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“MORE OR LESS”
FIRST-RETURN RECOVERABLE FUNCTIONS

M. J. EVANS and P. D. HUMKE

Abstract. It is known that a real-valued function defined on the unit interval is

first-return recoverable if and only if itbelongs to Baire class one. Further, it is
known that if first-return recoverability is replaced by stronger notions, such as

universal or consistent first-return recoverability, then familiar subclasses of the

Baire one functions are obtained. Likewise, if first-return recoverability is weakened
to first-return recoverability except on a set of measure zero [first category], then

one obtains precisely the class of Lebesgue measurable functions [functions having

the Baire property]. Here we examine the situation where even smaller exceptional
sets (countable or scattered) are excluded, and then explore possibility of combining

these various methods for strengthening and weakening recoverability.

1. Introduction

It has been over a decade since the class of real-valued functions on the unit interval
I ≡ [0, 1] which are first-return recoverable was shown to be identical to the class
of Baire one functions [5]. In subsequent years both strengthenings and weaken-
ings of the notion of first-return recoverability have been used to characterize some
standard classes of functions in real analysis. For example, the universally first-
return recoverable functions are the quasicontinuous Baire one functions [4] and
the almost everywhere first-return recoverable functions are the Lebesgue mea-
surable functions [6]. In this paper we wish to pursue a systematic investigation
of classifications of functions which arise when strengthening and weakening the
notion of first-return recovery in various natural ways. Before beginning, we need
to recall the terminology and notation associated with first-return recoverability.

Underlying most of our subsequent definitions is the notion of what we call
a trajectory. A trajectory is any sequence x = {xn} of distinct points in I, whose
range is dense in I. Any countable dense set D ⊂ I is called a support set and,
of course, any enumeration of D becomes a trajectory. For a given trajectory
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x = {xn} and a finite union H of intervals, we let r(x, H) denote the first xn that
belongs to H.

For x ∈ [0, 1] and ρ > 0 we let Bρ(x) = {y ∈ [0, 1] : |y−x| < ρ}. As is standard,
we denote the restriction of a function f : I → R to a set E ⊆ I by f |E .

Definition 1.1. Let x ∈ I and let x = {xn} be a fixed trajectory. The first
return route to x, R(x, x) = {wx,k(x)}∞k=1 ( or {wk(x)}∞k=1 when the trajectory is
understood), is defined recursively via

w1(x) = x1,

wk+1(x) =
{

r
(
x, B|x−wk(x)|(x)

)
if x 6= wk(x)

x if x = wk(x).

We say that f is first return recoverable with respect to x at x provided that

lim
k→∞

f(wk(x)) = f(x),

and if this happens for each x ∈ I, we say that f is first return recoverable with
respect to x. Finally, we say that f is first-return recoverable if it is first-return
recoverable with respect to some trajectory.

2. Functions which are recoverable except on small sets

Here we shall consider functions f : I → R which are recoverable except at points
in a set which is small in one sense or another.

Definition 2.1. Let f : I → R. We say that f is
1. almost recoverable (f ∈ AR) if there exists a trajectory xwhich recovers f

at each point of I \ S, where S is of measure zero.
2. typically recoverable (f ∈ T R) if there exists a trajectory x which recovers

f at each point of I \ S, where S is of first category.
3. nearly recoverable (f ∈ NR) if there exists a trajectory x which recovers f

at each point of I \ S, where S is countable.
4. very nearly recoverable (f ∈ SR) if there exists a trajectory x which recovers

f at each point of I \ S, where S is scattered. (Recall that a set S ⊂ R is
scattered if it contains no nonempty dense-in-itself subset, or equivalently,
if S is a countable Gδ.)

In [6] it was shown that f ∈ AR if and only if f is measurable, and that f ∈ T R
if and only if f has the Baire property. Our first immediate goal for this section
is to classify the smaller class NR. We shall utilize a few simple lemmas.

Lemma 2.1. If E = {en} is scattered, and {yn} ⊂ R is an arbitrary countable
set, then

h(x) ≡

{
0 if x 6∈ E

yn if x = en

is a Baire 1 function.
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Proof. We actually show that h is in the first Borel class which in our case, is
equivalent. Let U be open. Then h−1(U) = EU ∪ ZU where EU ⊂ E and ZU

is either ∅ or [0, 1]\E depending on whether U contains 0 or not. In either case,
EU ∈ Fσ. �

The next lemma is an immediate consequence.

Lemma 2.2. Suppose f is a Baire 1 function, {yn} is countable and E = {en}
is scattered. Then

g(x) ≡

{
f(x) if x 6∈ E

yn if x = en

is a Baire 1 function.

Proof. Since E is scattered, it follows from Lemma 2.1 that h ∈ B1 where

h(x) ≡

{
0 if x 6∈ E

yn − f(en) if x = en

.

But, g(x) = f(x) + h(x) and as the class of Baire 1 functions is closed under
addition, the result follows. �

With this lemma we are able to establish the following result, which may be of
independent interest.

Lemma 2.3. If f : [0, 1] → R belongs to honorary Baire class two, then there
exists a Baire class one function g∗ such that the set E ≡ {x : f(x) 6= g∗(x)} is
countable and such that the graph of g∗ restricted to the complement of E is dense
in the graph of g∗.

Proof. Let f belong to honorary Baire class two. Then there is a Baire 1
function g for which {x : f(x) 6= g(x)} ≡ E is countable. Let A denote [0, 1]\E.

If ε > 0, we say that a point x is ε-isolated from a set S if the distance between
x and S is at least ε. Using the notation C(f |A, x) to denote the cluster set of f |A
at x, we let

E1 = {x ∈ E : g(x) ∈ C(f |A, x)}
E2 = {x ∈ E : g(x) 6∈ C(f |A, x)} ≡ {x ∈ E : g(x) 6∈ C(g|A, x)}.

For each natural number n we set

E2,n ≡ {x ∈ E2 : g(x) is
1
n
− isolated from C(g|A, x)},

and note that E2 =
⋃∞

n=1 E2,n. We claim that each E2,n is scattered. To see this,
fix an n and suppose that E2,n contains a dense-in-itself subset D. Then D is
perfect and since g belongs to Baire class one, there is a point s ∈ D at which the
function g|D is continuous at s. Choose 0 < ε < 1/4n and δ > 0 so that if x ∈ D
and |x−s| < δ, then |g(x)−g(s)| < ε. Next, choose x∗ ∈ D such that |x∗−s| < δ.

Since D is perfect and E is countable, there exists a sequence {xk} in D ∩ A
such that xk → x∗. Since each xk ∈ A and since the distance from g(x∗) to
C(g|A, x∗) is at least 1/n, there exists a natural number K such that for all k > K,
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|g(xk) − g(x∗)| > 1/2n and |xk − x∗| < δ − |x∗ − s|. For such a k > K we have
xk ∈ D, |xk − s| < δ, and

|g(xk)− g(s)| ≥ |g(xk)− g(x∗)| − |g(x∗)− g(s)| > 1
2n

− ε > ε,

and this contradiction completes the proof of our claim that E2,n is scattered.
Next, define H0 = E1 and for n ∈ N, Hn = E2,n+1\E2,n. Now let h0(x) = g(x)

and

hn+1(x) =

{
hn(x) if x 6∈ Hn

y∗(x) if x ∈ Hn

where y∗(x) is any point of C(g|A, x) with 1
n+1 < |y∗(x)−g(x)| ≤ 1

n in the case that
n ≥ 1 and any point of C(g|A, x) whatsoever if n = 0. It follows from Lemma 2.2
that hn belongs to Baire class one for each n ∈ N. Moreover, it is easy to see that
{hn} is uniformly Cauchy and hence converges to a Baire 1 function g∗. Finally,
g∗(x) = g(x) whenever x ∈ A and for x ∈ E, g∗(x) ∈ C(g|A, x) = C(g∗|A, x) and
as such, the graph of f |A = g∗|A is dense in the graph of the Baire 1 function,
g∗. �

Theorem 2.1. A function f : I → R belongs to NR if and only if f belongs
to honorary Baire class two.

Proof. Let f : I → R belong to honorary Baire class two and let g∗ be the
Baire one function from Lemma 2.3. Let A be the co-countable set on which f
and g∗ agree. Since g∗|A is dense in the graph of g∗, we may find a support set
D ⊂ A for which g∗|D is dense in g∗. Then Theorem 1 in [4] assures that there is
an ordering x of D that recovers g∗ everywhere. Since f and g∗ agree on A and,
in particular, agree on D, x recovers f at each point of A. Thus, f is recoverable
nearly everywhere.

Conversely, suppose that f ∈ NR. Let x be a trajectory which recovers f at
each point of a co-countable set A. Note that without loss of generality we may
assume each x(n) belongs to A. F. Hausdorff [9] has shown that a function belongs
to honorary Baire class two if and only if the inverse image of each open set differs
from an Fσ set by a countable set. We shall show that f has this property.

First, viewing A as a metric space, we have that the function f |A : A → R is
recoverable everywhere on A. In [3] it was shown that if a function from a metric
space to a separable metric space is recoverable everywhere, then the function is
of Borel class one. (See the comment following the proof of Theorem 1 in [3].)

Now, let U be an open set in R. Since f |A is Borel class one, there is an Fσ

subset F of [0, 1] such that (f |A)−1 (U) = F ∩A. Then

f−1(U) = (f |A)−1 (U) ∪
(
f−1(U) ∩Ac

)
= (F ∩A) ∪

(
f−1(U) ∩Ac

)
=

[
(F ∩A) ∪ (F ∩Ac) ∪

(
f−1(U) ∩ F c ∩Ac

)]
\

[
Ac \ f−1(U)

]
= F ∪

(
f−1(U) ∩ F c ∩Ac

)
\

(
Ac \ f−1(U)

)
.
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Since both f−1(U) ∩ F c ∩ Ac and Ac \ f−1(U) are countable sets, we have that
f−1(U) differs from an Fσ set by a countable set. �

If we further restrict the exceptional set for recoverability to not only being
countable, but having countable closure, then we are back to precisely the class of
Baire one functions, as was observed in [2]. More generally, we have

Theorem 2.2. Let f : I → R. The following are equivalent:

1. f belongs to Baire class one.
2. f is recoverable
3. f is recoverable except on a scattered set.

Proof. Since 1. and 2. were shown to be equivalent in [5], and since 2. ⇒ 3.,
only 3. ⇒ 2. requires proof here. To this end, suppose D is a support set, E ⊂ I\D
is scattered, and x = {xn} is an ordering of D which recovers f except on E. We
shall produce an ordering y of D ∪ E which recovers f on I. More specifically,
we shall define y in such a way that for each x ∈ I \ E, the first return route
to x based on the trajectory y, R(y, x), and the first return route to x based on
the trajectory x, R(x, x) have a common tail sequence. Indeed, we shall arrange
things so that for each x ∈ I \E, R(y, x) contains only finitely many points of E.

Enumerate E as {ek}. We shall define the modified trajectory y inserting each
ek between two terms in x. Since E is scattered, it is a countable Gδ and we
may write E = ∩∞i=1Gi, where each Gi is open and G1 ⊃ G2 ⊃ . . . . Let n1 be
sufficiently large that if (a, b) is the component of G1 containing e1, then there
exist k1, k2 < n1 such that a < xk1 < e1 < xk2 < b. Then choose n2 larger than n1

such that if (a, b) is the component of G2 containing e2, then there exist k1, k2 < n2

such that a < xk1 < e2 < xk2 < b. Continue this process and order D ∪ E as
y = {x1, x2, . . . , xn1 , e1, xn1+1, . . . , xn2 , e2, xn2+1, . . . }. Now, if {ekj

} ⊆ R(y, x),
then x ∈ ∩∞j=1Gij

= E. Thus, if x ∈ I \ E, then R(y, x) can contain only finitely
many points of E and, thus, from some point on R(y, x) and R(x, x) agree. Thus,
y recovers f on I. �

3. Functions which are universally recoverable except on small
sets

In the previous section we explored the possibility of weakening the condition of
recoverablility. One way to strengthen the condition is as follows.

Definition 3.1. Let f : I → R. The function is called universally recoverable
(f ∈ UR) if for every support set D there is an ordering x of D, such that f is
first-return recoverable with respect to x.

In [4] it was shown that f ∈ UR if and only if f is a quasicontinuous function
in Baire class one. Let us recall the definition of quasicontinuity:

Definition 3.2. A function f : I → R is quasicontinuous at x if every neigh-
borhood of (x, f(x)) contains a point of the graph of f |C(f), where C(f) denotes
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the set of points of continuity of f . We let Q(f) denote the set of points of qua-
sicontinuity of f and NQ(f) = [0, 1] \ Q(f). If Q(f) = I, we say that f is a
quasicontinuous function.

In this section we investigate the various classes resulting from mixing the notion
of universality with those of the previous section. Here are the definitions we
utilize:

Definition 3.3. Let f : I → R. We say that f is
1. almost universally recoverable (f ∈ AUR) if there is a measure zero set S

such that every support set D has an ordering which recovers f at each
point of I \ S.

2. universally almost recoverable (f ∈ UAR) if for each support set D, there
is an ordering x of D and a measure zero set S(x) such that x recovers f
at each point of I \ S(x).

3. typically universally recoverable (f ∈ T UR) if there is a first category set
S such that every support set D has an ordering which recovers f at each
point of I \ S.

4. universally typically recoverable (f ∈ UT R) if for each support set D, there
is an ordering x of D and a first category set S(x) such that x recovers f
at each point of I \ S(x).

5. nearly universally recoverable (f ∈ NUR) if there is a countable set S such
that every support set D has an ordering which recovers f at each point of
I \ S.

6. universally nearly recoverable (f ∈ UNR) if for each support set D, there
is an ordering x of D and a countable set S(x) such that x recovers f at
each point of I \ S(x).

7. very nearly universally recoverable (f ∈ SUR) if there is a scattered set S
such that every support set D has an ordering which recovers f at each
point of I \ S.

8. universally very nearly recoverable (f ∈ USR) if for each support set D,
there is an ordering x of D and a scattered set S(x) such that x recovers f
at each point of I \ S(x).

We proceed to classify each of these eight function classes. Along the way
we shall show that there are really only four distinct classes since some of the
adverbs “commute.” For example, we shall see that a function is almost universally
recoverable if and only if it is universally almost recoverable. We begin with a few
straightforward lemmas.

Lemma 3.1. Suppose f belongs to either UAR or UT R and r < s. Then
there does not exist an interval J in which both E1 = f−1 ((−∞, r]) and E2 =
f−1 ([s,+∞)) are dense in J .

Proof. We will prove this lemma for f ∈ UAR, the proof for f ∈ UT R being
similar. Suppose such an interval J exists and choose support sets D1 and D2

such that Di ⊂ Ei ∩ J for i = 1, 2. Since f ∈ UAR, there are enumerations x1
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of D1 and x2 of D2 such that for almost every x ∈ [0, 1], {f(wx1,k(x))} → f(x)
and for almost every x ∈ [0, 1], {f(wx2,k(x))} → f(x). It follows that for almost
every x ∈ J , f(x) ≤ r and also for almost every x ∈ J , f(x) ≥ s. Since r < s, this
contradiction completes the proof. �

Lemma 3.2. Suppose f belongs to either UAR or UT R and r < s. Then
{x : limt→x f(t) exists} is residual.

Proof. Set A = {x : limt→x f(t) does not exist} , and define

Ars = {x ∈ A : lim inf
t→x

f(t) ≤ r < s ≤ lim sup ft→xf(t)}.

Then A =
⋃

r<s∈Q
Ars and Lemma 3.1 assures that for fixed r < s, the set Ars is

nowhere dense. Thus, A is of first category, establishing the lemma. �

Lemma 3.3. If f belongs to either UT R or UAR, then C(f) is residual.

Proof. Define B = ([0, 1] \ C(f)) \ A, where A is the set defined in the proof
of Lemma 3.2. In other words, B is the set of points where f has a removable
discontinuity. For r < s define

Brs = {x ∈ B : f(x) ≤ r < s ≤ lim
t→x

f(t)}, and

B′
rs = {x ∈ B : lim

t→x
f(t) ≤ r < s ≤ f(x)}.

It follows that B =
⋃

r<s∈Q
(Brs ∪B′

rs) and from Lemma 3.1 that for fixed r < s,

both Brs and B′
rs are nowhere dense. Hence B is of first category. This observation

and Lemma 3.2 complete the proof. �

Theorem 3.1. Let f : I → R. The following are equivalent.
1. f ∈ AUR.
2. f ∈ UAR.
3. f is measurable and NQ(f) has measure zero.

Proof. Clearly, 1. ⇒ 2. Next, suppose that f ∈ UAR. Then f ∈ AR and is,
therefore, measurable according to Theorem 2.2. in [6]. Furthermore, Lemma 3.3
assures that C(f) is residual. Suppose that NQ(f) has positive outer measure.
Let D be a support set lying entirely in C(f). No ordering of D will recover f at
any point of NQ(f), contradicting f ∈ UAR, verifying that 2. ⇒ 3.

Next, assume f is measurable and NQ(f) has measure zero. Let L(f) denote
the set of points of f . (Recall that z0 is a Lebesgue point of f if limh→0

1
h

∫ z0+h

z0
|f−

f(z0)| = 0.) As f is measurable, I \ L(f) is of measure zero and, hence, there is
a Gδ set T of measure zero such that I \ L(f) ⊂ T . As T is Gδ, there are open
sets G1 ⊇ G2 ⊇ . . . , such that λ(Gn) < 1

2n for each n ∈ N and T = ∩∞n=1Gn.
Throughout the remainder of this proof we shall adopt the following notation. If

J is any interval in I, then
?

J denotes the interval of length |J |/2 which is centered
in J . Furthermore, we let A(J) = 1

|J|
∫

J
f .



268 M. J. EVANS and P. D. HUMKE

Let D be any support set. We shall find an ordering {xn} of D which recovers
f at each point of L(f) \ T . Without loss of generality assume that both 0 and 1
belong to D and enumerate D as {d1 = 0, d2 = 1, d3, d4, . . . }, where the ordering
of dn for n ≥ 3 is arbitrary but fixed for the remainder of the proof. We shall
reorder {dn} as {xn} inductively in steps. At the conclusion of the nth step, we
will have selected points x1, x2, . . . , xq(n) from D, where q(n) > n. Furthermore,
dn will be one of the selected points; i.e., dn ∈ Xn ≡ {x1, x2, . . . , xq(n)}.
Step 1. Let x1 = 0, x2 = 1, q(1) = 2, and X1 = {x1, x2}.
Inductive Step. Let n ∈ N and assume Xn has been chosen. We let X∗

n = Xn ∪
{dn+1}. Set ρn = min {|x− y| : x, y ∈ X∗

n, x 6= y}, and select δn so small that
• δn < ρn/2,
• If x ∈ X∗

n ∩ L(f), then whenever
x− δn < a < x < b < x + δn, |A([a, b])− f(x)| < 1

n+1 , and
• If x ∈ X∗

n \ L(f), then (x− δn, x + δn) ⊆ Gn+1.
Fix x < y where x and y are consecutive points of X∗

n in the usual ordering of
[0, 1]. We shall hierarchically identify finitely many points of (D \ X∗

n) ∩ (x, y).
(Upon doing this for each consecutive pair x < y in X∗

n, we shall append these
points in a specific order to X∗

n to form Xn+1.)
Let J = [x, y] and set

V (J) = inf {|f(t)−A(J)| : t ∈ D ∩
?

J}.

Let p ≡ p(x, y) ∈ D∩
?

J be such that |f(p)−A(J)| < V (J)+ 1
n . Now, set J0 = [x, p],

and J1 = [p, y].
Inductively, suppose k ∈ N and intervals J0(k) = [x, p0(k−1)] and J1(k) =

[p1(k−1), y] have been defined, where 0(j) = 00 . . . 0︸ ︷︷ ︸
j

and 1(j) = 11 . . . 1︸ ︷︷ ︸
j

. Let

V (J0(k)) = inf {|f(t)−A(J0(k))| : t ∈ D ∩
?

J0(k)}
and

V (J1(k)) = inf {|f(t)−A(J1(k))| : t ∈ D ∩
?

J1(k)}.

Then choose p0(k) ∈ D ∩
?

J0(k) and p1(k) ∈ D ∩
?

J1(k) such that

|f(p0(k))−A(J0(k))| < V (J0(k)) +
1
n

and
|f(p1(k))−A(J1(k))| < V (J1(k)) +

1
n

.

It is easy to see that as k →∞, both p0(k) → x and p1(k) → y. Hence, there exist
k0 and k1 such that both

k ≥ k0 ⇒ 0 < p0(k) − x < δn,

and
k ≥ k1 ⇒ 0 < y − p1(k) < δn.
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Let P (x, y) = {p(x, y)} ∪ {p0(k) : 1 ≤ k ≤ k0} ∪ {p1(k) : 1 ≤ k ≤ k1} and set
P = ∪P (x, y) where the union is taken over all pairs x < y where x and y are
consecutive elements of X∗

n in the usual ordering of [0, 1]. Now, let Xn+1 = X∗
n∪P

and order the elements of Xn+1 according to the following scheme:

1. The initial portion Xn = {x0, x1, . . . , xq(n)} retains its original order.
2. First, points of the form p(x, y) are appended according to the usual order

of [0, 1] with the leftmost such point being denoted xq(n)+1.
3. Then, all points of the form p0(k) and p1(k) are appended next, ordered lex-

icographically: first according to “k”, then according to the usual ordering
of [0, 1].

4. Finally we append dn+1 if dn+1 /∈ Xn.

We let q(n + 1) be the subscript of the final point appended in the scheme, com-
pleting the inductive step.

We now proceed to show that this ordering {xn} of D recovers f at each x ∈
S ≡ L(f) \ T . Suppose not; i.e., suppose there is an yo ∈ S for which {f(rn)}
fails to converge to f(yo), where {rn} is the first-return route to yo based on the
ordering {xn}. Then there exists an εo > 0 and an increasing sequence {ni} such
that |f(rni

)− f(yo)| ≥ εo for each i.
Since yo ∈ L(f), there exists a η1 > 0 such that if H is any interval containing

yo with |H| < η1, then |f(yo) − A(H)| < εo/10. Furthermore, since yo must be
a point of approximate continuity of f , there exists a 0 < η2 < η1 such that if
δ ≤ η2, then there is a set E(δ) ⊆ (yo − δ, yo + δ) with λ(E(δ)) > 9δ/5 such that
|f(x) − f(yo)| < εo/10 for all x ∈ E(δ). Furthermore, each rni

was appended to
the trajectory {xn} at some Stage Nni

. There is a K such that for all i > K,
Nni−1 > 5

εo
and thus, we may assume this true for all i. For a fixed i we have

that rni
was appended to the trajectory {xn} at Stage Nni

for one of two reasons:
Either rni = dNni

or it is a member of the collection P of Stage Nni .
Suppose that the former case applies. Then we must have yo ∈ (dNni

−
δNni

−1, dNni
+ δNni

−1). If dNni
/∈ L(f), then yo ∈ GNni

. But if this happens
for infinitely many i′s, we would have yo ∈ T , a contradiction. Thus, we may
assume that if rni = dNni

, then dNni
∈ L(f). Let H be any closed subinterval

of (yo − η2, yo + η2) ∩ (dNni
− δNni

−1, dNni
+ δNni

−1), containing both yo and
dNni

= rni . Then |f(yo) − A(H)| < εo/10 and |f(rni) − A(H)| < 1/Nni < εo/5,
contradicting the assumption that |f(rni)− f(yo)| ≥ εo.

Thus, it must be the case that for each i, rni is a member of the collection P of
Stage Nni

. Thus, rni
be a point of the form p(x, y) or p0(k) or p1(k). Let J denote

the interval of Stage Nni
which determined rni

. Then we know J contains yo,

rni ∈
?

J ⊂ (yo − η2, yo + η2), and |f(rni)−A(J)| < V (J) + 1
Nni

−1 < V (J) + εo/5.

Now, since NQ(f) is of measure zero, there is a point x∗ ∈ Q(f) ∩
?

J ∩ E(η2).

Hence, there is a point x∗∗ ∈ C(f) ∩
?

J such that |f(x∗∗)− f(yo)| < εo/10. Thus,

there is an interval H ⊂
?

J such that |f(x)− f(yo)| < ε/10 for all x ∈ H. Since D
is dense, there is a d ∈ H ∩D, and hence |f(d)− f(yo)| < ε/10. This implies that
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V (J) ≤ |f(d) − A(J)| ≤ |f(d) − f(yo)| + |f(yo) − A(J)| < εo/10 + εo/10 = εo/5.
Consequently, |f(rni

)− f(yo)| ≤ |f(rni
)−A(J)|+ |A(J)− f(yo)| < εo/5 + εo/5 +

εo/10 < εo, contradicting |f(rni
)− f(yo)| ≥ εo, and completing the proof. �

Theorem 3.2. Let f : I → R. The following are equivalent.
1. There is a residual set T such that every ordering of every support set

recovers f at each point of T .
2. f ∈ T UR.
3. f ∈ UT R.
4. C(f) is residual.

Proof. It is obvious that 1. ⇒ 2. ⇒ 3., and Lemma 3.3 assures that 3. ⇒ 4.
Finally, assume that C(f) is residual. Letting T = C(f), it is clear that every
ordering of every support set recovers f at each point of T . �

Theorem 3.3. Let f : I → R. The following are equivalent.
1. f ∈ NUR [SUR].
2. f ∈ UNR [USR].
3. f belongs to Baire class one and NQ(f) is countable [scattered].

Proof. Clearly, 1. ⇒ 2. Next to see that 2. ⇒ 3., suppose that f ∈ UNR [USR].
Then f ∈ UT R and Lemma 3.3 assures that C(f) is dense. Let D ⊂ C(f) be
a support set and let xD be an ordering of D which recovers f at each point of
I \ S(xD), where S(xD) is countable [scattered]. Since xD cannot recover f(x)
at any x ∈ NQ(f), we have NQ(f) ⊆ S(xD) and, hence, NQ(f) is countable
[scattered].

We shall show that f belongs to Baire class one by observing that it is recover-
able. (Since USR ⊂ UNR we need only provide the proof for when f ∈ UNR.)
We first recall that J. Borśık [1] has shown that Q(f) \BQ(f) is countable, where
BQ(f) denotes the set of points at which f is bilaterally quasicontinuous. Let
D be a support set containing the countable set NQ(f) ∪ ([Q(f) \ BQ(f)] and
let x be an ordering of D which recovers f except at points in a countable set
S(x) = {s1, s2, . . . }. By systematically inserting each sn between two terms in the
trajectory x = {xj} we shall produce a trajectory y which is an enumeration of the
support set D ∪ S(x) and which recovers f everywhere. We proceed inductively:
Step 1. Let ε1 = 1. Since s1 ∈ BQ(f), there exists an xj(1,l) and an xj(1,r) such
that

0 < s1 − xj(1,l) < ε1 and
∣∣f(s1)− f

(
xj(1,l)

)∣∣ < ε1,

and
0 < xj(1,r) − s1 < ε1 and

∣∣f(s1)− f
(
xj(1,r)

)∣∣ < ε1,

where j(1, l) and j(1, r) are the minimal subscripts yielding these results. Let j(1)
denote the larger of j(1, l) and j(1, r), set k1 = j(1) + 1 and define the initial
segment of the new trajectory {yk} by

yk =

{
xk if k ≤ j(1)
s1 if k = j(1) + 1 = k1

.
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In other words, we have inserted s1 into the sequence {xj} between xj(1) and
xj(1)+1.
Step n. Assume that {yk}kn−1

k=1 has been specified. Let

εn = min
({

1
n

}
∪ {|yk − yj | : k 6= j, k, j ≤ kn−1}

)
.

Since sn ∈ BQ(f), there exists an xj(n,l) and an xj(n,r) such that

(1) 0 < sn − xj(n,l) < εn and
∣∣f(sn)− f

(
xj(n,l)

)∣∣ < εn,

and

(2) 0 < xj(n,r) − sn < εn and
∣∣f(sn)− f

(
xj(n,r)

)∣∣ < εn,

where j(n, l) and j(n, r) are the minimal subscripts yielding these results. Let
j(n) denote the larger of j(n, l) and j(n, r). Set kn = j(n) + n and define yk for
kn−1 < k ≤ kn by

yk =

{
xk−n+1 if kn−1 < k < kn

sn if k = kn

.

In other words, we have inserted sn into the sequence {xj} between xj(n) and
xj(n)+1.

In this manner we have completed our definition of the expanded trajectory
y = {yk}, which is an enumeration of D ∪ S(x). Letting U(y, yk) denote the
interval of influence of yk based on the trajectory y, and U(x, xj) denote the
interval of influence of xj based on the trajectory x, we have that for each n,
sn = ykn , and U(y, sn) ⊂ U(x, xj(n,l)) ∪ U(x, xj(n,r)). This observation, together
with inequalities (1) and (2) shows that y recovers f everywhere.

Finally, to see that 3. ⇒ 1., suppose that f belongs to Baire class one and
NQ(f) is countable [scattered]. Let D be any support set. Then f |D is dense in
f |Q(f). Let S = NQ(f) \D and define a function g : I → R by

g(x) ≡

{
f(x) if x ∈ I \ S

sup
(
C(f |C(f), x)

)
if x ∈ S

,

where C(f |C(f), x)) denotes the cluster set at x of the restriction of f to its set of
continuity points. Then g belongs to Baire class one and g|D is dense in g. Thus,
Theorem 1 in [4] guarantees the existence of an ordering x of D which recovers
g everywhere. Then, since f |D = g|D and g(x) = f(x) for all x ∈ I \ S, we have
that x recovers f at each point of I \ S. In particular, x recovers f at each point
of I \NQ(f), showing that f ∈ NUR [SUR]. �

4. Functions which are consistently recoverable except on small
sets

Besides universality, a second natural means of strengthening the notion of re-
coverability is to require the existence of a support set every ordering of which
recovers the function. More specifically we have the following.
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Definition 4.1. Let f : I → R. Let D be a support set. We shall say that D
consistently recovers f provided that f is first-return recoverable with respect to
every ordering of D. A function is said to be consistently recoverable (f ∈ CR) if
there exists a support set D which consistently recovers f .

In [8] it was shown that f ∈ CR if and only if f has only countably many
discontinuities.

Paralleling Definition 3.3, we make the following definitions.

Definition 4.2. Let f : I → R. We say that f is
1. almost consistently recoverable (f ∈ ACR) if there is a measure zero set S

and a support set D every ordering of which recovers f at each point of
I \ S.

2. consistently almost recoverable (f ∈ CAR) if there is a support set D, such
that every ordering x of D recovers f at each point of I \S(x), where S(x)
is of measure zero.

3. typically consistently recoverable (f ∈ T CR) if there is a first category set
S and a support set D every ordering of which recovers f at each point of
I \ S.

4. consistently typically recoverable (f ∈ CT R) if there is a support set D,
such that every ordering x of D recovers f at each point of I \ S(x), where
S(x) is of first category.

5. nearly consistently recoverable (f ∈ NCR) if there is a countable set S and
a support set D every ordering of which recovers f at each point of I \ S.

6. consistently nearly recoverable (f ∈ CNR) if there is a support set D, such
that every ordering x of D recovers f at each point of I \S(x), where S(x)
is countable.

7. very nearly consistently recoverable (f ∈ SCR) if there is a scattered set S
and a support set D every ordering of which recovers f at each point of
I \ S.

8. consistently very nearly recoverable (f ∈ CSR) if for each support set D,
such that every ordering x of D recovers f at each point of I \ S(x), where
S(x) is scattered.

We proceed to investigate these eight classes of functions.

Theorem 4.1. Let f : I → R. The following are equivalent.
1. f ∈ ACR.
2. f ∈ CAR.
3. f is almost everywhere equal to a function g which is continuous almost

everywhere.

Proof. Clearly, 1. ⇒ 2. To see that 2. ⇒ 3., let f ∈ CAR. Since f ∈ AR,
f is measurable according to Theorem 2.2 in [6]. Let D be a support set such
that every ordering of D recovers f almost everywhere. Let F = arctan(f) and
note that every ordering of D recovers the bounded measurable function F almost
everywhere. Thus, in the terminology of [6], Theorem 2.1 of that paper asserts
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that every ordering of D yields the Lebesgue integral of F . Then Theorem 1 in [7]
assures the existence of a Riemann integrable function G, which equals F almost
everywhere. Letting g = tan (G), we have that f = g almost everywhere and g is
continuous almost everywhere, completing the proof that 2. ⇒ 3.

Finally, we show that 3. ⇒ 1. To this end, assume that f = g almost everywhere
and that g is continuous at each point of a full measure set S. Let D be a support
set lying entirely in the set S∗ ≡ S ∩ {x : f(x) = g(x)}. Then, clearly every
ordering of D recovers g at each point of S and, consequently, recovers f at each
point of the full measure set S∗. �

Theorem 4.2. Let f : I → R. The following are equivalent.
1. f has the Baire property.
2. f ∈ T R.
3. f ∈ CT R.
4. f ∈ T CR.

Proof. That 4. ⇒ 3. ⇒ 2. follows directly from the definitions. The equivalence
of 1. and 2. was shown in Theorem 2.3 of [6]. It remains to show that 1. ⇒ 4. To
this end, let f have the Baire property. Then there is a residual set S such that
f |S is continuous. Let D be any support set lying entirely in S. Clearly every
ordering of D recovers f at each point of S. Hence f ∈ T CR. �

Before establishing the next theorem, we need the following definition.

Definition 4.3. If f : [0, 1] → R, then the strong oscillation of f at a point
x ∈ [0, 1] is

s-osc(f, x) ≡ sup{r ≥ 0 : there are sets S1(x) and S2(x) such that for every ε > 0

both S1 ∩Bε(x) and S2 ∩Bε(x) are uncountable and

|f(x1)− f(x2)| ≥ r, whenever x1 ∈ S1 and x2 ∈ S2}.

Theorem 4.3. Let f : I → R. The following are equivalent.
1. f ∈ NCR.
2. f ∈ CNR.
3. There is a co-countable set T ⊆ I such that f |T is continuous.

Proof. That 1. ⇒ 2. is immediate. Next, to see that 3. ⇒ 1., suppose that S is
co-countable in I and that f |S is continuous. Let D be a support set lying in S
such that D contains every isolated point of S. Then every ordering of D recovers
f at each point of S, so that 3. ⇒ 1.

The bulk of the work to be done here is is showing the remaining implication
that 2. ⇒ 3. We first establish a couple of claims:

Claim 1. Let f : I → R and suppose f ∈ CNR. Then En ≡ {x : s-osc(f, x) ≥
1
n} is countable.

Proof. Suppose that for some n ∈ N, En is uncountable. Let D be a support
set, every ordering x of which recovers f on I \S(x), where S(x) is countable. We
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shall determine an enumeration x of D with the property that x fails to recover f
at uncountably many points, yielding a contradiction.

Let S1 and S2 be as in the definition of strong oscillation, i.e., for each x ∈ En

and for each ε > 0 both S1 ∩Bε(x) and S2 ∩Bε(x) are uncountable and |f(x1)−
f(x2)| ≥ 1/n, whenever x1 ∈ S1 and x2 ∈ S2 . Next, let Σ denote the collection
of all finite sequences of 0’s and 1’s, and Σ∗ denote the collection of all infinite
sequences of 0’s and 1’s. For each σ ∈ Σ, we let |σ| denote the length of σ and
let Σk = {σ ∈ Σ : |σ| = k}. For each σ ∈ Σ∗ and each natural number k, we
let σ|k ∈ Σk denote the sequence consisting of the initial k terms in σ. We shall
proceed by induction on k to define an enumeration x of D and to identify closed
intervals Hσ for each σ ∈ Σk. The enumeration x and these intervals will be
chosen such that the following conditions are satisfied:

• If σ 6= τ both belong to Σk, then Hσ ∩Hτ = ∅.
• For each σ ∈ Σ, Hσ0 ∪Hσ1 ⊂ Hσ.
• If σ ∈ Σk, then 0 < |Hσ| < 1/2k.
• If σ ∈ Σk and x ∈ Hσ, then there are two numbers ux and wx in R(x, x) ∩

B 1
2k

(x) such that |f(ux)− f(wx)| ≥ 1/n.

For each σ ∈ Σ∗ we let x(σ) be the unique point in ∩∞k=1Hσ|k. There are uncount-
ably many such points and clearly x cannot recover f at any such point because
of the last property listed above.

Before describing the inductive process, we first let {d1, d2, . . . } be an arbitrary
but fixed enumeration of D and let

E∗ = En \ (D ∪ {x ∈ En : x is not a condensation point of En}) .

Then E∗ is uncountable.
Stage 0: Let ε1 = 1 and let c∅ ∈ E∗. Then there are two elements x1, x2 ∈ D
such that |f(x1) − f(x2)| ≥ 1

n . This is because the sets S1(c∅) and S2(c∅) are
uncountable and D must recover f at all but countably many points. We suppose
that |c∅ − x1| > |c∅ − x2| and let H∅ = B|c∅−x2|(c∅). We set n0 = 2 and specify
the initial segment of n0 terms in x as {x1, x2}.
Stage k: Assume that Stage k− 1 has been completed. If dk has not been selected
as one of the {x1, x2, . . . , xnk−1}, append it now as xnk−1+1 and let mk denote
the number of terms selected of x to this point. (Thus, mk is either nk−1 or
nk−1+1.) For each σ ∈ Σk−1 let Jσ be a subinterval of Hσ\{dk} containing cσ with
0 < |Jσ| < |Hσ|/2. In Jσ select two distinct points cσ0, cσ1 ∈ Jσ∩E∗. Next, inside
Jσ choose disjoint open intervals Iσ0 centered on cσ0 and Iσ1 centered on cσ1. Find
two points aσ0 and bσ0 in [D \ {x1, x2, . . . , xmk

}]∩Iσ0 with |aσ0−cσ0| < |bσ0−cσ0|
and |f(aσ0)− f(bσ0)| ≥ 1/n. Let Hσ0 = B|cσ0−aσ0|(cσ0). Likewise, find two points
aσ1 and bσ1 in [D \ {x1, x2, . . . , xmk

}] ∩ Iσ1 with |aσ1 − cσ1| < |bσ1 − cσ1| and
|f(aσ1) − f(bσ1)| ≥ 1/n. Then let Hσ1 = B|cσ1−aσ1|(cσ1). We do this for each
σ ∈ Σk−1 and have thus selected points aσ and bσ for each σ ∈ Σk. We append
these 2k+1 points to {x1, x2, . . . xmk

} taking care to insert each b point before its
corresponding a point. We let nk denote the number of elements of D selected up
to this point. This completes Stage k.
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The resulting ordering x and the intervals Hσ have the four properties noted
above, completing the proof of Claim 1. �

With this claim we have that the set E ≡ ∪∞n=1En is countable. Next we wish
to establish:

Claim 2. If xo 6∈ En, then there is an δ(xo) > 0 and an interval J with |J | = 1
n

such that f(x) ∈ J for all but countably many x ∈ Bδ(xo)(xo).

Proof. Since xo 6∈ En, there is an δ = δxo
> 0 so that whenever S1, S2 ⊂ Bδ(xo)

with |f(x1) − f(x2)| ≥ 1
n for every x1 ∈ S1 and x2 ∈ S2, then either S1 or S2 is

countable. It is easy to see that there is a yo such that f−1 ((−∞, yo)) ∩ Bδ(xo)
is uncountable and thus it follows that the set f−1

(
(yo + 1

n ,+∞)
)
∩ Bδ(xo) is

countable. Let

y∗ ≡ inf{y : f−1 ((−∞, y)) ∩Bδ(xo) is uncountable}.
Then y∗ > −∞ and for every ε > 0, f−1 ((−∞, y∗ − ε))∩Bδ(xo) is countable and
so A1 = f−1 ((−∞, y∗)) ∩Bδ(xo) is countable. Since A2 = f−1

(
(y∗ + 1

n ,+∞)
)
∩

Bδ(xo)) is countable, it follows that for every x ∈ Bδ(xo)\(A1 ∪ A2), f(x) ∈
[y∗, y∗ + 1

n ] which verifies Claim 2. �

For each xo 6∈ En let I(xo, n) denote the interval Bδ(xo)(xo), where δ(xo) is from
Claim 2 and let A(xo, n) denote the countable set A1 ∪A2 described in the proof
of Claim 2. Then if n is fixed, Ec

n ⊂ ∪x∈Ec
n
I(xo, n) and by Lindeloff’s Theorem,

there is a countable set {I(xi,n, n)} such that Ec
n ⊂ ∪∞i=1I(xi,n, n). Set

A = E ∪ (∪∞n=1 ∪∞i=1 A(xi,n, n)) .

We are now in a position to complete the proof that 2. ⇒ 3. To this end, assume
f ∈ CNR and let A denote the countable set defined above and let T = I \ A.
We show that f |T is continuous. Let xo ∈ T and ε > 0 be given. Choose n
so that 1

n < ε. Since xo ∈ T , xo 6∈ En and so there is an i ∈ N such that
xo ∈ I(xi,n, n). Choose δ > 0 sufficiently small that (xo − δ, xo + δ) ⊂ I(xi,n, n).
Then if |x − xo| < δ and x ∈ Ac, x ∈ I(xi,n, n)\A(xi,n, n) and by Claim 2 there
is an interval J depending only on the indices i and n such that |J | = 1

n and
f(x) ∈ J . But xo ∈ I(xi,n, n)\A(xi,n, n) as well as x so that f(xo) ∈ J . Hence,
|f(x)− f(xo)| ≤ 1

n < ε. This completes the proof of the Theorem 4.3. �

At this point the reader should fully expect that we will conclude this paper by
showing that SCR = CSR and providing a characterization of this subclass of the
Baire 1 functions. Unfortunately, the best we can state is that

(3) A ⊂ SCR ⊆ CSR ⊂ B,

where A is the set of all functions f having the property that there is a co-scattered
set T ⊆ I such that f |T is continuous and B is the set of Baire 1 functions
f having the property that there is a co-countable set T ⊆ I such that f |T is
continuous. The first two inclusions in (3) are immediate and the third follows
from Theorem 2.2 and Theorem 4.3. Furthermore, notice that Dirichlet’s familiar
example of a function which is continuous at precisely the irrationals shows that
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the first inclusion is proper. To see that the third inclusion is proper, we offer the
following

Example 4.1. There is a Baire one function f and a co-countable set T such
that f |T is continuous, yet f /∈ CSR.

Proof. Let K1 ≡ K \ {0, 1}, where K denotes the usual middle-thirds Cantor
set. Enumerate the component intervals of (0, 1) \K1 as {(a1,j , b1,j)}∞j=1 and let
c1,j denote the midpoint of (a1,j , b1,j). Set C1 = {c1,j : j ∈ N}.

Place a copy of K1 in each interval (a1,j , c1,j) and (c1,j , b1,j) by mapping (0, 1)
affinely onto each of these intervals. Let K2 be the union of all these copies of K1

and enumerate the open components of (0, 1) \K2 as {(a2,j , b2,j)}∞j=1. For each j
let c2,j denote the midpoint of (a2,j , b2,j) and set C2 = {c2,j : j ∈ N}.

Next, place a copy of K1 in each interval (a2,j , c2,j) and (c2,j , b2,j) by mapping
(0, 1) affinely onto each of these intervals. Let K3 be the union of all these copies
of K1 and enumerate the open components of (0, 1) \K3 as {(a3,j , b3,j)}∞j=1. For
each j let c3,j denote the midpoint of (a3,j , b3,j) and set C3 = {c3,j : j ∈ N}, and
continue this process inductively. Finally, let C = ∪∞n=1Cn and note that

1. Cn ∩ Cm = ∅ for n 6= m;
2. for each n, Cn is an isolated, and therefore scattered, set;
3. for each n, Cn is dense in Kn;
4. C is dense in I and consequently is not scattered.

Let T = I \ C and define f : I → R by

f(x) =

{
1
n if x ∈ Cn

0 if x ∈ T
.

Since each Cn is scattered and f |T ≡ 0, we clearly have that f is Baire one and f |T
is continuous. To argue by contradiction, suppose f ∈ CSR. Let D be a support
set which consistently very nearly recovers f . For each n, let Sn = Cn ∩ D and
Wn = Cn \D.

As a first case, suppose that for each n we have Wn dense in Kn. Then ∪∞n=1Wn

is dense in I and is consequently not scattered, but clearly no ordering of D can
recover f(x) at any x ∈ ∪∞n=1Wn, yielding a contradiction.

Thus, there must exist an n for which Wn is not dense in Kn. Fix such an n
for the remainder of this proof and let P be a nonempty portion of Kn for which
Kn ∩Wn = ∅. Since Cn is dense in Kn, we must have that Sn is dense in P . Let
E = {e1, e2, . . . , ej , . . . } be a non-scattered denumerable subset of P \D. We shall
define an ordering x of D such that x fails to recover f(x) for each x ∈ E. To this
end, let d = {dk}∞k=1 be an arbitrary but fixed enumeration of D. Let s denote
the infinite subsequence of d lying in Sn. Note that even though s is not a true
trajectory, the symbol r(s,Bε(x)) is well-defined for each x ∈ E and each ε > 0.
We shall construct x in inductively in stages.
Stage 1: Let x1 = d1, ε1 = min{1/2, |e1 − x1|/2}, x2 = r(s,Bε1(e1)), and i1 = 2.
Inductive Stage: Let m ∈ N and assume that the segment {x1, x2, . . . xim

} of
x has been determined. If dm+1 /∈ {x1, x2, . . . xim}, append it as xim+1 and let
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i∗m = im+1. Otherwise, just let i∗m = im. Let εm+1 denote 1/2 times the minimum
of the set of numbers {|ei−ej | : 1 ≤ i 6= j ≤ m+1}∪{|ej−xi| : 1 ≤ j ≤ m+1, 1 ≤
i ≤ i∗m}. Then append the m + 1 numbers r(s,Bεm+1(ej)), j = 1, 2, . . . m + 1, in
any order to {x1, x2, . . . xi∗m}, beginning with xi∗m+1. Set im+1 = i∗m+m + 1. Thus
we have defined the initial segment {x1, x2, . . . xim+1} of x and this completes the
inductive stage.

In this manner we have defined an ordering x of D with the property that for
each x ∈ E the first return route to x contains a subsequence from Sn. Thus x
does not recover f(x) at each such x, completing the proof. �

Hence, the question of the equality of SCR and CSR remains open as does the
problem of characterizing this class (or these classes).

5. Open questions

In addition to the open problems mentioned at the end of the previous section,
several others naturally emerge. For example, in sections 2 through 4 we chose
four specific types of small sets: the measure zero sets, the first category sets,
countable sets, and scattered sets. These seemed the be the natural exceptional
sets to initially consider and we were not disappointed with the richness of the
results obtained. However, there are numerous other candidates for classes of
small sets: σ-porous sets, sets with small dimension in one sense or another, sets
with countable closures, etc. Perhaps an investigation of recovery or universal
recovery or consistent recovery except on some of these types of small sets will
yield equally interesting and diverse results.
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