
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

COMPACTIFICATIONS OF FRACTAL STRUCTURES

F. G. ARENAS and M. A. SÁNCHEZ-GRANERO

Abstract. In this paper we introduce GF-compactifications, which are compactifications of GF-spaces (a new no-

tion introduced by the authors). We study properties of this new kind of compactification and prove that every GF-
compactification is of Wallman type. We also prove that every metrizable compactification of a metric space X is a

GF-compactification and, as a corollary, that every metric compactification is of Wallman type, giving a new proof of a
result that dates back to Aarts. Finally, we prove some extension theorems.

1. Introduction

Wallman compactification are the most successful attempt to obtain the whole lattice of compactifications of
any topological space by means of a unique definition. In fact, until [18] was published, it was believed that
every compactification was of Wallman type and it was known since [1] that every metric compactification is of
Wallman type.

In this paper we introduce GF-compactifications, which are compactifications of GF-spaces (introduced in [4]
by the authors). They are an analogue for GF-spaces of the spirit underlying the definition of Wallman compact-
ification. In fact, they are nothing but half-completions of totally bounded point-symmetric non-archimedean
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quasimetrics. We are going to study properties of this compactifications (for example their relations with sub-
spaces and products), and we are going to prove that every metrizable compactification of a topological space
X, can be obtained as the GF-compactification of X, for some fractal structure over X. Afterwards, we are
going to prove some extension theorems for mappings between GF-spaces. Finally, we are going to see how to
get GF-compactifications by means of Wallman compactifications (associated with a lattice constructed from the
fractal structure), obtaining as a corollary a classical result that dates back to Aarts in the sixties.

2. GF-spaces

Now, we recall from [4] some definitions and introduce some notations that will be useful in this paper.
Let Γ = {Γn : n ∈ N} be a countable family of coverings. Recall that St(x, Γn) =

⋃
x∈An,An∈Γn

An; we also
define UΓ

xn = St(x,Γn) \
⋃

x6∈An,An∈Γn
An which will be noted also by Uxn if there is no doubt about the family.

We also denote by St(x,Γ) = {St(x, Γn) : n ∈ N} and Ux = {Uxn : n ∈ N}.
A (base B of a) quasiuniformity U on a set X is a (base B of a) filter U of binary relations (called entourages)

on X such that (a) each element of U contains the diagonal ∆X of X ×X and (b) for any U ∈ U there is V ∈ U
satisfying V ◦ V ⊆ U . A base B of a quasiuniformity is called transitive if B ◦ B = B for all B ∈ B. The theory
of quasiuniform spaces is covered in [12].

If U is a quasiuniformity on X, then so is U−1 = {U−1 : U ∈ U}, where U−1 = {(y, x) : (x, y) ∈ U}. The
generated uniformity on X is denoted by U∗. A base is given by the entourages U∗ = U ∩ U−1. The topology
τ(U) induced by the quasiuniformity U is that in which the sets U(x) = {y ∈ X : (x, y) ∈ U}, where U ∈ U , form
a neighbourhood base for each x ∈ X. There is also the topology τ(U−1) induced by the inverse quasiuniformity.
In this paper, we consider only spaces where τ(U) is T0.

A quasipseudometric on a set X is a nonnegative real-valued function d on X×X such that for all x, y, z ∈ X:(i)
d(x, x) = 0, and (ii) d(x, y) ≤ d(x, z) + d(z, y). If in addition d satisfies the condition (iii) d(x, y) = 0 iff
x = y, then d is called a quasi-metric. A non-archimedean quasipseudometric is a quasipseudometric that verifies
d(x, y) ≤ max {d(x, z), d(z, y)} for all x, y, z ∈ X.
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Each quasipseudometric d on X generates a quasiuniformity Ud on X which has as a base the family of sets
of the form {(x, y) ∈ X ×X : d(x, y) < 2−n}, n ∈ N. Then the topology τ(Ud) induced by Ud, will be denoted
simply by τ(d).

A space (X, τ) is said to be (non-archimedeanly) quasipseudometrizable if there is a (non-archimedean)
quasipseudometric d on X such that τ = τ(d).

A relation ≤ on a set G is called a partial order on G if it is a transitive antisymmetric reflexive relation on
G. If ≤ is a partial order on a set G, then (G,≤) is called a partially ordered set.

(G,≤, τ) will be called a poset (partially ordered set) or T0-Alexandroff space if (G,≤) is a partially ordered
set and τ is that in which the sets [g,→ [= {h ∈ G : g ≤ h} form a neighborhood base for each g ∈ G (we say
that the topology τ is induced by ≤). Note that then {g} =]←, g] for all g ∈ G.

Let us remark that a map f : G → H between two posets G and H is continuous if and only if it is order
preserving, i.e. g1 ≤ g2 implies f(g1) ≤ f(g2).

Let Γ be a covering of X. Γ is said to be locally finite if for all x ∈ X there exists a neighborhood of x which
meets only a finite number of elements of Γ. Γ is said to be a tiling, if all elements of Γ are regularly closed and
they have disjoint interiors (see [3]). We say that Γ is quasi-disjoint if A◦ ∩ B = ∅ or A ∩ B◦ = ∅ holds for all
A 6= B ∈ Γ. Note that if Γ is a tiling, then it is quasi-disjoint.

Definition 2.1. Let X be a topological space. A pre-fractal structure over X is a family of coverings Γ =
{Γn : n ∈ N} such that Ux is an open neighborhood base of x for all x ∈ X.

Furthermore, if Γn is a closed covering and for all n, Γn+1 is a refinement of Γn, such that for all x ∈ An, with
An ∈ Γn, there is An+1 ∈ Γn+1 : x ∈ An+1 ⊆ An, we will say that Γ is a fractal structure over X.

If Γ is a (pre-) fractal structure over X, we will say that (X,Γ) is a generalized (pre-) fractal space or simply
a (pre-) GF-space. If there is no doubt about Γ, then we will say that X is a (pre-) GF-space.

If Γ is a fractal structure over X, and St(x,Γ) is a neighborhood base of x for all x ∈ X, we will call (X,Γ) a
starbase GF-space.
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If Γn has the property P for all n ∈ N, and Γ is a fractal structure over X, we will say that Γ is a fractal
structure over X with the property P, and that X is a GF-space with the property P. For example, if Γn is locally
finite for every natural number n, and Γ is a fractal structure over X, we will say that Γ is a locally finite fractal
structure over X, and that (X,Γ) is a locally finite GF-space.

Call Un = {(x, y) ∈ X ×X : y ∈ Uxn}, U−1
xn = U−1

n (x) and U−1
x = {U−1

xn : n ∈ N}.
It is proved in [4, Prop. 3.2] that U−1

xn =
⋂

x∈An
An for all x ∈ X and all n ∈ N.

Let (X,Γ) be a (pre-)GF-space and A be a subspace of X. The fractal structure induced to A (see [4]) is
defined as (A,ΓA), where ΓA = {Γ′n : n ∈ N} and Γ′n = {An ∩A : An ∈ Γn}.

Let (Xi,Γi) be a countable family of (pre-) GF-spaces. The fractal structure induced to the countable product
(see [4]) is defined as (

∏
i∈N Xi,

∏
i∈N Γi), where

∏
i∈N Γi = {Γn : n ∈ N} and Γn = {

⋂
i≤n p−1

i (Ai
n) : Ai

n ∈ Γi
n}

(where pi is the projection from the product space to Xi).
In [4], the authors introduced the following construction. Let Γ be a fractal structure, and let define Gn =

{U∗
xn : x ∈ X}, and define in Gn the following order relation U∗

xn ≤n U∗
yn if y ∈ Uxn. It holds that Gn is a poset

with this order relation and its associated topology.
Let ρn be the quotient map from X onto Gn which carries x in X to U∗

n(x) in Gn. It also holds that ρn is
continuous.

We also consider the map φn : Gn −→ Gn−1 defined by φn(ρn(x)) = ρn−1(x). It holds that φn is continuous.
Let ρ be the map from X to lim←−Gn which carries x in X to (ρn(x))n in lim←−Gn. Note that ρ is well defined

and continuous (by definition of φn and the continuity of ρn and φn for all n). It holds that ρ is an embedding
of X into lim←−Gn. We shall identify X with ρ(X) whenever we need it.

Definition 2.2. Let (X,Γ) be a GF-space, and Gn = Gn(Γ). We define G(X) = G(X,Γ) as the subset of all
closed points of lim←−Gn.

Note that G(X) is also the set of minimal points of lim←−Gn, with the order g ≤ h if and only if gn ≤n hn for
all n ∈ N and that G(X) is T1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The fractal structure, noted by G(Γ), associated with lim←−Gn is defined as G(Γn) = {An(gn) : gn ∈ Gn}, where
for each gn ∈ Gn, we define An(gn) = {h ∈ lim←−Gn : hn ≤n gn}.

Associated with each fractal structure Γ, we can construct (see [4]) a non-archimedean quasipseudometric dΓ

defined by 2−(n+1) if y ∈ Uxn \ Ux(n+1), by 1 if y 6∈ Ux1 and by 0 if y ∈ Uxn for all n ∈ N. It holds that
Uxn = B(x, 1

2n ). If d is a non-archimedean quasi-pseudometric and we define Γn = {Bd−1(x, 1
2n ) : x ∈ X}, then

Γ = {Γn : n ∈ N} is a fractal structure, which we call fractal structure associated with d. If Γ is a fractal
structure, it follows that G(Γ) coincides with the fractal structure associated with dΓ.

3. GF-maps

In this section we study the concept of GF-map and GF-isomorphism (whose equivalent for quasi-pseudometrics
is the concept of surjective isometry, and whose equivalent for inverse limit of a sequence of posets is the concept
of map between inverse limits), and we also study a weaker concept, which will correspond to the concept of
quasi-uniformly continuous map.

Definition 3.1. Let (X,Γ) and (Y,∆) be GF-spaces, and let f : X → Y be a map such that f(Uxn) ⊆ Uf(x)n

for all x ∈ X and for all n ∈ N. We call that map a GF-map.
If there exists a bijective GF-map between X and Y , such that the inverse is also a GF-map, we say that X

and Y are GF-isomorphic.

The above definition can be rephrased as follows.

Proposition 3.2. Let (X,Γ) and (Y,∆) be GF-spaces, and let f : X → Y be a map. Then the following
statements are equivalent:

1. f is a GF-map.
2. f is nonexpansive, that is, dΓ(f(x), f(y)) ≤ d∆(x, y) for all x, y ∈ X.
3. ρn ◦ f = fn ◦ ρn, where fn : Gn(X)→ Gn(Y ) is an order-preserving map, for all n ∈ N.
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Proof. The equivalence between 1) and 2) is clear.
1) implies 3). It is clear that if f is a GF-map, then f(U∗

xn) ⊆ U∗
f(x)n. Define fn : Gn(X) → Gn(Y ) by

fn(ρn(x)) = ρn(f(x)). It is clear from what we have proved that fn is well defined, and since f is a GF-map, if
y ∈ Uxn then f(y) ∈ Uf(x)n, and then fn is order-preserving.

3) implies 1). Let y ∈ Uxn, then ρn(x) ≤n ρn(y), and since fn is order-preserving then fn(ρn(x)) ≤ fn(ρn(y)),
and since ρn◦f = fn◦ρn then ρn(f(x)) ≤n ρn(f(y)) and then f(y) ∈ Uf(x)n, what proves that f is a GF-map. �

A sufficient condition to get a GF-map is the following.

Proposition 3.3. Let (X,Γ) and (Y,∆) be GF-spaces, and let f : X → Y be a map. Suppose that for all
x ∈ X and all Bn ∈ ∆n such that f(x) ∈ Bn there exists An ∈ Γn such that x ∈ An and f(An) ⊆ Bn. Then f is
a GF-map.

Proof. Let y ∈ U−1
xn , and let Bn ∈ ∆n be such that f(x) ∈ Bn, then there exists An ∈ Γn such that

x ∈ An and f(An) ⊆ Bn. Since y ∈ U−1
xn =

⋂
x∈Cn

Cn, then y ∈ An and hence f(y) ∈ f(An) ⊆ Bn. Then
f(y) ∈

⋂
f(x)∈Bn

Bn = U−1
f(x)n, and therefore f(Uxn) ⊆ Uf(x)n, so f is a GF-map. �

We recall the following notion.

Definition 3.4. Let (X,Γ) be a GF-space. We say that (X,Γ) is half-complete if dΓ is a half-complete
quasipseudometric, that is, every (dΓ)∗-Cauchy sequence is d-convergent.

The next two lemmas are interesting by themselves and give a sufficient condition to obtain the equality
between ρ(X) and G(X).

Lemma 3.5. Let Γ be a fractal structure over X, and suppose that the associated quasi-pseudometric d verifies
that every d∗-Cauchy sequence which is d−1 convergent to x is d-convergent to x (this happens, for example, either
if Γ is starbase or d is point-symmetric). Then ρ(X) ⊆ G(X).
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Proof. Let x ∈ X and suppose that there exists g = (ρn(xn)) ∈ lim←−Gn such that (ρn(xn)) < ρ(x), that is, there
exists l ∈ N such that ρl(xl) <l ρl(x). Then it is clear that (xn) is a d∗-Cauchy sequence, since U∗

xn+1n+1 ⊆ U∗
xnn

for all n ∈ N (since (ρn(xn)) ∈ lim←−Gn) and since (xn) is a sequence which d−1-converges to x, so by hypothesis
we have that (xn) d-converges to x. Hence for all n ∈ N there exists m ≥ n such that xk ∈ Uxn for all k ≥ m,
whence ρn(x) ≤n ρn(xk) = ρn(xn) for all n ∈ N, what contradicts that ρl(xl) <l ρl(x). The contradiction shows
that ρ(x) is minimal, o equivalently, ρ(x) ∈ G(X). �

Lemma 3.6. Let (X,Γ) be a half complete GF-space T1. Then ρ(X) = G(X).

Proof. Let x ∈ X and suppose that there exists (ρn(yn)) ∈ lim←−Gn such that ρn(yn) ≤n ρn(x) for all n ∈ N.
Since X is half complete then there exists y ∈ X such that ρn(y) ≤n ρn(yn) ≤n ρn(x), and hence we have that
x ∈ Uyn for all n ∈ N, and since X is T1, it follows that x = y, and hence ρn(yn) = ρn(x) for all n ∈ N. Therefore
ρ(x) ∈ G(X).

Conversely, let (ρn(xn)) ∈ G(X). Since X is half complete then there exists x ∈ X such that ρn(x) ≤n ρn(xn)
for all n ∈ N, and since (ρn(xn)) ∈ G(X) it follows that ρn(xn) = ρn(x) for all n ∈ N, whence (ρn(xn)) ∈ ρ(X). �

From the point of view of GF-isomorphisms, Γ and G(Γ) are the same.

Proposition 3.7. Let Γ be a fractal structure over X. Then (X,Γ) and (X, G(Γ)) are GF-isomorphic. In
fact, the identity map is a GF-isomorphism.

Proof. Let y ∈ (UG(Γ)
xn )−1 =

⋂
x∈U−1

zn
U−1

zn , then, since x ∈ U−1
xn we have that y ∈ U−1

xn . Conversely, suppose that

y ∈ U−1
xn , and let z ∈ X such that x ∈ U−1

zn , then by transitivity, y ∈ U−1
zn , and then y ∈

⋂
x∈U−1

zn
U−1

zn = (UG(Γ)
xn )−1.

Therefore the identity map is a GF-isomorphism. �

The concept of isomorphism in this category can be characterized by means of the associated posets.

Proposition 3.8. Let X, Y be half complete T1 GF-spaces. Then X and Y are GF-isomorphic if and only if
there exist fn : Gn(X)→ Gn(Y ) poset isomorphisms such that φn+1 ◦ fn+1 = fn ◦ φn+1 for all n ∈ N.
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Proof. By the previous lemma we have that ρ(X) = G(X), since Γ is half complete and X is T1. Suppose
that X and Y are GF-isomorphic, and let f be a GF-isomorphism, then it is clear that f(U∗

xn) = U∗
f(x)n and that

ρn(x) ≤n ρn(y) if and only if ρn(f(x)) ≤n ρn(f(y)). On the other hand, if we define fn by fn(ρn(x)) = ρn(f(x)),
it follows that φn+1 ◦ fn+1 ◦ ρn+1(x) = φn+1 ◦ ρn+1 ◦ f(x) = ρn ◦ f(x) = fn ◦ ρn(x) = fn ◦ φn+1 ◦ ρn+1(x), and
hence φn+1 ◦ fn+1 = fn ◦ φn+1.

Conversely, let fn be a poset isomorphism between Gn(X) and Gn(Y ) such that φn+1 ◦ fn+1 = fn ◦ φn+1.
We define f : X → Y by ρn(f(x)) = fn(ρn(x)). It is clear that f is a map from X to lim←−Gn(Y ). Let us prove
that f is well defined, that is, f(x) ∈ G(Y ) for all x ∈ X (note that since Y is half complete and T1 then, by
the previous lemma, it follows that ρ(Y ) = G(Y )). To see this, let x ∈ X and suppose that there exists y ∈ Y
such that ρn(y) ≤n ρn(f(x)) = fn(ρn(x)). It is easy to see that (f−1

n (ρn(y))) ∈ lim←−Gn(X). Since X is half
complete, there exists z ∈ X with ρn(z) ≤n f−1

n (ρn(y)) for all n ∈ N. Then fn(ρn(z)) ≤n ρn(y) ≤n fn(ρn(x)) for
all n ∈ N, whence ρn(z) ≤n ρn(x) for all n ∈ N, and since X is T1, then z = x, and hence ρn(y) = fn(ρn(x)) for
all n ∈ N. Therefore f(x) ∈ G(Y ). Moreover, it is clear that f is a GF-map and analogously it can be proved
that f−1 : Y → X defined by ρn(f−1(y)) = f−1

n (ρn(y)) for all n ∈ N and for all y ∈ Y is a GF-map, which is the
inverse map of f , and hence f is a GF-isomorphism. �

It seems that the concept of GF-map is related with that of map between inverse sequences. In [10], it is
proposed another definition for map between inverse sequences. For such definition, the related concept in our
context is the weaker one of quasi-uniformly continuous map, as we see in the following proposition.

Proposition 3.9. Let (X,Γ) and (Y,∆) be GF-spaces, and let f : X → Y be a map. Then the following
statements are equivalent:

1. For all n ∈ N there exists m ∈ N such that f(Uxm) ⊆ Uf(x)n for all x ∈ X.
2. f is quasi-uniformly continuous.
3. There exists a cofinal sequence (in) such that ρn ◦ f = fn ◦ ρin

, where fn : Gin
(X) → Gn(Y ) is an

order-preserving map, for all n ∈ N.
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Proof. The equivalence between 1) and 2) is clear.
1) implies 3). By hypothesis (with n=1), there exists i1 ∈ N such that f(Uxi1) ⊆ Uf(x)1 for all x ∈ X. If we

have defined ik such that f(Uxik
) ⊆ Uf(x)k, then we define ik+1 > ik such that f(Uxik+1) ⊆ Uf(x)k+1. It is clear

that (ik) is a cofinal sequence, since it is strictly increasing.
On the other hand, it is clear that f(U∗

xin
) ⊆ U∗

f(x)n, so we define fn : Gin(X) → Gn(Y ) by fn(ρin(x)) =
ρn(f(x)). It is clear from what we have proved that fn is well defined, and by hypothesis, if y ∈ Uxin

then
f(y) ∈ Uf(x)n, and then fn is order-preserving.

3) implies 1). Let y ∈ Uxin
, then ρin

(x) ≤in
ρin

(y), and since fn is order-preserving then fn(ρin
(x)) ≤n

fn(ρin
(y)), and since ρn ◦ f = fn ◦ ρin

then ρn(f(x)) ≤n ρn(f(y)) and then f(y) ∈ Uf(x)n, what proves 1). �

4. GF-compactifications

The beginning of this section is devoted to collect the main properties of GF-compactification, that are introduced
in Definition 4.3, including behavior under subspaces, products or dense subspaces.

The second half of the section characterizes the GF-compactifications of rationals and naturals with their
usual topologies as a tool to prove Theorem 4.20 where every metric compactification is proved to be a GF-
compactification.

We start deducing properties for G(Γ) from the ones owned by Γ.

Theorem 4.1. Let Γ be a finite fractal structure over X such that dΓ is point symmetric. Then G(Γ) is a
finite half complete fractal structure over G(X).

Proof. G(Γ) is clearly finite. Let us prove that it is half complete.
Let (gn) ∈ lim←−Gn and let F = {(hn) ∈ lim←−Gn : (hn) ≤ (gn)}. Since (gn) ∈ F , it is nonempty, and if

(hi
n) ∈ lim←−Gn is a decreasing chain, then if hn = min {hi

n :∈ I} (note that the minimum exists, since Γn is finite
and {hi

n :∈ I} is a chain) we have that (hn) is a bound for the chain. Then by Zorn’s lemma, F has a minimal
element (hn). Hence (hn) ∈ G(X) and (hn) ≤ (gn). Therefore G(X) is half complete. �
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The following result is going to be used in next corollary. The proof can be found in [6].

Lemma 4.2. Let X be a topological space. X is second countable if and only if it admits a finite fractal
structure.

The following result associates a compactification to certain GF-spaces.

Corollary 4.3. Let Γ be a finite fractal structure over X such that dΓ is point symmetric. Then (G(X), G(Γ))
is a second countable T1 compactification of X.

Proof. By Lemma 3.5, X is a subset of G(X), and if g = (ρn(xn)) ∈ G(X), then (xn) converges to g in G(X)
(since gn = ρn(xn) = ρn(xk) for all k ≥ n, and hence xk ∈ Ugn for all k ≥ n). Therefore X is dense in G(X).

On the other hand, since G(Γ) is finite, by Lemma 4.2 it follows that G(X) is second countable. G(X) is T1,
since it is the subset of closed points of lim←−Gn. G(X) is compact because it is a left K-complete (since G(Γ) is
half complete by the previous theorem) totally bounded space and then we can apply [15, Prop. 4]. �

We will denote the GF-space (G(X), G(Γ)) by G(X,Γ).
The next example shows that there exists a finite tiling starbase GF-space (X,Γ) such that G(X,Γ) is not

Hausdorff, so the T1 axiom cannot be improved in the above Corollary.

Example 4.4. Let [0, 1] with the finite tiling starbase fractal structure defined as Γn = {[ k
2n , k+1

2n ] : 0 ≤ k ≤
2n − 1}. Let X = [0, 1]× [0, 1] \ {( 1

2 , 1
2 )}, with the fractal structure Γ′ = (Γ×Γ)X by ([0, 1]× [0, 1],Γ×Γ). Then

it is clear that it is a finite tiling starbase fractal structure over X.
Let us prove that G(X,Γ′) is not a Hausdorff space.
Let g1

n = ρn( 1
2 , 1

2 + 1
2n+1 ), g2

n = ρn( 1
2 , 1

2 −
1

2n+1 ), g3
n = ρn( 1

2 + 1
2n+1 , 1

2 ) and g4
n = ρn( 1

2 −
1

2n+1 , 1
2 ). Then it

is clear that (gi
n)n ∈ G(X) for i = 1, 2, 3, 4. Moreover Ug1n ∩ Ug3n =] 12 , 1

2 + 1
2n [×] 12 , 1

2 + 1
2n [6= ∅ for all n ∈ N.

Therefore G(X,Γ′) is not Hausdorff.

The notion of GF-compactification is now formally introduced.
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Definition 4.5. Let Γ be a finite fractal structure over X with dΓ point symmetric. We will say that G(X)
is the GF-compactification of X relative to Γ, and we will note it by G(X,Γ).

Now we recall the concept of direct product of posets.

Definition 4.6. Let G, H be posets. We define the poset G×H with the order (g, h) ≤ (g′, h′) if and only if
g ≤ g′ and h ≤ h′.

With that definition, we relate the GF-compactification of a product with the product of the GF-compactifi-
cations.

Proposition 4.7. Let (X,Γ1), (Y,Γ2) be GF-spaces. Then Gn(X×Y ) is poset isomorphic to Gn(X)×Gn(Y )
and G(X × Y,Γ1 × Γ2) is GF-isomorphic to G(X,Γ1)×G(Y,Γ2).

Proof. It is clear that (g, h) ∈ G(X × Y ) if and only if g ∈ G(X) and h ∈ G(Y ), and it is also clear that
(gn, hn) ≤ (g′n, h′n) if and only if gn ≤ g′n and hn ≤ h′n and hence the image of U(g,h)n is equal to Ugn ×Uhn (and
hence that map is a GF-isomorphism). �

The same result is valid for countable products.

Proposition 4.8. Let (Xi,Γi) be a countable family of GF-spaces. Then Gn(
∏

i∈N Xi) is poset isomorphic to∏n
i=1 Gn(Xi), and G(

∏
i∈N Xi,

∏
i∈N Γi) is GF-isomorphic to

∏
i∈N G(Xi,Γi).

Proof. Let Γ =
∏

i∈N Γi, X =
∏

i∈N Xi and Gn = Gn(
∏

i∈N Xi). First note that since U∗
xn = (U1

x1n)∗ × · · · ×
(Un

xnn)∗ ×
∏

i>n Xi, we have that Gn is poset isomorphic to Gn(X1)× · · · ×Gn(Xn), using the map which sends
ρn(x) to (ρn(x1), . . . , ρn(xn)).
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Let f : G(X,Γ) →
∏

i∈N G(Xi,Γi) be defined as f(g) = (gi)i where if g = (ρn(xn))n with xn = (xn
i ), then gi

is defined as

g1 = (ρ1(xn
1 ))n,

g2 = (ρ1(x2
2), ρ2(x2

2), . . . , ρn(xn
2 ), . . .),

...
gi = (ρ1(xi

i), ρ2(xi
i), . . . , ρi−1(xi

i), ρi(xi
i), ρi+1(xi+1

i ), . . . , ρn(xn
i ), . . .)

for all i ∈ N.

Now, (ρn(xn))n ∈ G(X,Γ) if and only if there not exists (ρn(yn))n with (ρn(yn))n < (ρn(xn))n or equivalently
there exists no n0 such that ρn0(y

n0) < ρn0(x
n0), or what is the same, there exist no n0 and i0 ≤ n0 with

ρn0(y
n0
i0

) < ρn0(x
n0
i0

), that is, there exists no i0 with hi0 < gi0 for some hi0 , what is true when and only when,
gi ∈ G(Xi,Γi) for all i ∈ N what means that (gi)i ∈

∏
i∈N G(Xi,Γi).

Therefore f is well defined and bijective.
It is clear that gn ≤ hn if and only if gi

n ≤ hi
n for all i ≤ n, and hence f(Uxn) = U1

x1n × . . . × Un
xnn ×∏

i>n G(Xi,Γi). Therefore f is a GF-isomorphism. �

If A is a subset of X, we will denote by A′ the set of minimal point of ρ(A) (i.e., for g ∈ lim←−Gn, g ∈ A′ if and
only if there exists no h ∈ lim←−Gn with h ≤ g and hn ∈ ρn(A) for all n ∈ N).

In the next results, we are going to see that A′ is essentially G(A).

Proposition 4.9. Let Γ be a fractal structure over X, and A ⊆ X. Then Gn(ΓA) is poset isomorphic to
Gn(Γ) ∩ ρn(A).

Proof. It is clear, since (UΓA
xn )∗ = U∗

xn ∩A for all x ∈ A. �
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Corollary 4.10. Let Γ be a finite starbase fractal structure over X, and A ⊆ X. Then A′ is GF-isomorphic
to G(A,ΓA).

Proof. Let f : A′ → G(A,ΓA) be defined by f(g) = h where if gn = U∗
xnn with xn ∈ A then hn = (UΓA

xnn)∗. It
is clear that if g, h ∈ A′ with gn ≤n hn, then (f(g))n ≤ (f(h))n (since (UA)∗xn = U∗

xn∩A for all x ∈ A). Therefore
f is continuous and open (since f(Ugn) = Uf(g)n for all g ∈ A′ and n ∈ N), and it is clear that f is bijective. �

Proposition 4.11. Let Γ be a finite fractal structure over X such that dΓ is point-symmetric, and let A be a
subspace of X, such that A′ ⊆ G(X). Then ClG(X,Γ)(A) = A′ and it is GF-isomorphic to G(A,ΓA).

Proof. It is clear by Proposition 4.9 that Gn(A) = Gn(X) ∩ ρn(A). Let g ∈ A′, and let n be a natural
number. Then gn = ρn(a), with a ∈ A, and hence a ∈ Ugn. Therefore g ∈ ClG(X)(A) (since g ∈ G(X), because
A′ ⊆ G(X)), and then ρ(A) ⊆ A′ ⊆ ClG(X)(A), and since A′ is compact (since it is homeomorphic to G(A,ΓA)
which is compact), we obtain that A′ = ClG(X)(A), and we get the desired result. �

Corollary 4.12. Let Γ be a finite fractal structure over X such that dΓ is point-symmetric, and let A be a
subspace of X such that U∗

xn ∩ A 6= ∅ for all x ∈ X (that is, A is a d∗Γ-dense subspace of X). Then G(A,ΓA) is
GF-isomorphic to G(X,Γ).

Proof. It is clear that A′ ⊆ G(X), and then G(A,ΓA) is GF-isomorphic to ClG(X,Γ)A by the previous propo-
sition. Now, since it is also clear that A is dense in X and X is dense in G(X), then A is dense in G(X,Γ), and
therefore G(A,ΓA) is GF-isomorphic to G(X,Γ). �

The following example shows that the condition A′ ⊆ G(X) cannot be avoided in the previous proposition.

Example 4.13. Let X = R be the set of real numbers with the following finite starbase fractal structure:
for each n, let Γn = {[ k

2n , k+1
2n ] : −n2n ≤ k ≤ n2n − 1} ∪ {] ←,−n], [n,→ [}, and let Q be the set constructed

by picking an irrational number up from each An ∈ Γn. Let us show that G(X) = [0, 1]. If g ∈ G(X), let
gn = ρn(xn). If there exists n0 ∈ N such that −n0 ≤ xn ≤ n0 for all n ∈ N, then xn ∈ [−n0, n0] for all
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n ≥ n0, and then it is easy to see that g ∈ X. Otherwise, there are two options: first, xn ∈]n,→ [ for all n ∈ N;
second, xn ∈] ←,−n[ for all n ∈ N. Let us denote the point g by a in the first case and by b in the second
one, then G(X) is a two-point Hausdorff compactification of R, and hence it is homeomorphic to [0, 1] (see [13]
where it is proved that all Hausdorff compactifications of R by two points are topologically equivalent). Therefore
ClG(X)(Q) = G(X) = [0, 1] (since Q is dense in X and hence in G(X)).

On the other hand G(Q) = C, the Cantor set. To see that, note that Gn ∩ Q is discrete and hence G(Q)
is zero-dimensional. Then G(Q) is a perfect (since Q also is) zero-dimensional compact metrizable (since ΓQ is
zero-dimensional, then it is starbase, and then G(Q) is a metrizable (see [5])) space, and then it is the Cantor
set.

The following result is a characterization of perfect metrizable compact spaces by means of GF-compactifica-
tions. Note that the equivalence between (1) and (3) does not involve GF-spaces and is new (as far as the authors
know).

Theorem 4.14. Let X be a topological space and let Q be the set of rational numbers. The following statements
are equivalent:

1) X is a perfect metrizable compact space.
2) X is Hausdorff and X = G(Q,Γ), for some finite starbase fractal structure Γ over Q.
3) X is a metrizable compactification of Q.

Proof. 2) implies 3) by Corollary 4.3.
3) implies 1) is clear.
Let us prove 1) implies 2).
Let X be a perfect metrizable compact space, and let Γ′ be a finite starbase fractal structure over X. Let Q

be constructed by taking for each gn ∈ Gn a point x ∈ X with ρn(x) = gn. Since each Gn is finite, it is obvious
that Q is countable and it is also clear that Q is dense in X, and since X is perfect then Q is perfect too, see
for example [7]. Therefore Q is a countable perfect metrizable space, and then it is homeomorphic to the set of
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rational numbers by Sierpinski’s Theorem (see [16], and see [7] for a different proof). Also note that Q verifies
the hypotheses of Corollary 4.12, and then by proposition 4.11 we have that X = G(X,Γ′) is GF-isomorphic to
G(Q,Γ), where Γ is the restriction of Γ′ to Q. �

Corollary 4.15. Every metrizable compactifications of Q, the set of rational numbers, is of the form G(Q,Γ)
for some finite starbase fractal structure Γ over Q.

As a consequence we characterize the metrizable compactifications of a perfect space.

Corollary 4.16. Every metrizable compactifications of a separable metrizable perfect space X, is of the form
G(X,Γ) for some finite starbase fractal structure Γ over X.

Proof. Let Y be a metrizable compactification of X, and let Q be a countable (perfect) dense subspace of
X. Then Q is homeomorphic to the set of rational numbers by Sierpinski’s Theorem and Y is a metrizable
compactification of Q. By Corollary 4.16, there exists a finite starbase fractal structure Γ′ over Q, such that
Y = G(Q,Γ′). Let Γ′′ = G(Γ′) be the induced fractal structure over Y , and let Γ be the restriction of Γ′′ to X.
Since Y = Q′ and Q ⊆ X, then Y = X ′, so Y = G(X,Γ). �

The same result that we got for perfect spaces, we get for N, which can be considered as ”the opposite” of
perfectness (in topological sense).

Theorem 4.17. Let X be a metrizable compactification of N. Then there exists a finite starbase fractal
structure Γ over N such that X = G(N,Γ).

Proof. In [17] is shown that X = µ(K) for some compact metrizable space K = X \ N. In this proof, we use
the construction of µ(K) [17, Proof of Theorem 1]).

For each A′
n ∈ Γ′n, let An = A′

n ∪ {(di, k) ∈ M : di ∈ An; k ≥ n}. Now let Γn = {An : A′
n ∈ Γ′n} ∪ {{(di, k)} :

(di, k) ∈M ; i, k < n}
Let us prove that Γ is a finite starbase fractal structure over M .
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It is clear that Γn is finite for all n ∈ N, and that An is closed for all An ∈ Γn. Let n ∈ N and An ∈ Γn and let
(xi) be a sequence of elements of An which converges to x ∈ M . Let An = A′

n ∪ {(di, k) ∈ M : di ∈ A′
n; k ≥ n}.

We can suppose that x ∈ K, because in other case, {x} would be open and then there would be an element in
the sequence equal to x, and we would have that x ∈ An. Since (xi) converges to x, then there exists m ∈ N
such that xi ∈ Hx,n,n for all i ≥ m. If xi ∈ K for all i ∈ N, then xi ∈ U ′

xn, and hence x ∈ (U ′
xin)−1 =⋂

xi∈B′
n

B′
n ⊆ A′

n ⊆ An, so x ∈ An. If xi ∈ N for all i ∈ N, then xi = (di, j) with di ∈ U ′
xn and j > n. Then

x ∈ (U ′
din

)−1 =
⋂

di∈B′
i
B′

i ⊆ A′
n ⊆ An and hence x ∈ An. Anyway, there always exists a subsequence of (xi) in

any of the two previous cases, and hence x ∈ An, so An is closed.
It is also clear that St((dn,m),Γm+1) = {(dn,m)}. Let us show that St(x,Γn) = St(x,Γ′n) ∪ {(di, j) : di ∈

St(x, Γ′n); j ≥ n} for all x ∈ K. Let x ∈ K (note that then x ∈ An if and only if x ∈ A′
n), then St(x, Γn) =⋃

x∈An
An =

⋃
x∈A′

n
(A′

n ∪ {(di, k) ∈ M : di ∈ A′
n; k ≥ n}) = St(x, Γ′n) ∪ {(di, k) ∈ M : di ∈ St(x, Γ′n); k ≥ n}.

Now, let n, m ∈ N and x ∈ K, then there exists p ∈ N such that St(x,Γ′p) ⊆ U ′
xl, where l = max{n, m+1}. Then

St(x, Γp) = St(x, Γ′p) ∪ {(di, j) : di ∈ St(x,Γ′p); j ≥ p} ⊆ Hx,l,l−1 ⊆ Hx,n,m. Therefore Γ is starbase.
It is clear that An+1 ⊆ An if A′

n+1 ⊆ A′
n, and then Γn+1 is a refinement of Γn. Let x ∈ An.

If x 6∈ K then x = (di, j) with di ∈ A′
n and j ≥ n. If j = n then let An+1 = {(di, j)} ∈ Γn+1, and

x ∈ An+1 ⊆ An. If j > n, then An = A′
n ∪ {(dl, k) ∈ M : dl ∈ A′

n; k ≥ n}, and then di ∈ A′
n. Then there exists

A′
n+1 ∈ Γ′n+1 such that di ∈ A′

n+1 ⊆ A′
n. Hence (di, j) ∈ An+1 ⊆ An.

If x ∈ K, then x ∈ A′
n, and then there exists A′

n+1 ∈ Γ′n+1 such that x ∈ A′
n+1 ⊆ A′

n, and hence x ∈ An+1 ⊆ An.
Therefore Γ is a finite starbase fractal structure over M .
Analogously to the preceding paragraphs we can see that U∗

xn = (U ′
xn)∗ ∪ {(di, j) : di ∈ (U ′

xn)∗; j ≥ n} for all
x ∈ K, and since (U ′

xn)∗ ∩D 6= ∅ (by construction of D) for all x ∈ K then U∗
xn ∩ N = {(di, j) : di ∈ (U ′

xn)∗; j ≥
n} 6= ∅ for all x ∈ K. On the other hand, if x ∈ N it is obvious that (U ′

xn)∗ ∩N 6= ∅, and then (U ′
xn)∗ ∩N 6= ∅ for

all x ∈ X, and n ∈ N. Therefore by Corollary 4.12, we have that X = G(N,ΓN). �

The next result decomposes separable metrizable spaces into two pieces with certain properties. It is analogous
to a classical result, but it is not exactly the same.
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Lemma 4.18. Let X be a separable metrizable space, and let N be the subspace of isolated points of X. Then
X = P ∪ C, with P perfect in X (dense in itself and closed in X), C is scattered and P ∩ C = ∅. Moreover
C ⊆ N .

Proof. The first part is known. Note that C can be constructed from N in the following way, that also allows
to prove the second part.

Denote by Nd the derived set of N . If α is an ordinal, denote Nα = (
⋃

β<α Nβ)d. It is also known (see [14])
that there exists an ordinal α such that C = Nα (since it is scattered). Then, since Ad ⊆ A for each subset A
of X, we can deduce (using transfinite induction) that Aα ⊆ A for every subset A of X and every ordinal α.
Therefore C ⊆ N . �

The following result is going to be used in next theorem. The proof can be found in [8].

Lemma 4.19. Let X be a topological space. X is a separable metrizable space if and only if it admits a finite
starbase fractal structure.

The next result allows to get every metrizable compactification by mean of fractal structures. In its proof, we
use the previous results proved for perfect spaces and for the naturals.

Theorem 4.20. Let X be a separable metrizable space. If Y is a metrizable compactification of X then
Y = G(X,Γ) for some finite starbase fractal structure Γ over X.

Proof. Let Y = P ∪ C with P perfect in Y and C countable and scattered, and P ∩ C = ∅. Let N be the
subspace of isolated points of Y . Then C ⊆ N by the previous lemma.

If P = ∅, then Y is a compactification of N . If N is finite then Y is compact and the result is trivial. If N is
countable then it is homeomorphic to N the set of natural numbers, and the result follows from Theorem 4.17.

If N = ∅, then Y and X are perfect, and the result follows from Corollary 4.16.
If N is finite, then Y = P ∪N , and we can apply Corollary 4.16 to P , and construct a finite starbase fractal

structure over X from that of P with the desired property, adding the points of N .
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So, the only case we have to consider is to suppose that P is nonempty and N is countable but not finite.
Then it is clear that N is homeomorphic to N, the set of natural numbers.

Let Q′ be a dense and countable subspace of X \ N , let Q′′ be a dense and countable subspace of P ∩ N ,
and let Q = Q′ ∪ Q′′. Then Q is a dense and countable subspace of P (and hence dense in itself), since
Q = Q′∪Q′′ = X \N∪(P∩N) = P (note that since X is dense in Y , then N ⊆ X, and hence Y = X = X \N∪N ,
whence P \N ⊆ X \N). Therefore Q is homeomorphic to the rational numbers Q, by Sierpinski’s Theorem.

Since P is compact, it is a metrizable compactification of Q, and by Corollary 4.16 there exists a finite starbase
fractal structure Γ1 over Q such that P = G(Q,Γ1), and let Γ2 = I(Γ1) be the induced (finite starbase) fractal
structure over P . Let x ∈ P , then there exists xn ∈ Q such that ρn(x) = ρn(xn), and then (U2

xn)∗ ∩ Q =
(U1

xnn)∗ 6= ∅.
Let Γ3 be a finite starbase fractal structure over N \N (which is compact, since N is open in Y , and then we

can get a finite starbase fractal structure over it by Lemma 4.19), and let Γ4
n = Γ3

n∪{A2
n∩A3

n : A2
n ∈ Γ2

n;A3
n ∈ Γ3

n}.
Let us show that Γ4 is a finite starbase fractal structure over N \N .

It is clear that Γ4
n is a closed covering of N \N , and that Γ4

n+1 is a refinement of Γ4
n. Let x ∈ A4

n with A4
n ∈ Γ4

n.
If A4

n = A3
n with A3

n ∈ Γ3
n then there exists A3

n+1 ∈ Γ3
n ⊆ Γ4

n such that x ∈ A3
n+1 ⊆ A4

n. If A4
n = A2

n ∩ A3
n

with A2
n ∈ Γ2

n and A3
n ∈ Γ3

n, then there exists A2
n+1 ∈ Γ2

n+1 and A3
n+1 ∈ Γ3

n+1 such that x ∈ A2
n+1 ⊆ A2

n and
x ∈ A3

n+1 ⊆ A3
n, and then if A4

n+1 = A2
n+1 ∩ A3

n+1 ∈ Γ4
n+1, we have that x ∈ A4

n+1 ⊆ A4
n. It is also clear that

St(x, Γ4
n) = St(x,Γ3

n) for all x ∈ N \N (note that if x ∈ A2
n ∩ A3

n, then x ∈ A3
n ⊆ St(x, Γ3

n)). Therefore Γ4 is a
finite starbase fractal structure over N \N .

Let Γ5 be the finite starbase fractal structure over N constructed in Theorem 4.17 (using Γ4 as the fractal
structure over N \N). Then N = G(N,Γ5

N ) and (U5
xn)∗ ∩N 6= ∅ for all x ∈ N and n ∈ N.

Now let Γn = {A2
n : A2

n ∈ Γ2
n;A2

n∩N = ∅}∪Γ5
n∪{A2

n∪{(di, j) : di ∈ A2
n∩D, j ≥ n, j > i} : A2

n ∈ Γ2
n, A2

n∩N 6=
∅}.

Let us show that Γ is a finite starbase fractal structure over Y .
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It is clear that Γn is a closed covering. It is easy to see that Γn+1 is a refinement of Γn and that for all x ∈ An,
there exists An+1 ∈ Γn+1 such that x ∈ An+1 ⊆ An.

Let x ∈ X and let U be an open neighborhood of x in Y . If x 6∈ N , then there exists n ∈ N such that
St(x,Γ2

n) ⊆ U \N , and then St(x,Γn) = St(x, Γ2
n) ⊆ U . If x ∈ N , then there exists n ∈ N such that St(x, Γn) =

{x}. If x ∈ N \N , then there exist n, m ∈ N, with m ≥ n, such that St(x, Γ5
n) ⊆ U and St(x,Γ2

m) ⊆ U ∩St(x,Γ3
n),

St(x,Γ3
n) ⊆ U . Let Am ∈ Γm such that x ∈ Am. If Am ∈ Γ5

m, then Am ⊆ U , otherwise Am = A2
m ∪ {(di, j) :

di ∈ A2
m ∩ D, j ≥ m, j > i} with A2

m ∈ Γ2
m. Since x 6∈ N , then x ∈ A2

m, and then A2
m ⊆ U . Furthermore,

A2
m ⊆ St(x,Γ3

n), and then Am = A2
m∪{(di, j) : di ∈ A2

m∩D, j ≥ m} ⊆ St(x, Γ3
n)∪{(di, j) : di ∈ St(x,Γ3

n)∩D, j ≥
n} ⊆ St(x, Γ5

n) ⊆ U . Therefore St(x,Γm) ⊆ U , and Γ is a finite starbase fractal structure.
If x ∈ Y \N , and U is an open neighborhood of x contained in Y \N , then there exists a natural number n

such that St(x,Γ2
n) ⊆ U , but then U∗

xn = (U2
xn)∗ and U∗

xn ∩Q 6= ∅. Therefore U∗
xn ∩Q′ 6= ∅ (since U∗

xn ⊆ Y \N),
and hence U∗

xn ∩X 6= ∅ (since Q′ ⊆ X).
If x ∈ N \ N , then U−1

xn =
⋂

x∈An;An∈Γn
An =

⋂
x∈Bn;Bn∈Γ2

n∪Γ4
n

Bn ∪ {(di, j) : di ∈ A2
n ∩ D, j ≥ n} =⋂

x∈Bn;Bn∈Γ5
n

Bn = (U5
xn)−1 and hence Uxn = U5

xn and then U∗
xn = (U5

xn)∗ and so U∗
xn ∩ N 6= ∅. Therefore

U∗
xn ∩X 6= ∅.
Therefore U∗

xn∩X 6= ∅ for all x ∈ Y and for all n ∈ N (note that N ⊆ X) and by Corollary 4.12, Y = G(X,ΓX),
what proves the theorem. �

5. Characterization of metric continua

We start our study of the connectivity with the case of a poset.

Definition 5.1. Let G be a poset. We say that G is connected if for g, h ∈ G there exist n ∈ N and
{g0, g2, . . . , gn+1} ⊆ G (called a chain joining g and h) such that g0 = g, gn+1 = h and gi is related by ≤ with
gi−1 and gi+1 for all i = 1, . . . , n.

The following definition is in the spirit of Definition 5.1.
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Definition 5.2. Let Γ be a pre-fractal structure over X. We say that Γn is connected, if for all x, y ∈ X, there
exists a finite subfamily {Ai

n : 0 ≤ i ≤ k + 1} of Γn with x ∈ A0
n, y ∈ Ak+1

n and Ai
n ∩ Aj

n 6= ∅ for all |i − j| ≤ 1
(we call it a chain in Γn joining x and y). We say that Γ is connected if so is Γn for all n ∈ N.

The proof of the following proposition is straightforward.

Proposition 5.3. Let Γ be a fractal structure over a topological space X. Then G(Γn) is connected if and
only if the associated poset Gn(Γ) is connected.

If X is connected, then every fractal structure over it is connected.

Proposition 5.4. Let Γ be a fractal structure over a connected space X. Then Γ is connected.

Proof. Suppose that there exists n ∈ N and x, y ∈ X such that x and y cannot be joined by a chain in Γn. Let
Cx = {z ∈ X : there exists a chain joining x and z}. It is clear that if z ∈ Cx then St(z,Γn) ⊆ Cx, and hence
Uzn ⊆ Cx. Therefore Cx is open. On the other hand, Cx = St(Cx,Γn) =

⋃
An∩Cx 6=∅ An is closed, since Γn is

closure-preserving. Therefore Cx is a proper clopen set (it is nonempty since x ∈ Cx and it is not equal to X,
since y 6∈ Cx), which is a contradiction with the fact that X is connected. �

Anyway, if X is compact and the fractal structure is starbase, then the converse of Proposition 5.4 holds.

Proposition 5.5. Let Γ be a starbase fractal structure over a compact space X. Then X is connected if and
only if Γ is connected.

Proof. One implication is by proposition 5.4.
For the converse, suppose that Γ is connected, but X is not. Then there exists F1 and F2 nonempty clopen

subspaces of X such that X = F1 ∪ F2 and F1 ∩ F2 = ∅.
By [5, Lemma 3.4], there exists n ∈ N such that St(F1,Γn) ∩ F2 = ∅ and St(F2,Γn) ∩ F1 = ∅, and hence

St(F1,Γn) ∩ St(F2,Γn) = ∅.
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Since F1 and F2 are nonempty, let x ∈ F1 and y ∈ F2, and since Γn is connected, there exists {Ai
n : i =

0, . . . , k + 1} such that x ∈ A0
n, y ∈ Ak+1

n , and Ai
n ∩ Aj

n 6= ∅ for all |i − j| ≤ 1. Since x ∈ F1 and x ∈ A0
n, then

A0
n ⊆ St(F1,Γn) ⊆ F1. Let z1 ∈ A0

n ∩A1
n, then z1 ∈ F1, and then A1

n ⊆ St(F1,Γn) ⊆ F1. Inductively we get that
Ai

n ⊆ F1 for all 0 ≤ i ≤ k + 1, but then y ∈ F1 ∩ F2, which is a contradiction with F1 ∩ F2 = ∅. Therefore X is
connected. �

Compactness allows good properties for G(Γ).

Theorem 5.6. Let Γ be a fractal structure over a compact Hausdorff space X. Then G(Γ) is starbase.

Proof. Suppose that G(Γ) is not starbase, then there exist x ∈ X and l ∈ N such that for each n ∈ N there
exists xn ∈ St(x, G(Γn)) \ Uxl. Since X is compact, then there exists y ∈ X such that y is an adherent point of
(xn). By construction of the sequence it is clear that y 6= x, and then, since X is Hausdorff, there exists m ∈ N
such that Uxm ∩ Uym = ∅. Let k ≥ m be such that xk ∈ Uym. Since xk ∈ St(x, G(Γk)), then there exists z ∈ X

such that x, xk ∈ U−1
zk . Then z ∈ Uxk ∩Uxkk ⊆ Uxm ∩Uym (note that xk ∈ Uym, and then Uxkk ⊆ Uxkm ⊆ Uym),

and this contradicts that Uxm ∩ Uym = ∅. Therefore G(Γ) is starbase. �

We characterize metric continua.

Theorem 5.7. Let X be a topological space and let Q be the set of rational numbers. The following statements
are equivalent:

1) X is a metrizable continuum.
2) X is Hausdorff and X = G(Q,Γ) for some finite starbase fractal structure Γ over Q with G(Γ) connected.
3) X is Hausdorff and can be represented as the set of closed points of an inverse limit of a sequence of finite

connected spaces.

Proof. 1) implies 2). By Theorem 4.14, there exists Γ, a finite starbase fractal structure over Q such that
X = G(Q,Γ). Since X is connected, then G(Γ) (considered over X) is connected by Proposición 5.4, and hence
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Gn(Q) = Gn(X) is also connected for all n ∈ N by Proposition 5.3, and then it follows that G(Γ) is connected
(considered over Q) by Proposition 5.3 again, and it is clear that G(Q, G(Γ)) = G(Q,Γ).

2) implies 3). It is clear by the relation between fractal structures and subsets of a inverse limit of a sequence
of posets (see Lemma 3.6).

3) implies 1). X is compact metrizable by Theorem 4.14 and since G(Γ) is connected by Proposition 5.3 and
it is starbase by Theorem 5.6, then X is connected by Theorem 5.5. �

6. Extension theorems for GF-compactifications

One of the many equivalent ways to define Stone-Čech compactification is by means of the extension property.
This extensions of functions from a space to its compactification have become so important that every time
one defines a new compactification notion, one has to ask which extension theorems does this notion verify.
Moreover, since there are extension theorems for completions and quasi-uniformly continuous mappings and GF-
compactifications are a kind of completion, we must ask if quasi-uniformly continuous mappings may be extended
to our GF-compactification.

The next two results show how to extend a map between two GF-spaces to the GF-compactification of the
first one.

Theorem 6.1. Let Γ be a finite starbase fractal structure over X such that dΓ is point-symmetric, let (Y,∆)
be a half complete Hausdorff GF-space, and let f : X → Y be a quasi-uniformly continuous map. Then there exists
a continuous map F : G(X,Γ)→ Y such that F |X = f .

Proof. Let (in) and fn be as in Proposition 3.9.
Define F as follows. Let g = (ρn(xn)) ∈ G(X,Γ), then, since f is quasi-uniformly continuous, by Proposition

3.9 we have that φn+1(ρn+1(f(xin+1))) = ρn(f(xin+1)) = fn(ρin(xin+1)) = fn(ρin(xin)) = ρn(f(xin)), and hence
it follows that (ρn(f(xin

))) ∈ lim←−Gn(Y ). Since Y is half complete there exists z = z(g) ∈ Y such that ρn(z) ≤n

ρn(f(xn)). We define F (g) = z.
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Let us prove that F is well defined.
Let y ∈ Y with y 6= z, and such that ρn(y) ≤n ρn(f(xin)). Then f(xin) ∈ Uzn ∩ Uyn for all n ∈ N, which

contradicts that Y is a Hausdorff space. Therefore F is well defined.
Let us check that F (Ugin

) ⊆ St(F (g), G(∆n)) for all g ∈ G(X,Γ) and hence, since G(Γ) is starbase (by
Theorem 5.6), F is continuous.

Let h ∈ Ugin
, with g = (ρk(xk)) and h = (ρk(yk)), then ρin

(xin
) ≤in

ρin
(yin

), and hence, since f is
quasi-uniformly continuous and Proposition 3.9, we have that ρn(F (g)) ≤n ρn(f(xin

)) ≤n ρn(f(yin
)) and since

ρn(F (h)) ≤n ρn(f(yin)), then F (h) ∈ St(F (g), G(∆n)).
On the other hand, if x ∈ X, then f(x) ∈ Y and then F (ρ(x)) = f(x) (note that F (ρ(x)) ≤ ρ(f(x))), and

hence F is an extension of f . �

Corollary 6.2. Let Γ be a finite fractal structure over X such that dΓ is point-symmetric, let (Y,∆) be
a compact Hausdorff GF-space, and let f : X → Y be a quasiuniformly continuous map. Then there exists a
continuous map F : G(X,Γ)→ Y such that F |X = f .

Proof. It is clear that if Y is a compact Hausdorff space then G(∆) is starbase (by Theorem 5.6) and Y is half
complete, so we can apply the previous theorem. �

In the following result the map between two GF-spaces is extended to a map between both GF-compactifi-
cations.

Corollary 6.3. Let (X,Γ) and (Y,∆) be finite GF-spaces such that dΓ and d∆ are point-symmetric, with
G(Y,∆) Hausdorff, and let f : X → Y be a quasiuniformly continuous map. Then there exists a continuous map
F : G(X,Γ)→ G(Y,∆) such that F |X = f .

Proof. We apply the above corollary to the map f : X → G(Y,∆). �

The next proposition shows that any continuous map can be made a GF-map for some fractal structures, which
will have additional properties depending on the properties of the spaces.
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Proposition 6.4. Let (X,Γ′) and (Y,∆) be GF-spaces, and let f : X → Y be a continuous function. Then
there exists a fractal structure Γ over X such that f is a GF-map. Moreover if Γ′ is starbase then Γ is starbase
and if Γ′ and ∆ are finite then Γ is finite too.

Proof. Let Γn = {A′
n ∩ f−1(Bn) : A′

n ∈ Γ′n;Bn ∈ ∆n}. Let us prove that Γ is a fractal structure over X.
It is clear that Γn is a closed covering, that Γn+1 is a refinement of Γn and that for all x ∈ An with An ∈ Γn

there exists An+1 ∈ Γn+1 such that x ∈ An+1 ⊆ An. Let us show that Uxn ⊆ U ′
xn for all x ∈ X, or what

is the same, that U−1
xn ⊆ (U ′

xn)−1 for all x ∈ X. Let y ∈ U−1
xn , and let A′

n ∈ Γ′n be such that x ∈ A′
n. Let

Bn ∈ ∆n be such that f(x) ∈ Bn. Then it is clear that x ∈ A′
n ∩ f−1(Bn), and since y ∈ U−1

xn =
⋂

x∈An
An, then

y ∈ A′
n ∩ f−1(Bn) ⊆ A′

n. Then y ∈
⋂

x∈A′
n

A′
n = (U ′

xn)−1. Therefore Γ is a fractal structure over X.
Let us prove that Uxn = U ′

xn ∩ f−1(Uf(x)n), and hence open.
Let y ∈ Uxn, then y ∈ U ′

xn by the previous paragraph. Let Bn ∈ ∆n be such that f(y) ∈ Bn. Then
y ∈ f−1(Bn). Let A′

n ∈ Γ′n be such that y ∈ A′
n and let An = A′

n ∩ f−1(Bn). Then it is clear that y ∈ An, and
since x ∈ U−1

yn we have that x ∈ An ⊆ f−1(Bn), and hence f(x) ∈ Bn. Therefore f(x) ∈
⋂

f(y)∈Bn
Bn = U−1

f(y)n,
and then f(y) ∈ Uf(x)n, and hence y ∈ f−1(Uf(x)n).

Conversely, let y ∈ U ′
xn ∩ f−1(Uf(x)n). Let An = A′

n ∩ f−1(Bn) be such that y ∈ A′
n, then y ∈ A′

n, and since
x ∈ (U ′

yn)−1 =
⋂

y∈C′
n

C ′
n we have that x ∈ A′

n. On the other hand, y ∈ f−1(Bn) and then f(y) ∈ Bn. Since
f(x) ∈ U−1

f(y)n =
⋂

f(y)∈Dn
Dn we have that f(x) ∈ Bn, and then x ∈ f−1(Bn), and hence x ∈ A′

n∩f−1(Bn) = An.
Therefore x ∈

⋂
y∈An

An = U−1
yn , and hence y ∈ Uxn.

Let us prove that f is a GF-map.
Let y ∈ U−1

xn , and let Bn ∈ ∆n be such that f(x) ∈ Bn; then x ∈ f−1(Bn). Let A′
n ∈ Γ′n be such that x ∈ A′

n.
Then x ∈ A′

n ∩ f−1(Bn), and since y ∈ U−1
xn =

⋂
x∈An

An, we have that y ∈ A′
n ∩ f−1(Bn) ⊆ f−1(Bn) and hence

f(y) ∈ Bn. Then f(y) ∈
⋂

f(x)∈Bn
Bn = U−1

f(x)n. Therefore f(Uxn) ⊆ Uf(x)n and f is a GF-map.
Finally note that St(x,Γn) ⊆ St(x, Γ′n), and hence Γ is starbase if Γ′ is. It is also clear that if Γ′ and ∆ are

finite, so is Γ. �
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If both spaces have better properties, we can get the following two improvements.

Corollary 6.5. Let X be a separable metrizable space, let Y be a second countable space and let f : X → Y be
a continuous map. Then there exist a finite starbase fractal structure over X and a finite fractal structure over
Y such that f is a GF-map.

Proof. Since X is a separable metrizable space, then it admits a finite starbase fractal structure (by Lemma
4.19), and since Y is a second countable space, then it admits a finite fractal structure (by Lemma 4.2), and hence
we can apply the previous proposition. �

Corollary 6.6. Let X be a separable metrizable space, let Y be a compact metrizable space and let f : X → Y
be a continuous map. Then there exists a second countable T1 compactification K(X) of X and a continuous map
F : K(X) → Y such that F |X = f .

Proof. Let Γ′ and ∆ be finite starbase fractal structures over X and Y respectively. Then, by the previous
proposition there exists a finite starbase fractal structure Γ over X, such that f is a GF-map, and then, by
Proposition 6.1, there exists F : K(X)→ Y an extension of f , where K(X) = G(X,Γ) is a second countable T1

compactification of X. �

7. GF-compactifications as Wallman’s compactifications

Let Γ be a finite fractal structure over X with dΓ being point symmetric (for example if it is starbase). We define
L = L(Γ) = {

⋃
i∈I

⋂
j∈J Aij

nij
: Aij

nij
∈ Γnij

; I, J finite sets}. It is clear that it is a lattice. On the other hand,
since {Uxn : x ∈ X;n ∈ N} is an open base for X, then {X \ Uxn : x ∈ X;n ∈ N} is a closed base for X, and
since X \Uxn =

⋃
x6∈An

An ∈ L, then L is a closed base for X. Since X is T0, then L is a β-lattice. To check that
it is an α-lattice, let x ∈ X and let L ∈ L such that x 6∈ L. Since L is closed, and since dΓ is point symmetric,
then there exists n ∈ N such that U−1

xn ⊆ X \ L. Since U−1
xn =

⋂
x∈An

An ∈ L, then L is an α-lattice.
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Therefore W (X,L), the Wallman’s compactification associated with L, is a T1 compactification of X. Let
∆n = {BAn : An ∈ Γn}.

Theorem 7.1. ∆ is a finite fractal structure over W (X,L).

Proof. It is clear that ∆n is a finite closed covering for all n ∈ N, and since BL1∪L2 = BL1 ∪ BL2 we have
that BAn =

⋃
An+1⊆An

BAn+1 . Let F be a L-ultrafilter such that F 6∈ BL. Let L =
⋃

i∈I

⋂
j∈J Aij

nij
, and let

n = max {nij : i ∈ I; j ∈ J}.
Let us prove that UFn ⊆ W (X,L) \ BL (to avoid confusion, note that UFn is nothing new; it is the usual

Uxn, only that here x is F). Let G be an ultrafilter such that G ∈ UFn and suppose that G ∈ BL. Since
BL =

⋂
j∈J

⋃
i∈I BAij

nij
, then for all j ∈ J , there exists i = i(j) ∈ I such that G ∈ BAij

nij
. Then, since

F ∈ U−1
Gn =

⋂
G∈BAn

BAn , we have that F ∈ BAij
nij

for all j ∈ J , and then F ∈
⋂

j∈J

⋃
i∈I BAij

nij
= BL. The

contradiction proves the desired result.
Therefore ∆ is a finite fractal structure over W (X,L). �

We will denote W (X,L) by W (X,Γ) hereafter. Note that W (X,Γ) is a T1 second countable (since it is a finite
GF-space) Wallman compactification of X (see [9]).

Remark 7.2. Note that BAn
= ClW (X,Γ)An and BAn

∩X = An, and hence ∆|X = Γ.

Theorem 7.3. Let Γ be a finite fractal structure over X such that the associated quasiuniformity is point
symmetric. Then G(X,Γ) is GF-isomorphic to W (X,Γ).

Proof. Let us prove that U∗
Fn ∩X 6= ∅.

U∗
Fn =

⋂
An∈F BAn

\
⋃

An 6∈F BAn
, and hence

⋂
An∈F An ∈ F and

⋃
An 6∈F An 6∈ F , and then

⋂
An∈F An \⋃

An 6∈F An 6= ∅ (if
⋂

An∈F An \
⋃

An 6∈F An = ∅, then
⋂

An∈F An ⊆
⋃

An 6∈F An and hence
⋃

An 6∈F An ∈ F). Let
x ∈

⋂
An∈F An \

⋃
An 6∈F An. Then Fx ∈ U∗

Fn (where Fx is the L-ultrafilter generated by x).
Let gn : Gn(X)→ Gn(W (X,Γ)) be defined by gn(U∗

xn) = U∗
Fxn. Let us show that gn is a poset isomorphism.
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Note first that Fy ∈ BAn
if and only if An ∈ Fy, or equivalently y ∈ An. Then y ∈ Uxn if and only if

x ∈ U−1
yn =

⋂
y∈An

An, or what is the same, Fx ∈
⋂
Fy∈BAn

BAn , that is, Fy ∈ UFxn. From this equivalence we
can deduce that gn is well defined, injective and order-preserving. Since we have proved that U∗

Fn∩X 6= ∅, then it
is clear that gn is surjective. Therefore gn is a poset isomorphism. Moreover, it holds that φn+1 ◦ gn+1(U∗

xn+1) =
φn+1(UFxn+1) = UFxn = gn(U∗

xn) = gn ◦ φn+1(U∗
xn+1), and hence φn+1 ◦ gn+1 = gn ◦ φn+1.

Therefore, by Proposition 3.8, G(X,Γ) is GF-isomorphic to W (X,Γ). �

Our final result is the classical theorem due to Aarts (see [1]), and can be obtained by applying our techniques.
This was a major breakthrough in the problem of finding if all Hausdorff compactification are of Wallman type,
posed by Frink in [11] and finally solved in the negative by Uljanov in [18].

Corollary 7.4. All metrizable compactifications of any (separable metrizable) space are of Wallman type.

Proof. It follows from Theorem 4.20 and the previous theorem. �
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17. Terasawa J., Metrizable compactification of ω is unique, Topology and its Applications 76 (1997), 189–191.
18. Uljanov V. M., Solution of the fundamental problem of bicompact extensions of Wallman type, Dokl.-Akad.-Nauk-SSSR 233

(1977), no. 6, 1056–1059.

F. G. Arenas, Area of Geometry and Topology Faculty of Science, Universidad de Almeŕıa, 04120 Almeŕıa, Spain, e-mail : farenas@ual.es
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