum_{j=1}^{n} \varepsilon_j$. Put $\varepsilon_j = 0$, if ε_j does not occur in $D(k_1)$.

Theorem 3.6. $e(R_{n+1}/I) \ge \Re - \sigma(k_1)$.

Proof. Let $in(I) = \mathfrak{Q}_0 \cap \mathfrak{Q}_1$ be a primary decomposition with $\mathfrak{Q}_0(x_1, \ldots, x_n)$ -primary (thus unique), \mathfrak{Q}_1 either the trivial component or R_{n+1} . By [9] (see also the monomial construction there) and Lemma 3.4

$$e = e(R_{n+1}/\mathrm{in}(I)) = 1 + l((x_1, \dots, x_n)/\mathfrak{Q}_0)$$

$$\geq 1 + \sum_{j=1}^n [(\delta_i - \varepsilon_i) - 1] = 1 + \sum_{j=1}^n (\delta_i - 1) - \sigma(k_1) = \mathfrak{K} - \sigma(k_1).$$

Corollary 3.7. For $k_1 = 1$, n fixed, $e - k_2$ increases beyond bound with increasing ν_1 .

Proof. For $k_1 = 1, L$ of Corollary 3.2 is $\Re - \nu_1$. By Theorem 3.6

$$e = e(R_{n+1}/I) \ge (\mathfrak{K} - \nu_1) + (\nu_1 - \sigma(1)) \ge k_2 + \nu_1 - \sigma(1).$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Since $\sigma(1) \le n$, $e - k_2 \ge \nu_1 - n$, we get the claim.

Example 3.8. Let $I(m,m,p) = (x_1^{m-1}(x_1^p + x_0^p), x_0(x_1^p + x_0^p), x_2, \ldots, x_{n-1}), p \ge 1, n \ge 2, m \ge 2$. Assume $x_1 > x_0$. It follows readily that $in(I(m,n,p)) = (x_1^{p+m-1}, x_0x_1^p, x_2, \ldots, x_{n-1})$, therefore $\{x_0\}$ is a s.o.p for I(m,n,p) and in(I(m,n,p)). $in(I(m,n,p)) : x_0 = (x_1^p, x_2, \ldots, x_{n-1}) = in(I(m,n,p)) : x_0^2 \subseteq in(I(m,n,p)) : \mathfrak{m}^{m-1}, (m-1)$ minimal. $I(m,n,p) : x_0 = (x_1^p + x_0^p, x_2, \ldots, x_{n-1}) = I(m,n,p) : x_0^2 \subseteq I(m,n,p) : \mathfrak{m}^{m-1}, (m-1)$ minimal. Thus $k_1 = k_2 = m-1$. Also always $e = e(R_n/I(m,n,p)) = p$. Therefore, since m and p are independent parameters, in general there is no relationship between e and k_1, k_2 . We calculate next L of Corollary 3.2. We consider two cases:

(i)
$$n > 2$$
. Then $L = \Re + k_1 - \nu_1 - 1 = (p + m - 1) + (m - 1) - 1 - 1 = (p - 1) + 2m - 3 \ge k_2 = m - 1$. For $m = 2$ and $k_1 = k_2 = 1, L = p = e$.

(ii)
$$n = 2$$
. Then $L = (p + m - 1) + (m - 1) - p - 1 = 2m + 3 \ge m - 1$.

For m = 2, thus $k_1 = k_2 = 1, L = 1 \le p = e$, thus the difference between L and e becomes arbitrarily large with increasing p.

Example 3.9. The ideals I(k) of Theorem 2.6 are as in Corollary 3.7.

For I(n) in Theorem 2.4, n is not fixed. We therefore investigate for $k_1 = 1$ another relation between k_2 and $e(R_{n+1}/in(I)) = e$ (from now on). For this we separate monomials m into:

(i) $m \in in(I)$. (ii) $m \notin in(I)$, but $m \in in(I) : x_0$ ($\{x_0\}$ a s.o.p for in(I) and I). (iii) $m \notin in(I) : x_0$.

Note that a monomial m such that $m \in in(I) : x_0$ and $x_0 | m$ implies $m \in in(I)$.

Definition 3.10. A monomial *m* as in (ii) is called an *obstruction*.

Lemma 3.11. If $m = x_1^{\alpha_1} \cdot \ldots \cdot x_i^{\alpha_i} \cdot \ldots \cdot x_n^{\alpha_n}, \alpha_i \ge 1$, is an obstruction, then

$$x_1^{\alpha_1} \cdot \ldots \cdot x_i^{\alpha_i - 1} \cdot \ldots \cdot x_n^{\alpha_n} \notin \operatorname{in}(I) : x_0$$

Proof. $x_1^{\alpha_1} \cdot \ldots \cdot x_i^{\alpha_i - 1} \cdot \ldots \cdot x_n^{\alpha_n} \in in(I) : x_0$ implies $x_0 x_1^{\alpha_1} \cdot \ldots \cdot x_i^{\alpha_i - 1} \cdot \ldots \cdot x_n^{\alpha_n} \in in(I)$, thus $x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_i} \in in(I)$, a contradiction.

In what follows, $in(I) = \mathfrak{Q}_0 \cap \mathfrak{Q}_1, \mathfrak{Q}_0 (x_1, \dots, x_n)$ -primary, \mathfrak{Q}_1 a trivial component. Note : (i) $in(I) : x_0 = \mathfrak{Q}_0$. (ii) If $\mathfrak{Q}_1 = R_{n+1}$, then in(I) is perfect, which, since $k_1 = 1$, is not the case.

Lemma 3.12. (i) $1 \notin in(I) : x_0$.

- (ii) m an obstruction and $x_i | m, x_j | m, i \neq j$ implies $m/x_i \neq m/x_j$ are not in $in(I) : x_0$.
- (iii) $x_i^{\alpha_i}, \alpha_i \ge 2$, such that $x_i^{\alpha_i-1}$ is the only monomial of degree $\alpha_i 1$ not in $in(I) : x_0$, implies $x_i^{\alpha_i}$ is the only monomial of degree α_i not in in(I) and $k_2 \le \alpha_i + 1 \nu_1$.

Proof. (i) is true since $\{x_0\}$ is a s.o.p for in(I). (ii) follows from Lemma 3.11. (iii) Let $\tilde{m} \neq x_i^{\alpha_i}$ be of degree α_i . $x_i | \tilde{m}$ implies $\tilde{m}/x_i \neq x_i^{\alpha_i - 1}$, thus $\tilde{m}/x_i \in in(I) : x_0$, hence $x_i \tilde{m}/x_i = \tilde{m} \in in(I)$. $x_i | \tilde{m}$, then for some $x_j \neq x_i \tilde{m}/x_j \neq x_i^{\alpha_i - 1}$, thus, as before, $x_j \tilde{m}/x_j = \tilde{m} \in in(I)$. Consider

$$m \in in(\mathfrak{m}^{\alpha_i + 1 - \nu_1}(I : x_0^{\delta_0} = I : x_0^{\delta_0 + 1})) \cap K[x_1, \dots, x_n] \subseteq in(I : x_0^{\delta_0}) \subseteq in(I) : x_0^{\delta_0}$$

= in(I) : $x_0, \partial(m) = \alpha_i + 1,$

thus of minimal degree. By the above and since $k_1 = 1$, we get $m \in in(I)$; thus $in(\mathfrak{m}^{\alpha_i+1-\nu_1}(I:x_0^{\delta_0})) \subseteq in(I)$ since if $m \in in(I): x_0$ and $x_0|m$, then $m \in in(I)$. Therefore $k_2 \leq \alpha_i + 1 - \nu_1$.

Theorem 3.13. For $k_1 = 1$, $k_2 \le e/2$ if $2 \le \nu_1$ and, $k_2 \le (e+2)/2$ if $\nu_1 = 1$.

Proof. For $k_2 = 0$, the bounds obviously are correct. Let $k_2 = 1$. If $\nu_1 = 1$, the bound is correct. If $2 \le \nu_1$ and $in(I) : x_0 = \mathfrak{Q}_0 \ne (x_1, \ldots, x_n)$, the bound is correct. If $\mathfrak{Q}_0 = (x_1, \ldots, x_n) = in(I) : x_0$ and $\nu_1 \ge 2$, then all

quadratic monomials, except x_0^2 , are in in(I). Therefore, $I : x_0 \subseteq I$, by reduction with a Gröbner basis in (I), thus $k_2 = 0$ which contradics $k_2 = 1$.

Assume $k_2 \geq 2$. We consider the obstructions of lowest degree in

$$in(\mathfrak{m}^{\rho}(I:x_0^{\delta_0})) \subseteq in(I:x_0^{\delta_0}) \subseteq in(I): x_0^{\delta_0} = in(I): x_0, 0 \le \rho \le k_2 - 1.$$

Starting with $\rho = 0$, we obtain obstructions m_0 of degree d_0 , giving rise to monomials $\tilde{m}_0 \notin in(I) : x_0$ of degree $d_0 - 1$. Since $\mathfrak{m}(m_0) \subseteq in(I)$, we obtain a sequence of monomials $\tilde{m} \notin in(I) : x_0$ of degrees $d_0 - 1 < d_1 - 1 < \cdots < d_{k_2-1} - 1$. Possibilities for a single such monomial, by Lemma 3.12 are:

(i) $d_0 = \nu_1 = 1, m_0 = 1,$ (ii) $x_i^{\alpha_i - 1} = x_1^{d_{k_2 - 1} - 1}.$

If $\nu_1 \ge 2$, we can add the monomial 1 to the possibility (ii), thus $2k_2 \le e$ (the count starts at 0). If $\nu_1 = 1$, we obtain $2(k_2 - 1) \le e$, which finishes the proof.

Example 3.14. For I and in(I) as in Theorem 3.13, if 2 < e, then $k_2 < e$. We give two examples with $e = k_2 = 1$ and $e = k_2 = 2$.

- 1. If m = 2, p = 1, n > 2 in Example 3.8, then $k_1 = k_2 = e = 1 = \nu_1$. 2. Let n = 2 for I(n) of Theorem 2.4. Then $I(2) = (z(x_1 + x_2), M_1 = \{x_1^2, x_1x_2\}, M_2 = \{x_3^3\})$, $in(I(2)) = (zx_1, zx_1^2, x_1^2, x_1x_2, x_2^3)$. Therefore $\nu_1 = k_1 = 1$ and $k_2 = e = 2$.
- 1. Bayer D. and Stillman M., A criterion for detecting m-regularity, Invent. Math. 87 (1987), 1–11.
- 2. Becker, Th., V. Weispfenning: Gröbner Bases, Graduate Texts in Math., Vol. 141, Springer Verlag (1993).
- Bresinsky H., and Vogel W., Computational aspects for Cohen-Macaulay and Buchsbaum ideals, Ann. Univ. Ferrara-Sez. VII-Sc. Mat., 39 (1993), 143–159.
- 4. Cox D., Little J. and O'Shea D., Ideals, Varieties and Algorithms, Undergraduate Texts in Math., Springer Verlag 1992.
- 5. Eisenbud D., Commutative Algebra, Graduate Texts in Math., Vol. 150, Springer Verlag 1995.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

- Fiorentini M. and Vogel W., Old and new results and problems on Buchsbaum modules I, Semin. Geom., Univ. Studi Bologna 1988–1991, Bologna (1991), 53–61.
- 7. Gräbe H.-G., Moduln über Streckungsringen, Results in Mathematics 15 (1989), 202–220.
- Hoa L.T. and Miyazaki Ch., Bounds on Castelnuovo-Mumford regularity for generalized Cohen-Macaulay graded rings, Math. Ann. 30 (1995), 587–598.
- 9. Kummer R. and Renschuch B., Potenzproduktideale I. Publicationes Mathematicae Debrecen 17 (1970), 81-98.
- 10. Stückrad J. and Vogel W., Buchsbaum rings and applications, Springer Verlag, Berlin 1986.
- 11. Trung N. V., Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.
- E. Benjamin, Dept. of Mathematics University of Maine, Orono Maine, 414 Neville Hall, 04469-5752, USA
- H. Bresinsky, Dept. of Mathematics University of Maine, Orono Maine, 414 Neville Hall, 04469-5752, USA