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UNIVALENT HARMONIC MAPPINGS
CONVEX IN ONE DIRECTION

METIN ÖZTÜRK

Abstract. In this work some distortion theorems and relations between the coeffi-

cients of normalized univalent harmonic mappings from the unit disc onto domains

on the direction of imaginary axis are obtained.

1. Introduction

J. Clunie and T. Sheil-Small studied the class SH of all harmonic, complex-
valued, sense-preserving, univalent mappings defined on the unit disc U , which
are normalized by f(0) = fz(0) − 1 = 0. Such functions f can be written in the
form f = h + ḡ where h(z) = z + a2z

2 + . . . and g(z) = b1z + b2z
2 + . . . are

analytic in U and |g′(z)| < |h′(z)| for z in U . It follows that |b1| < 1 and hence
f − b1f also belongs to SH . Thus we often restrict ourselves to the subclass S0

H

of SH consisting of those functions in SH with fz̄(0) = 0. It is proven that S0
H is

a compact and normal family and many other fundamental properties of S0
H and

some of its subclasses are obtained [2].
But the general coefficient problems for the functions in the classes SH and

S0
H are not yet solved. For this reason many mathematicians have tried to solve

coefficient problems in the subclasses of SH [1], [2], [3], [5].
This paper is concerned with the subclass K0

H(θ) of S0
H with the images f(U)

convex in the direction of θ, (0 ≤ θ < π). In this subclass we shall obtain distortion
theorems and coefficient estimates.

Lemma 1.1. [5, Theorem 5.7] First we give two important results that will be
used during our work, [4], [5]. A function f = h + ḡ in SH maps U onto a convex
domain if and only if the analytic function h−e2iθg is univalent and maps U onto
a domain convex in direction for all θ, 0 ≤ θ < π.

Lemma 1.2. [4, Theorem 1] Let ϕ(z) be a non-constant function regular in
U . The function ϕ(z) maps univalently onto a domain convex in direction of
imaginary axis if and only if there are numbers µ and ν, 0 ≤ µ < 2π and 0 ≤ ν ≤ π,
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such that

(1) Re{−ieiµ(1− 2 z e−iµ cos ν + z2e−2iµ)ϕ′(z)} ≥ 0, z ∈ U.

2. Univalent Harmonic Mappings Convex in the Direction
of the Imaginary Axis

Instead of studying a class of functions in the direction of any θ, 0 ≤ θ < π, it is
enough to study the class of harmonic univalent functions convex in the direction of
the imaginary axis. That is because, if the harmonic univalent function f = h + ḡ
is convex in the direction of some θ, there is a real α so that F (z) = eiαf(e−iαz)
is convex in the direction of the imaginary axis.

Let KH(i) and K0
H(i) denote the subclasses of SH and S0

H , respectively, which
are convex on the direction of the imaginary axis.

Remark 2.1. A harmonic function f = h+ḡ maps U univalently onto a domain
convex in the direction of the imaginary axis if and only if the analytic function
h + g is univalent and maps U onto a domain convex in the direction of the
imaginary axis.

We obtain the following result from Lemma 1 and Remark 1:

Remark 2.2. A harmonic function f = h + ḡ in KH(i) if and only if there
numbers µ , (0 ≤ µ < 2π) and ν, (0 ≤ ν ≤ π), such that

(2) Re{−i eiµ(1− 2 z e−iµ cos ν + z2e−2iµ)[h′(z) + g′(z)]} ≥ 0, z ∈ U.

For the functions

h(z) = z +
∞∑

n=2

anzn and g(z) =
∞∑

n=2

bnzn

analytic in U , let f = h + g in K0
H(i). If we take

(3) q(z) = −i eiµ(1− 2 z e−iµ cos ν + z2e−2iµ)[h′(z) + g′(z)]

and

(4) p(z) =
q(z) + i cos µ

sinµ
;

then Re p(z) > 0 and p(0) = 1. Therefore the function p(z) belongs the class P
of the analytic functions with positive real part. Furthermore, since sinµ ≥ 0 for
µ ∈ [0, π], Re q(z) ≥ 0. From (3) and (4)

(5) φ′(z) = h′(z) + g′(z) =
cos µ + i sin ν p(z)

1− 2 z e−iµ cos ν + z2e−2iµ

can be obtained.
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Theorem 2.1. A harmonic function f in K0
H(i) if and only if there is analytic

function p1 ∈ P and two constant µ, ν ∈ [0, π] such that

(6) f(z) = Re φ(z) + i Im
∫ z

0

φ′(ς) p1(ς) dς.

Proof. Let f = h + ḡ is in K0
H(i) then we can write

(7) f(z) = Re(h + g) + i Im(h− g)

and

(8) h′ − g′ = (h′ + g′)
h′ − g′

h′ + g′
= φ′

h′ − g′

h′ + g′
.

We set w = −g′/h′ then the function w is analytic in U , w(0) = 0 and |w(z)| < 1.
If we take

p1(z) =
h′(z)− g′(z)
h′(z) + g′(z)

=
1 + w(z)
1− w(z)

then p1 is analytic in U and p1(0) = 1, Re p1 > 0 and p1 ∈ P . If we consider (5),
(7) and (8) altogether then we obtain (6). �

Theorem 2.2. If f = h + ḡ in K0
H(i) and

h(z) = z +
∞∑

n=2

anzn and g(z) =
∞∑

n=2

bnzn , z ∈ U,

then

(9) |an| ≤
(n + 1)(2n + 1)

6
, |bn| ≤

(n− 1)(2n− 1)
6

and
||an| − |bn|| ≤ n.

Equality occurs for the harmonic Koebe function k0 = h + ḡ, where

h(z) =
6z − 3z2 + z3

6(1− z)3
and g(z) =

72z2 + z3

6(1− z)3
.

Proof. From h′ + g′ = φ′ and h′ − g′ = φ′ p1 we get

h′(z) = e−iµ[cos µ + i p(z) sinµ]
1

1− 2 z e−iµ cos ν + z2e−2iµ

1 + p1(z)
2

� 1 + z

1− z

1
(1− z)2

1
1− z

.

Here � means that the moduli of the function on the left are bounded by the
corresponding coefficients of the function on the right. Thus,

h′(z) �
∞∑

n=0

(n + 1)(n + 2)(2n + 3)
6

zn

i.e.

|nan| ≤
n(n + 1)(2n + 1)

6
and |an| ≤

(n + 1)(2n + 1)
6

.
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Similarly,

g′(z) = φ′(z)
1 + p1(z)

2
� 1 + z

1− z

1
(1− z)2

−z

1− z
=

∞∑
n=0

−n(n + 1)(2n + 1)
6

zn

i.e.

|nbn| ≤
(n− 1) n (2n− 1)

6
and |bn| ≤

(n− 1)(2n− 1)
6

.

From (9), we get
||an| − |bn|| ≤ |an + bn| ≤ n.

�

Theorem 2.3. If f = h + ḡ in K0
H(i), then for |z| = r < 1, and b = | cos ν|,

0 ≤ ν ≤ π,
(10)

1− r

(1 + r)2(1 + 2br + r2)
≤ |h′(z)| ≤


1 + r

(1− r)2(1− 2br + r2)
; r <

1− sin ν

b
1

(1− r)3 sin ν
;
1− sin ν

b
≤ r < 1

and
(11)

r(1− r)
(1 + r)2(1 + 2br + r2)

≤ |g′(z)| ≤


r(1 + r)

(1− r)2(1− 2br + r2)
; r <

1− sin ν

b
1

(1− r)3 sin ν
;
1− sin ν

b
≤ r < 1

Both inequalities are sharp.

Proof. Since f is sense-preserving, the Jacobian of f Jf(z) = |h′(z)|2−|g′(z)|2 >
0 or |g′(z)| < |h′(z)|, z ∈ U . If we define a(z) = g′(z)/h′(z), a(z) satisfies the
conditions of Schwarz Lemma. Then by (5)

(12) zh′(z)[1 + a(z)] = [cos µ + ip(z) sinµ]kν(z)

where

(13) kν(z) =
z

1− 2z cos ν + z2
.

Since p ∈ P, by [4, Lemma 2]
1− r

1 + r
≤ | cos µ + i p(z) sinµ| ≤ 1 + r

1− r

for |z| = r < 1, and equality occurs for µ = π/2 and for the function p(z) =
(1 + z)/(1− z). Furthermore by [4, Lemma 2]

(14)
r

1 + 2br + r2
≤ |k′ν(z)| ≤


r

1− 2br + r2
; r <

1− sin ν

b
1

(1− r2) sin ν
;
1− sin ν

b
≤ r < 1

(12), (13) and (14) together gives (10). The inequality |g′(z)| ≤ |z||h′(z)| together
with (10) gives (11). �
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Theorem 1, for ν = 0 or ν = π the top one of the inequalities (10) and (11),
and for ν = π/2, the bottom one is valid for every r, 0 ≤ r < 1.

The following is a result of Theorem 1:

Remark 2.3. If f = h + ḡ in K0
H(i) and ν = 0, π, then for |z| = r < 1

1− r

(1 + r)3
≤ |h′(z)| ≤ 1 + r

(1− r)4

and
r(1− r)
(1 + r)3

≤ |g′(z)| ≤ r(1 + r)
(1− r)4

.

If ν = π/2, then
1− r

(1 + r)(1 + r2)
≤ |h′(z)| ≤ 1

(1− r)3

and
r(1− r)

(1 + r)(1 + r2)
≤ |g′(z)| ≤ 1

(1− r)3
.

References

1. Avcı Y. and Zlotkiewicz E., On Harmonic Univalent Mappings, Ann. Universitatis Mariae
Curie-Sklodowska, XLIV, 1 (1990), 1–7.

2. Clunie J. G. and Sheil-Small T., Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser.

AI Math. 9 (1984), 3–25.
3. Joseph A. C. and Livingston A. E., Integral Smoothness Properties of Some Harmonic Map-

pings, Complex Variables 11 (1989), 95–110.
4. Royster W. C. and Ziegler M., Univalent Functions Convex in One Direction, Publ. Math.

Debrecen 23 (1976), 339–345.
5. Sheil-Small T., Constants for Planer Harmonic Mappings, London Math. Soc. 42, 2 (1990),

237–248.
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