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ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN
THE CLASS OF QUASI CONTRACTIVE OPERATORS

V. BERINDE

Abstract. A convergence theorem of Rhoades [18] regarding the approximation of

fixed points of some quasi contractive operators in uniformly convex Banach spaces
using the Ishikawa iterative procedure, is extended to arbitrary Banach spaces.

The conditions on the parameters {αn} that define the Ishikawa iteration are also

weakened.

1. Introduction

In the last four decades, numerous papers were published on the iterative approx-
imation of fixed points of self and nonself contractive type operators in metric
spaces, Hilbert spaces or several classes of Banach spaces, see for example the
recent monograph [1] and the references therein. While for strict contractive type
operators, the Picard iteration can be used to approximate the (unique) fixed
point, see e.g. [1], [14], [22], [23], for operators satisfying slightly weaker con-
tractive type conditions, instead of Picard iteration, which does not generally
converge, it was necessary to consider other fixed point iteration procedures. The
Krasnoselskij iteration [15], [5], [12], [13], the Mann iteration [16], [8], [17] and
the Ishikawa iteration [10] are certainly the most studied of these fixed point
iteration procedures, see [1].

Let E be a normed linear space and T : E → E a given operator. Let x0 ∈ E
be arbitrary and {αn} ⊂ [0, 1] a sequence or real numbers.
The sequence {xn}∞n=0 ⊂ E defined by

xn+1 = (1− αn)xn + αnTxn , n = 0, 1, 2, . . .(1.1)

is called the Mann iteration or Mann iterative procedure, in light of [16].
The sequence {xn}∞n=0 ⊂ E defined by{

xn+1 = (1− αn)xn + αnTyn , n = 0, 1, 2, . . .

yn = (1− βn)xn + βnTxn , n = 0, 1, 2, . . . ,
(1.2)
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where {αn} and {βn} are sequences of positive numbers in [0, 1], and x0 ∈ E arbi-
trary, is called the Ishikawa iteration or Ishikawa iterative procedure, due to [10].

Remark 1. For αn = λ (constant), the iteration (1.1) reduces to the so called
Krasnoselskij iteration, while for αn ≡ 1 we obtain the Picard iteration or method
of successive approximations, as it is commonly known, see [1]. Obviously, for
βn ≡ 0 the Ishikawa iteration (1.2) reduces to (1.1).

The classical Banach’s contraction principle is one of the most useful results in
fixed point theory. In a metric space setting it can be briefly stated as follows.

Theorem B. Let (X, d) be a complete metric space and T : X → X a strict
contraction, i.e. a map satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X ,(1.3)

where 0 < a < 1 is constant. Then T has a unique fixed point p and the Picard
iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . .(1.4)

converges to p, for any x0 ∈ X.

Theorem B has many applications in solving nonlinear equations, but suffers
from one drawback – the contractive condition (1.3) forces T be continuous on X.
In 1968 R. Kannan [11], obtained a fixed point theorem which extends Theorem
B to mappings that need not be continuous, by considering instead of (1.3) the

next condition: there exists b ∈
(
0,

1
2

)
such that

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X .(1.5)

Following Kannan’s theorem, a lot of papers were devoted to obtaining fixed
point theorems for various classes of contractive type conditions that do not require
the continuity of T , see for example, Rus [22], and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to

Chatterjea [6], is based on a condition similar to (1.5): there exists c ∈
(
0,

1
2

)
such that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X(1.6)

It is known, see Rhoades [19] that (1.3) and (1.5), (1.3) and (1.6), respectively,
are independent contractive conditions.

In 1972, Zamfirescu [24] obtained a very interesting fixed point theorem, by
combining (1.3), (1.5) and (1.6).

Theorem Z. Let (X, d) be a complete metric space and T : X → X a map for
which there exist the real numbers a, b and c satisfying 0 < a < 1, 0 < b, c < 1/2
such that for each pair x, y in X, at least one of the following is true:

(z1) d(Tx, Ty) ≤ a d(x, y);
(z2) d(Tx, Ty) ≤ b

[
d(x, Tx) + d(y, Ty)

]
;
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(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then T has a unique fixed point p and the Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . .

converges to p, for any x0 ∈ X.

One of the most general contraction condition for which the unique fixed point
can be approximated by means of Picard iteration, has been obtained by Ciric [7]
in 1974: there exists 0 < h < 1 such that

(1.7) d(Tx, Ty) ≤ h ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X .

Remarks. A mapping satisfying (1.7) is commonly called quasi contraction. It
is obvious that each of the conditions (1.3) (1.5), (1.6) and (z1)-(z3) implies (1.7).
An operator T which satisfies the contractive conditions in Theorem Z will be
called a Zamfirescu operator (alternatively, we shall say that T satisfies condition
Z, see Rhoades [17]).

One of the most studied class of quasi-contractive type operators is that of
Zamfirescu operators, for which all important fixed point iteration procedures, i.e.,
the Picard [24], Mann [17] and Ishikawa [18] iterations, are known to converge to
the unique fixed point of T . Zamfirescu showed in [24] that an operator satisfying
condition Z has a unique fixed point that can be approximated using the Picard
iteration. Later, Rhoades [17], [18] proved that the Mann and Ishikawa iterations
can also be used to approximate fixed points of Zamfirescu operators.

The class of operators satisfying condition Z is independent, see Rhoades [17],
of the class of strictly (strongly) pseudocontractive operators, extensively studied
by several authors in the last years. For the case of pseudocontractive type oper-
ators, the pioneering convergence theorems, due to Browder [4] and Browder and
Petryshyn [5], established in Hilbert spaces, were successively extended to more
general Banach spaces and to weaker conditions on the parameters that define the
fixed point iteration procedures, as well as to several classes of weaker contractive
type operators. For a recent survey and a comprehensive bibliography, we refer to
the author’s monograph [1].

As shown by Rhoades ([18], Theorem 8), in a uniformly Banach space E, the
Ishikawa iteration {xn}∞n=0 given by (1.2) and x0 ∈ K converges (strongly) to the
fixed point of T , where T : K → K is a mapping satisfying condition Z, K is a
closed convex subset of E, and {αn}, {βn} are sequences of numbers in [0, 1] such
that

∞∑
n=0

αn(1− αn) = ∞ .(i)

In [3] the author proved the following convergence theorem in arbitrary Banach
spaces, for the Mann iteration associated to operators satisfying condition Z, ex-
tending in this way another result of Rhoades ([17], Theorem 4).
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Theorem 1. Let E be an arbitrary Banach space, K a closed convex subset of
E, and T : K → K an operator satisfying condition Z. Let {xn}∞n=0 be the Mann
iteration defined by (1.1) and x0 ∈ K, with {αn} ⊂ [0, 1] satisfying

∞∑
n=0

αn = ∞ .(ii)

Then {xn}∞n=0 converges strongly to the fixed point of T .

Concluding paper [3], we wondered there if, in the light of Theorem 1, The-
orem 8 in [18] could be also extended from uniformly convex Banach spaces to
arbitrary Banach spaces.

The next section answers this question in the affirmative.

2. The main result

Theorem 2. Let E be an arbitrary Banach space, K a closed convex subset
of E, and T : K → K an operator satisfying condition Z. Let {xn}∞n=0 be the
Ishikawa iteration defined by (1.2) and x0 ∈ K, where {αn} and {βn} are sequences
of positive numbers in [0, 1] with {αn} satisfying (ii).

Then {xn}∞n=0 converges strongly to the fixed point of T .

Proof. By Theorem Z, we know that T has a unique fixed point in K, say p.
Consider x, y ∈ K. Since T is a Zamfirescu operator, at least one of the conditions
(z1), (z2) and (z3) is satisfied. If (z2) holds, then

‖Tx− Ty‖ ≤ b
[
‖x− Tx‖+ ‖y − Ty‖

]
≤ b

{
‖x− Tx‖+

[
‖y − x‖+ ‖x− Tx‖+ ‖Tx− Ty‖

]}
.

So
(1− b)‖Tx− Ty‖ ≤ b · ‖x− y‖+ 2b‖x− Tx‖ ,

which yields (using the fact that 0 ≤ b < 1)

‖Tx− Ty‖ ≤ b

1− b
‖x− y‖+

2b

1− b
‖x− Tx‖ .(2.1)

If (z3) holds, then similarly we obtain

‖Tx− Ty‖ ≤ c

1− c
‖x− y‖+

2c

1− c
‖x− Tx‖ .(2.2)

Denote

δ = max
{

a,
b

1− b
,

c

1− c

}
.(2.3)

Then we have 0 ≤ δ < 1 and, in view of (z1), (2.1) and (2.2) it results that the
inequality

‖Tx− Ty‖ ≤ δ‖x− y‖+ 2δ‖x− Tx‖(2.4)

holds for all x, y ∈ K.
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Now let {xn}∞n=0 be the Ishikawa iteration defined by (1.2) and x0 ∈ K arbi-
trary.
Then

‖xn+1 − p‖ =
∥∥(1− αn)xn + αnTyn − (1− αn + αn)p

∥∥ =

=
∥∥(1− αn)(xn − p) + αn(Tyn − p)

∥∥ ≤
≤ (1− αn)‖xn − p‖+ αn‖Tyn − p‖ .(2.5)

With x := p and y := yn, from (2.4) we obtain

‖Tyn − p‖ ≤ δ · ‖yn − p‖ ,(2.6)

where δ is given by (2.3).
Further we have

‖yn − p‖ =
∥∥(1− βn)xn + βnTxn − (1− βn + βn)p

∥∥
=

∥∥(1− βn)(xn − p) + βn(Txn − p)
∥∥

≤ (1− βn)‖xn − p‖+ βn‖Txn − p‖ .(2.7)

Again by (2.4), this time with x := p; y := xn, we find that

‖Txn − p‖ ≤ δ‖xn − p‖(2.8)

and hence, by (2.5) – (2.8) we obtain

‖xn+1 − p‖ ≤
[
1− (1− δ)αn(1− δβn)

]
· ‖xn − p‖ ,

which, by the inequality

1− (1− δ)αn(1− δβn) ≤ 1− (1− δ)2αn,

implies

‖xn+1 − p‖ ≤
[
1− (1− δ)2αn

]
· ‖xn − p‖ , n = 0, 1, 2, . . . .(2.9)

By (2.9) we inductively obtain

‖xn+1 − p‖ ≤
n∏

k=0

[
1− (1− δ)2αk

]
· ‖x0 − p‖ , n = 0, 1, 2, . . . .(2.10)

Using the fact that 0 ≤ δ < 1, αk, βn ∈ [0, 1], and
∞∑

n=0
αn = ∞, by (ii) it results

that

lim
n→∞

n∏
k=0

[
1− (1− δ)2αk

]
= 0 ,

which by (2.10) implies
lim

n→∞
‖xn+1 − p‖ = 0 ,

i.e., {xn}∞n=0 converges strongly to p. �
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Remarks. 1) Condition (i) in Theorem 1 is slightly more restrictive than
condition (ii) in our Theorem 2, known as a necessary condition for the convergence
of Mann and Ishikawa iterations. Indeed, in virtue of (i) we cannot have αn ≡ 0
or αn ≡ 1 and hence

0 < αn(1− αn) < αn , n = 0, 1, 2, . . . ,

which shows that (i) always implies (ii).
But there exist values of {αn} satisfying (ii), e.g., αn ≡ 1, such that (i) is not

true.
2) Since the Kannan’s and Chattejea’s contractive conditions are both included

in the class of Zamfirescu operators, by Theorem 2 we obtain corresponding con-
vergence theorems for the Ishikawa iteration in these classes of operators.

Corollary 1. Let E be an arbitrary Banach space, K a closed convex subset
of E, and T : K → K a Kannan operator, i.e., an operator satisfying (1.5).
Let {xn}∞n=0 be the Ishikawa iteration defined by (1.2) and x0 ∈ K, with {αn},
{βn} ⊂ [0, 1] satisfying (ii).

Then {xn}∞n=0 converges strongly to the fixed point of T .

Corollary 2. Let E be an arbitrary Banach space, K a closed convex subset
of E, and T : K → K a Chatterjea operator, i.e., an operator satisfying (1.6).
Then the Ishikawa iteration {xn}∞n=0 defined by (1.2) and x0 ∈ K, with {αn},
{βn} ⊂ [0, 1] satisfying (ii) converges strongly to the fixed point of T .

Remarks. 1) It is quite obvious that Theorem 1 is properly contained in The-
orem 2, and it is obtained for βn ≡ 0.

On the other hand, due to the fact that, except for (ii), no other conditions are
required for {αn}, {βn}, by Theorem 2 we obtain, in particular, the convergence
theorem regarding the convergence of Picard iteration in the class of Zamfirescu
operators [24] (for αn ≡ 1, βn ≡ 0), as well as a convergence theorem for the
Krasnoselskij iteration (for βn ≡ 0 and αn = λ ∈ [0, 1]).

2) Since the contractive condition of Kannan (1.5) is a special case of that of
Zamfirescu, Theorems 2 and 3 of Kannan [12] are special cases of Theorem 2, with
αn = 1/2 and βn = 0. Theorem 3 of Kannan [13] is the special case of Theorem 2
with αn = λ, 0 < λ < 1 and βn = 0. However, note that all the results of Kannan
[12], [13] are obtained in uniformly Banach spaces, like Theorem 8 of Rhoades
[18].

3) In paper [2], the author compared the rate of convergence of Picard and
Mann iterations in the class of Zamfirescu operators.

Using the inequality (2.10) and the corresponding one obtained in [3] for the
Mann iteration, i.e.,

‖yn+1 − p‖ ≤
n∏

k=0

[
1− (1− δ)αk

]
‖y0 − p‖ ,

where {yn}∞n=0 is the Mann iteration defined by (1.1) and y0 ∈ K (arbitrary),
we can compare these two iteration procedures in what concern their convergence
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rate. In view of our paper [2] and based on the proofs of Theorems 1 and 2, it
results that, in the class of Zamfirescu operators, the Mann iteration is always
faster than the Ishikawa iteration.

Thus we can compare all Picard, Mann and Ishikawa iterations in the class of
Zamfirescu operators: the conclusion is that the Picard iteration converges faster
than both Mann and Ishikawa iterations.

Conclusions. Our Theorem 2 improves Theorem 8 in Rhoades [18] by ex-
tending it from uniformly convex Banach spaces to arbitrary Banach spaces and
simultaneously by weakening the assumptions on the sequence {αn} that defines
the Ishikawa iteration.
Moreover, many other results in literature are also extended in this way, e.g.:

1) The convergence theorems of two mean value fixed point iteration procedures
for Kannan operators [12], [13] are extended to the larger class of Zamfirescu
operators and simultaneously from uniformly convex Banach spaces to arbitrary
Banach spaces and to the Ishikawa iteration;

2) The fixed point theorem of Chatterjea is extended from the Picard iteration to
the Ishikawa iteration. This also contains, as a particular case, the corresponding
convergence theorem for Mann and Krasnoselskij iterations;

3) While the convergence of Picard iteration in the class of Zamfirescu operators
cannot be deduced by Theorem 8 of Rhoades [18], our main result also include,
as a particular case, the convergence of both Picard and Krasnoselskij iterations.
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