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UNIQUENESS AND INDEPENDENCE OF SUBMATRICES
IN SOLUTIONS OF MATRIX EQUATIONS

Y. TIAN

Suppose that there is an X satisfying AX = B, where A and B are m × n and
m × k known matrices, respectively. Partition now the matrix equation in the
block form

[A1, A2 ]
[

X1

X2

]
= A1X1 + A2X2 = B.(1)

In this note we consider the following two basic problems related to this matrix
equation:

(i) Under what conditions, the block X1 or X2 in solutions to (1) is unique?
(ii) Under what conditions, the block X1 and X2 in solutions to (1) are inde-

pendent, that is, for any two solutions
[

X ′
1

X ′
2

]
and

[
X ′′

1

X ′′
2

]
of (1), the matrix[

X ′
1

X ′′
2

]
is also a solution of (1)?

From the theory of generalized inverses of matrices (see, e.g., [2], [6]), the
equation in (1) is consistent if and only if AA−B = B. In this case, the general
solution to (1) can be written as

X = A−B + ( In −A−A )V,(2)

where A− is a generalized inverse of A, that is, AA−A = A, V is arbitrary matrix.
Let X1 and X2 in X be n1×k, and n2×k matrices, respectively. Then the general
expressions of X1 and X2 can be written as

X1 = P1A
−B + P1( In −A−A )V,(3)

X2 = P2A
−B + P2( In −A−A )V,(4)

where P1 = [ In1 , 0 ] and P2 = [ 0, In2 ]. If rankA < n, then the solution to (1)
is not unique. For simplicity, we use {X1} and {X2} to denote the collections of
solutions X1 and X2 to (1), that is,

{X1} = {X1 |X1 = P1A
−B + P1( In −A−A )V1 },(5)

{X2} = {X2 |X2 = P2A
−B + P2( In −A−A )V2 }.(6)
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We are now ready to find the solution to the two problems in (i) and (ii).

Theorem 1. Suppose that the quation in (1) is consistent. Then
(a) The block X1 in the solution to (1) is unique if and only if

rank A = n1 + rank A2,(7)

or equivalently,

rank A1 = n1 and R(A1) ∩R(A2) = {0},(8)

where R(·) denotes the range (column space) of a matrix.
(b) The block X2 in the solution to (1) is unique if and only if

rankA2 = n2 and R(A1) ∩R(A2) = {0}.(9)

Proof. It is obvious to see from the general expression of X1 in (3) that X1 is
unique if and only if

P1( In −A−A ) = 0.(10)

From the following rank formula ([4])

rank
[

M
N

]
= rankM + rank (N −NM−M ),(11)

it can be seen that (10) holds if and only if

rank
[

A
P1

]
= rankA.(12)

Substituting P1 = [ In1 , 0 ] into it and simplifying yields (7). Also observe that

rank A ≤ rank (A1) + rank (A2) ≤ n1 + rank (A2).

Thus (7) is equivalent to (8). Similarly one can show the result in Part (b). �

Theorem 2. Suppose that the equation (1) is consistent. Then the two blocks
X1 and X2 in the solution to (1) are independent, that is, for any X1 ∈ {X1} and

X2 ∈ {X2}, the corresponding matrix X =
[

X1

X2

]
is also a solution of (1) if and

only if

R(A1) ∩R(A2) = {0}.(13)

Proof. Substituting the general expressions of X1 and X2 in (5) and (6) into
AX −B gives

AX −B

= A1X1 + A2X2 −B

= A1P1A
−B + A1P1( In −A−A )V1 + A2P2A

−B + A2P2( In −A−A )V2 −B

= (A1P1 + A2P2 )A−B + A1P1( In −A−A )V1 + A2P2( In −A−A )V2 −B

= [A1P1( In −A−A ), A2P2( In −A−A ) ]
[

V1

V2

]
.
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This equality implies that for any X1 ∈ {X1} and X2 ∈ {X2}, the corresponding

matrix X =
[

X1

X2

]
is also a solution of (1) if and only if

A1P1( In −A−A ) = 0 and A2P2( In −A−A ) = 0.

From the rank formula (11), these two equalities are equivalent to

rank
[

A
A1P1

]
= rankA and rank

[
A

A2P2

]
= rankA,(14)

where

rank
[

A
A1P1

]
= rank

[
A1 A2

A1 0

]
= rankA1 + rank A2

and

rank
[

A
A2P2

]
= rank

[
A1 A2

0 A2

]
= rankA1 + rank A2.

Thus (14) is equivalent to (13). �

The result in Theorem 2 can be extended to the situation when X is partitioned
into p blocks.

Theorem 3. Suppose that AX = B is consistent and partition it as

AX = [A1, A2, . . . , Ap ]


X1

X2

...
Xp

 = A1X1 + A2X2 + · · ·+ ApXp = B.(15)

Then the blocks X1, X2, · · · , Xp in the solution to (15) are independent if and
only if

rank [A1, A2, . . . , Ap ] = rank A1 + rank A2 + · · ·+ rank Ap.(16)

It is well known that any linear matrix equation can equivalently be transformed
into a linear matrix equation with the form AX = B by the Kronecker product
of matrices, see, e.g., [3]. Thus uniqueness and independence of submatrices in
solutions of any linear matrix equation can be examined through the results in the
above three theorems. For example, consider a matrix equation of the form

AXB + CY D = E,(17)

where A, B, C and D are m × p1, q1 × n, m × p2, q2 × n, and m × n matrices,
respectively. The consistency and solution of the matrix equation were previously
examined, see, e.g., [1], [5], and [7].

From the Kronecker product of matrices, this equation can equivalently be
written as

(BT ⊗A) vecX + (DT ⊗ C) vecY = vec E.(18)

Assume now that (17) is consistent. Then from Theorem 1(a), the solution X to
(17) is unique if and only if

rank (BT ⊗A) = p1q1 and R(BT ⊗A) ∩R(DT ⊗ C) = {0}.(19)
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From Theorem 2, the solutions for X and Y to (17) are independent if and only if

R(BT ⊗A) ∩R(DT ⊗ C) = {0}.(20)

Notice a basic fact that rank (M ⊗N) = (rank M)(rankN), thus rank (BT ⊗A) =
p1q1 is equivalent to rankA = p1 and rankB = q1. It is shown in [9] that

rank [A⊗B, C ⊗D ]

≥ rank (B) rank [ A, C ]− rank (B) rank (C) + rank (C) rank (D),

rank [A⊗B, C ⊗D ]

≥ rank (A) rank [ B, D ]− rank (A) rank (D) + rank (C) rank (D).
Hence if R(A) ∩R(C) = {0} or R(B) ∩R(D) = {0}, then

rank [A⊗B, C ⊗D ] = rank (A⊗B) + rank (C ⊗D).

Thus if R(A) ∩R(C) = {0} or R(BT ) ∩R(DT ) = {0}, then (20) holds.

Remarks. For any consistent linear matrix equation, one can investigate the
uniqueness and independence of submatrices in solutions to the matrix equation.
As continuation of this work, the uniqueness and independence of submatrices
X1, X2, X3, X4 in solutions to the consistent matrix equation

[A1, A2 ]
[

X1 X2

X3 X4

][
B1

B2

]
= C

are discussed in [10]. As applications, the uniqueness and independence of the

submatrices G1, G2, G3, G4 in generalized inverse M− =
[

G1 G2

G3 G4

]
are also

presented in [10]. Further, suppose AX = C and AXB = C are two consistent
matrix equations over the field of complex numbers and write their solutions as
X = X0+iX1 (see [8]). Then it is natural to ask the uniqueness and independence
of the two real matrices X0 and X1. Matrix equations have been basic objects
for study in linear algebra. Besides AX = B and AXB = C, some more general
linear matrix equations have also been examined in the literature, for example,
[A1XB1, A2XB2 ] = [ C1, C2 ], A1XB1 + A2XB2 = C, A1X1B1 + A2X2B2 = C,
A1X1B1+A2X2B2+A3X3B3 = C. The uniqueness and independence of solutions
to these equations are also worth investigating.
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