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CLASSICAL SOLUTIONS OF THE PERTURBED WAVE
EQUATION WITH SINGULAR POTENTIAL

A. VAIDYA and G. A. J. SPARLING

Abstract. This paper discusses the solutions to the perturbed wave equation con-
taining a singular potential term in the Lorentzian metric. We present the classical

solution to the problem using the separation of variables method for any dimension,

n. Special solutions are obtained for even n’s and properties of these solutions are
discussed. Finally, we also consider the solution to the Cauchy problem for the case
n = 2.

1. Introduction

The primary aim of this paper is to discuss the classical (in the sense of classical
mechanics) structure of the solutions to the perturbed, massless, wave equation

2φ+
n(n+ 2)
(1 + x2)2

φ = 0(1)

where 2 represents the D’Alembertian operator, φ is a scalar field and x =
(t,x) ∈Mn, n dimensional Minkowski space. The interesting feature of this prob-
lem is the external potential term, n(n+2)

(1+x2)2 with the metric signature (-,+,+,+,...)
which gives rise to a singularity as t2 → 1 + x2

1 + x2
2 + ... + x2

n−1. The equation
(1) emerges from a first order perturbation of the wave equation where the field φ
can be thought of as a background fluctuation to the wave equation.

The existing literature on the subject of semilinear wave equations, abounds in
abstract analytic studies of these equations. However, there is little in terms of
concrete examples of equations with singularity. Our focus in this paper will be to
study the specific semilinear equation (1) and analyze its properties. Furthermore,
since the solution to the full problem is a rather difficult if not an impossible task,
we try and understand the structure of the first order perturbation problem. We
do realize that equation (1) provides perhaps a simpler case of a partial differential
equation with a singular potential term where calculations can be made in a fairly
rigorous manner. However, having said this, it must be pointed out that equation
(1) is not arbitrarily chosen. The primary motivation for this study comes from
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our attempt to quantize the field, φ, which has not been dealt with here and will
be the subject of a later, follow-up paper (see [4] for some preliminary results).
The classical results, in particular, the Cauchy Problem, which is studied here,
are essential to the quantization procedure [1]. We adopt the geometric scheme
proposed by Irving Segal for the quantization of nonlinear hyperbolic equations
[1]. Though a description of this program is outside the scope of this paper, it will
suffice to say that it involves the construction of a distribution function D(x, x′),
such that it solves equation (1) along with the initial conditions D(x, x′)|t=a = 0
and ∂tD(x, x′)|t=a = δ(x − b) where we write x′ = (a, b). This function D(x, x′)
directly allows us to establish a symplectic structure upon the underlying classical
manifold which is a starting point for the quantization procedure. Though the
ultimate objective of this study lies in the quantization, the solution and prop-
erties of the classical problem are interesting in themselves and, we feel, merit
independent attention. Also note that though our problem is motivated primarily
by the physics behind the equations, we choose to study the problem in arbitrary
n dimension since there is considerable interest in the physics community in some
dimensions greater than four.

In section 2 we discuss the origins of the perturbed wave equation. We argue
here that the powers of the field variables emerge in such a way as to make the field
conformally invariant. This invariance property is discussed in section 3. In the
following section 4, we discuss the classical solution to equation (1) using a simple
separation of variables argument and special properties of solutions are discussed in
the case of even dimensions. Though a closed form solution to this problem can be
obtained without difficulty, the properties of the equation in different dimensions
are nontrivial. The main contribution of this paper lies in providing a solution to
the central problem by a recursive formula, for any even dimension. This allows
us to generate the solution to the perturbed problem in terms of the solution to
the wave equation. The final section is devoted to the Cauchy problem for n = 2.
The discussion here is restricted to presenting the final result of the initial value
problem; details are omitted due to the tedious nature of the calculations. The
more interesting, and perhaps complicated aspect of the problem, namely, the
quantization of the field and its behavior in the neighborhood of the singularity
is reserved for future study. At this stage, however, the paper remains more of
mathematical interest. The above mentioned aspects of the problem must be
looked at before we can make comments on the physics behind the equations.

2. The Perturbed Wave Equation

The perturbed wave equation in n dimensions can be obtained from the Lagrangian
density function of the form

L =
∫

(
1
2
gµν

∂ψ

∂xµ
∂ψ

∂xν
− k(n− 2)2

2
ψ

2n
n−2 )

√
det(g)dnx(2)

where k ∈ R+ and gµν is the metric tensor with the Lorentzian signature.



PERTURBED WAVE EQUATION 167

Applying the Euler-Lagrange condition to L yields the n-dimensional wave
equation, namely

2ψ + kn(n− 2)ψ
n+2
n−2 = 0.(3)

The power of ψ here is chosen so that the field equation remains conformally
invariant (see section 3). Now, we choose λ to be a scalar and suppose that ψ

λ
also satisfies the wave equation

2(
ψ

λ
) + kn(n− 2)(

ψ

λ
)

n+2
n−2 = 0.(4)

Then, on multiplying by λ and choosing λ = k
n−2

4 equation (4) reduces to

2ψ + n(n− 2)ψ
n+2
n−2 = 0(5)

where we have managed to eliminate the constant k. It can be seen without
difficulty that ψ0 = (1 + x2)

2−n
2 solves equation (5).

If we now let ψ = ψ0 + εφ, then the first order perturbation about this solution
yields

2φ+
n(n+ 2)
(1 + x2)2

φ = 0(6)

which is the equation we shall attempt to solve in the following sections. Note
that the dimensional dependence of the wave equation appears in the potential
term only in the form n(n+ 2).

It can be seen from the form of the Lagrangian that the problem is not well
defined, as presented above, when n = 2. The situation can be remedied by making
a simple transformation to the Lagrangian density function, by letting ψ = η

n−2
n+2

in equation (2) and dividing throughout by (n−2)2. The variation of the resulting
form of L for n = 2 becomes

2χ+ 8
k

a
eaχ = 0(7)

where we set η = eaχ. It is readily verified that the solution to equation (7) is
given by χ0 = − 2

a log(k + x2). Therefore perturbing χ in the form χ = χ0 + εφ
yields at o(ε),

2φ+
8k

(k + x2)2
φ = 0(8)

which, as can be seen is identical to equation (1) for n = 2 with k = 1.

3. Conformal Invariance

In this section, we investigate the conformal invariance property of the equation (1)
in curved space. It is a well established result that 2ψ + (n−2)R

4(n−1) ψ is conformally
invariant [5],[6], where R represents the curvature term. Therefore it suffices,
in our problem, to show that the term ψ

2n
n−2 is also invariant under conformal

transformations. A relatively simple argument for the invariance property of this
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term is presented. Consider the Lagrangian function (for n 6= 1) in curved space
given by

L =
∫ (

1
2
∂µψ∂µψ −

k(n− 2)2

2
ψ

2n
n−2 − (n− 2)R

8(n− 1)
ψ2

) √
det(g)dnx.(9)

If we let g → Ω2g and ψ → Ωαψ, where Ω is a smooth positive scalar field, then
the relevant term

ψ
2n

n−2
√

det(g) → Ω
2nα
n−2ψ

2n
n−2 Ωn

√
det(g)

= Ω
2nα
n−2+nψ

2n
n−2

√
det(g)

= ψ
2n

n−2
√

det(g)

for α = 2−n
2 . Therefore for the appropriate choice of weight, α, the perturbed

wave equation, originating from equation (9), is conformally invariant. Hence for
n = 4, for instance, α = −1.

4. Classical Solutions

4.1. Solution in n dimensions

Using separation of variables technique we can write

φ = Σkfk

(
− 1
R2

)
yk(x)(10)

where
√
x · x = R is the radial term and yk(x) (the harmonic term) is a polynomial

homogeneous in x of degree k and which obeys the wave equation i.e. 2yk(x) = 0.
Then yk must obey the following equation,

t∂tyk + x1∂x1yk + x2∂x2yk + ...+ xn−1∂xn−1yk = kyk

for each k (see property iii of the homogeneous operator in section 4.2). We impose
the physical boundary condition

limR→∞fk(−
1
R2

) = 0(11)

for each k. We also require that each term fk
(
− 1
R2

)
yk(x) in the expression above

solve the differential equation (1).

Substituting for φ in the perturbed equation we obtain the differential equation

4uf ′′k (u)− (2n− 8 + 4k)f ′k(u)−
n(n+ 2)
(1− u)2

fk(u) = 0(12)

where the prime here is used to indicate the derivative with respect to the variable
u. We then let fk(u) = (1− u)

n+2
2 gk(u). The result of this transformation is the

differential equation,

g′′k +
(
−n+ 4− 2k
2u(1− u)

− n+ 8− 2k
2(1− u)

)
g′k −

(n+ 2)(2− k)
2u(1− u)

gk = 0(13)
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after factoring out (1−u)1+ n
2 . We recognize this to be Gauss’ differential equation

[2]

y′′ +
(

c

z(1− z)
− 1 + a+ b

(1− z)

)
y′ − ab

z(1− z)
y = 0,(14)

where a = 2− k, b = n+2
2 , c = 2− k− n

2 . Gauss’ differential equation is known to
have twenty-four different solution on the real line. These are also referred to as
Kummer’s solutions and arise from various transformations of equation (14). In
attempting to provide an integral representation of the solution, we note that [2]

g12(u) = (−u)n
2 (1− u)−1−nF [−n

2
, k − 1, k +

n

2
,
1
u

](15)

provides the appropriate solution to the equation (1). Hence retracing our steps
we have

φ =
∫

0

1

p(tx)
(1− t)

n
2

t2
(t+ (

t− 1
1 + x2

))
n
2 dt,(16)

where p(x) =
∑
k yk(x). That φ is indeed a solution to the original equation (1)

is verified in [4].

4.2. Solution in Even Dimensions

We observe here that the problem simplifies and reveals more interesting features
when n is even. The special results we obtain for the case of even dimensions is
based on recognition of the fact that the solution to the perturbed equation can be
written in the form φ =

∑n
2
r=0 Pr(x)

1
(1+x2)r . This is proved in the Lemma below.

Lemma 1. The solution to equation (1) can be written in the form

φ =

n
2∑

r=0

Pr(x)
1

(1 + x2)r
(17)

where 2Pr(x) = 0 for every r ∈ [0, n2 ].

Proof. The solution to the perturbed equation is given by

φ =
∫ 1

0

p(tx)α
n
2

(1− t)
n
2

t2
dt(18)

where p(tx) =
∑
k pk(tx), α = (t+ 1−t

1+x2 ). Hence for n even, α is a polynomial. So
using the Binomial Series expansion we have

α
n
2 = t

n
2 (1 +

1− t

t(1 + x2)
)

n
2 = t

n
2

n
2∑

r=0

(n
2

r

)
(1− t)r

tr(1 + x2)r
(19)

where
(n

2
r

)
=

n
2 !

r!( n
2−r)!

, the binomial coefficient. Therefore

φ =

n
2∑

r=0

((n
2

r

) ∫ 1

0

p(tx)(1− t)
n
2 +rt

n
2−2−rdt

)
1

(1 + x2)r
=

n
2∑

r=0

Pr(x)
1

(1 + x2)r

where p(tx) satisfies the wave equation and therefore, so does Pr. �
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Therefore, for n = 2, φ = P0 + P1ρ, where ρ = 1
(1+x2) , and for n = 4,

φ = P0 + P1ρ+ P2ρ
2 etc. This representation is also valid for odd n, although in

that case the above representation yields an infinite series. This is not conducive to
the kind of calculations that we perform below. In addition, even n suffices for our
purposes since our ultimate interest lies in the physically relevant dimension n = 4.

We will now show that the equation (1) can be solved directly by taking equation
(17) as an ansatz and where the coefficients Pr’s are, in fact, not independent
but determined by a certain recursion relation and in addition, also solve the
wave equation. For sake of convenience we shall define the homogeneous operator
H := x · ∇ which has the following well known properties [3]:

(i) Hpn(x) = npn(x)
(ii) The commutation relation, [2,H] = 22, from which it follows that
(iii) 2Hy(x) = (H + 2)2y(x) .

Theorem 1. The function Pr introduced in equation (17) obeys the following
recursion relation:

Pr =
2(r + 1)[2H + (n− 2r − 4)]Pr+1

(n− 2r)(n+ 2r + 2)
(20)

Proof. Let us take φ as in equation (17). Then applying the box operator to
both sides of the equation, with the assumption that 2Pr = 0, yields

2φ =

n
2∑

r=0

[Pr (2ρr) + 2∇Pr · ∇ρr]

=

n
2∑

r=0

[((4r2 + 4r − 2nr)Pr − 4rHPr)ρr+1 − (4r2 + 4r)Prρr+2].

Hence the wave equation becomes

0 =

n
2∑

r=0

[((4r2 + 4r − 2nr)Pr − 4rHPr)ρr+1 − (4r2 + 4r − n2 − 2n)Prρr+2]

=

n
2−1∑
0

[2(r + 1)(2r + 4− n− 2H)Pr+1 − (4r2 + 4r − n2 − 2n)Pr]ρr+2.

So it is sufficient that we have

0 = 2(r + 1)[(2r + 4− n− 2H)Pr+1 − (4r2 + 4r − n2 − 2n)Pr]

⇒ (n− 2r)(n+ 2r + 2)
2(r + 1)

Pr = [2H + n− 2r − 4]Pr+1

from which the Theorem follows. �

We will now verify by an induction argument that the equation (20) is consistent
with the assumption that Pr satisfies the wave equation.

Proposition 1. If Pn
2

obeys 2Pn
2

= 0 then 2Pr = 0 for any 0 ≤ r ≤ n
2 .
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Proof. We prove the proposition by a reverse induction argument. It can be
seen by concrete calculations that 2P1 = 0,2P2 = 0, etc. Let us assume that
2Pn

2
= 0. Then it can easily be shown that all Pr’s satisfy 2Pr = 0. Starting

from the above theorem, we write

Pr = a1[a2H + a3]Pr+1

where a1 = 2(r+1)
(n−2r)(n+2r+2) , a2 = 2 and a3 = n − 2r − 4. Therefore applying the

box operator to both sides of the equation gives us

2Pr = a12[a2H + a3]Pr+1

= a1a22HPr+1 + a1a32Pr+1

= [a1a2(H + 2) + a1a3]2Pr+1

where we have employed the second property of the homogeneous operator in the
last equality. Using this last recursion relation in r, it is easily seen that 2Pr must
be zero for every 0 ≤ r ≤ n

2 . �

Table 1 provides examples, in different dimensions, of the recursion relationship
obtained in equation (20).

Dimension, n Relations

2 P0 = (H−1)P1
2

4 P0 = HP1
6

P1 = (H−1)P2
2

6 P0 = (H+1)P1
12

P1 = HP2
5

P2 = (H−1)P3
2

8 P0 = (H+2)P1
20

P1 = (H+1)P2
9

P2 = 3HP3
14

P3 = (H−1)P4
2

Table 1. The recursion relations for Pr.

4.3. Inverse Relations

To establish completeness, we must, in addition to the result of the previous sec-
tion, also show that the mapping F : Pn

2
→ φ is surjective. This can be affirmed

by checking to see if we can invert the expression in equation (17) above i.e. if
we can write each of the Pr’s as a function of φ. In this section we shall discuss
this inverse relationship for certain specific dimensions. Table 2 summarizes the
findings. At the outset, it must be stated that calculations pertaining to inversion
become extremely complex with increasing n. For this purpose results are shown
only up to n = 6, although, in principle, we can do so for any even dimension. We
shall present our calculations below for dimensions n = 2 and n = 4. However,
unlike in section 4.2, we are unable to obtain a general recursion formula in this
case.



172 A. VAIDYA and G. A. J. SPARLING

1. Case n = 2

Lemma 2. The operator (H + 1)−1 exists.

Proof. We define

φk =
∫ 1

0

tkφ(tx)dt

where k ≥ 0 ensures convergence of the integral. Then,

Hφk =
∫ 1

0

tkx · ∇(φ(tx))dt =
∫ 1

0

tk+1 d

dt
(φ(tx))dt.(21)

Now integrating by parts we have

Hφk =
∫ 1

0

d

dt

[
tk+1φ(tx)

]
dt−

∫ 1

0

(k + 1)tkφ(tx)dt

=
∫ 1

0

d

dt

[
tk+1φ(tx)

]
dt− (k + 1)φk

⇒ (H + k + 1)φk = φ(x)
⇒ φk = (H + k + 1)−1φ(x).

The Lemma follows, since φ is well defined and from the definition of φk (by
setting k = 0 in our case). �

Proposition 2. P0 and P1 are invertible and are given by

P0 = φ+ (H + 1)−1(−2ρφ)
P1 = ρ−1(H + 1)−1(2ρφ)

Proof. We write the equation φ = P0 + ρP1 in the form

ρ−1φ = ρ−1P0 + P1.(22)

Applying the box operator to both sides of the above equation yields

2
(
ρ−1φ

)
= 2

(
ρ−1P0 + P1

)
= 2

(
ρ−1P0

)
Carrying the box operator through we have

LHS = 2(ρ−1)φ+ ρ−12(φ) + 2∇ρ−1∇φ = ρ−12φ+ 4(H + 1)φ
RHS = 2(ρ−1)P0 + ρ−12P0 + 2∇ρ−1∇P0 = 4(H + 1)P0.

Hence equating the two sides and simplifying we get

P0 = φ+ (H + 1)−1(−2ρφ)(23)

and hence it follows that

P1 = ρ−1(φ− P0) = ρ−1(H + 1)−1(2ρφ).

�

2. Case n = 4
We follow the same line of arguments as above for this case too.

Lemma 3. The operator (H + 2)−1(H + 3)−1 exists.
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Proof. Let us define

φk =
∫ 1

0

tkφ(tx)dt

φk,m =
∫ 1

0

∫ 1

0

tksm (φ(stx)) dtds.

Then

Hφk,m =
∫ 1

0

∫ 1

0

tksmH(φ(stx))dtds =
∫ 1

0

∫ 1

0

tk+1sm
d

dt
(φ(stx))dtds

using equation (21). Now integrating the right hand side of the last integral by
parts we have

Hφk,m =
∫ 1

0

smφ(sx)ds− (k + 1)
∫ 1

0

∫ 1

0

tksm (φ(stx)) dtds

= φm − (k + 1)φk,m

by the definition above. Therefore on simplification

(H + k + 1)φk,m = φm

⇒ (H +m+ 1)(H + k + 1)φk,m = (H +m+ 1)φm = φ(x).

The last equality follows from Lemma 2. Note that φ is well defined and using the
definitions of φk, φk,m above it is clearly seen that the operator (H+2)−1(H+3)−1

exists (with k = 1 and m = 2). From the pattern of the two Lemma’s above, it can
be inferred that the Lemma can be generalized for any higher (even) dimension. �

Proposition 3. P0, P1and P2 are invertible and are given by

P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ]
P1 = (4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0]
P2 = ρ−2φ− ρ−2(φ− 6(H + 2)−1(H + 3)−1(ρ(H + 1)φ))

− ρ−1(4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0)]

Proof. We have
ρ−2φ = ρ−2P0 + ρ−2P1 + P2.(24)

So

2(ρ−2φ) = 2(ρ−2P0 + ρ−2P1 + P2) = 2(ρ−2P0) + 2(ρ−2P1).

Simplifying the left and right hand sides of the last equation above separately,

LHS = (2ρ−2)φ+ ρ−22φ+ 2∇ρ−2∇φ = ρ−1(8H + 24)φ− 32φ
RHS = (2ρ−2)P0 + (2ρ−1)P1 + 2∇ρ−2∇P0 + 2∇ρ−2∇P1

= ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0.

Therefore

ρ−1(8H + 24)φ− 32φ = ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0.(25)
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We now apply the box operator a second time on both sides to get

22(ρ−2φ) = 2(ρ−1(8H + 24)φ− 32φ)
= 24(2ρ−1)φ+ 24ρ−12φ+ 48∇ρ−1∇φ
= 32(H + 3)(H + 2)φ− 192ρ(H + 1)φ

22(ρ−2P0 + ρ−2P1 + P2) = 2(ρ−1(8H + 24)P0 + (4H + 8)P1 − 8P0)
= 24(2ρ−1)P0 + 48∇ρ−1∇P0 + 8(2ρ−1)HP0

+ 16∇ρ−1∇(HP0) = (32H2 + 160H + 192)P0.

So equating the left and right sides above we have

P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ](26)

and using equation (25) we obtain

P1 = (4H + 8)−1(ρ−1(8H + 24)φ− 32φ− ρ−1(8H + 24)P0 + 8P0)(27)

with P0 given as above. Similarly P2 can be obtained in terms of φ, P0 and P1

from equation (24). �

Dimension, n Relations

2 P0 = φ + (H + 1)−1(−2ρφ)

P1 = ρ−1(H + 1)−1(2ρφ)

4 P0 = (H + 2)−1(H + 3)−1[(H + 2)(H + 3)φ− 6ρ(H + 1)φ]

P1 = (4H + 8)−1[ρ−18(H + 3)φ− 32φ− 8ρ−1(H + 3)P0 + 8P0]

P2 = ρ−2φ− ρ−2P0 − ρ−1P1

6 P0 = φ + (H + 4)−1(H + 3)−1(H + 2)−1[12ρ(H + 1)(H + 2)φ

+12ρ2(H − 2)φ + 24ρ3φ]

P1 = 18(H + 2)−1(H + 3)−1P0 + (H + 2)−1(H + 3)−1

[−3ρ−1(H + 3)(H + 4)P0 + 3ρ−1(H + 3)(H + 4)φ

−6(5H + 11)φ + 36ρφ]

P2 = (H + 2)−1[2P1 + 6ρ−1P0 − 2ρ−1(H + 3)P1 − 3ρ−2(H + 4)P0

+3ρ−2(H + 4)φ− 18ρ−1φ]

P3 = ρ−3φ− ρ−1P2 − ρ−2P1 − ρ−3P0

Table 2. Inverse Relations for Pr for different values of n.

5. Cauchy Problem

In this section we discuss the solution to the Initial Value Problem for equation (1).
The primary motivation for this attempt comes from Segal’s outline for quantiza-
tion [1] which first requires us to obtain a fundamental solution to the differential
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equation. However, the Cauchy problem is an interesting result in itself and an
important aspect of the classical discussion. Also, the discussion is restricted to
the case n = 2 since the computations can be quite complex in higher dimensions.
However the technique used to solve the problem for n = 2 can be mimicked for
higher dimensions. It must also be stated that we solved the problem by analytic
continuation into the Euclidean space [4]. The solution to the initial value problem
for equation (1) in two dimensions is given by

φ =
φ(x− (t− a)) + φ(x+ (t− a))

2

− 2
∫ x−(t−a)

x+(t−a)

(t(1 + a2 + w2) + a(x2 − 2wx− t2 − 1))
(1 + x2 − t2)(1− a2 + w2)2

φ(w)dw

− 1
2

∫ x−(t−a)

x+(t−a)

(1− x2 + t2)(1 + a2 − w2)− 4at+ 4wx
(1 + x2 − t2)(1− a2 + w2)

ϕ(w)dw(28)

where φ(w) and ϕ(w) refer to the initial conditions, φ|t=a = φ(w) and
∂tφ|t=a = ϕ(w). It is easily verified that φ, as given above satisfies the perturbed
wave equation. The reader is referred to [4] for the proof. Notice that the expres-
sion for φ above brings out the causal structure of the function, which is evaluated
between the points x− (t− a) and x+ (t− a).
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