ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXII, 1(2003)
p. 129 – 139
Boundary Behavior in Strongly Degenerate Parabolic Equations
M. Winkler
Abstract. 
The paper deals with the initial value problem with zero Dirichlet boundary data for
$$
u_t = u^p \Delta u \quad \mbox{in } \Omega \times (0,\infty)
$$
with $p \ge 1$. The behavior of positive solutions near the boundary is discussed and
significant differences from the case of the heat equation ($p=0$) and the porous medium equation
($p \in (0,1)$) are found. In particular, for $p \ge 1$ there is a large class of initial data for
which the corresponding solution will never enter the cone $\{ v: \Omega \to \R \ | \ \exists \, c>0: \
v(x) \ge c \dist(x,\rO) \}$.\\
Finally, for $p>2$ a solution $u$ with $u(t) \in C_0^\infty(\Omega) \ \forall \, t \ge 0$ is constructed.
AMS subject classification: 
35K55, 35K65, 35B65
Keywords: 
Degenerate diffusion, regularity
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2003, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE