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ON TATE-SHAFAREVICH GROUPS OF y2 = x(x2 − k2)

F. LEMMERMEYER and R. MOLLIN

1. Introduction

In [10] Wada and Tairo computed the rank of the elliptic curves Ek : y2 =
= x(x2 − k2) connected with the problem of congruent numbers. For some values
of k, they only found lower and upper bounds without being able to conclude that
their lower bounds were correct. Later, Wada [11] and Nemenzo [7] showed that
the lower bound is indeed correct for two of the curves left undecided by [10].
In this article, we investigate families of elliptic curves that cover some of the
remaining cases.

In [6] and [1], families of elliptic curves were constructed whose Tate-Shafarevich
groups have arbitrarily high 2-rank; the proof used (rather elementary) arithmetic
of quadratic number fields. In this paper, we get such a family using only the
arithmetic of rational integers.

Consider the elliptic curves Ek : y2 = x(x2 − k2) for integers k ≥ 1. Elliptic
curves with a rational point T of order 2 such as our curves Ek come attached with
a 2-isogeny φ : Ek −→ Êk (depending on the choice of T if E has three rational
points of order 2). For T = (0, 0) we find the isogenous curve Êk : y2 = x(x2+4k2)
if k is odd and Êk : y2 = x(x2 + k2/4) if k is even. The dual isogeny Êk −→ Ek
will be denoted by ψ. If k is fixed, we will suppress this index and write E and Ê
for Ek and Êk.

We are interested in rational points on the elliptic curves Ek; it is an elementary
observation that these rational points come from nontrivial rational points on one
of the torsors

T (ψ)(b1) : N2 = b1M
4 + b2e

4, b1b2 = −k2 and

T (φ)(b1) : N2 = b1M
4 + b2e

4, b1b2 =
{

4k2 if k is odd,
k2/4 if k is even.

Here nontrivial means different from (N,M, e) = (0, 0, 0), and whenever we talk
about rational points on torsors from now on we shall always mean nontrivial
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points. We also may (and do) assume moreover that its coordinates are integral
and primitive, that is, (M, e) = 1.

There are only finitely many such torsors because the integers b1, b2 divide
4k2. Moreover, we can give these sets of torsors a group structure by setting e.g.
T (φ)(b)T (φ)(c) = T (φ)(d), where d is the squarefree kernel of bc. Another way to
define the same group structure (and this is the definition that will be used below)
is to associate the coset bQ×2 ∈ Q×/Q×2 to T (b) and then work in the group
Q×/Q×2.

Determining whether these torsors contain a (nontrivial) rational point is dif-
ficult; on the other hand, checking whether they have a nontrivial rational point
over all completions Qv of Q is easy, and so we define the Selmer group S(ψ)(Ê/Q)
as the subgroup of Q×/Q×2 consisting of classes b1Q×2 such that T (ψ)(b1) has a
rational point in every completion Qv of Q; the subgroup of S(ψ)(Ê/Q) such that
the torsors T (ψ)(b1) corresponding to b1Q×2 have a rational point will be denoted
by W (Ê/Q). The proof that these sets actually are groups is an elementary conse-
quence of the group structure of the set of rational points on elliptic curves. Sim-
ilarly we define S(φ)(E/Q) and W (E/Q). Finally, the Tate-Shafarevich groups
measure the difference between Selmer groups and the groups of torsors with
Q-rational points; they are defined via the exact sequences

0 −−−−→ W (E/Q) −−−−→ S(φ)(E/Q) −−−−→ qq(E/Q)[φ] −−−−→ 0,

0 −−−−→ W (Ê/Q) −−−−→ S(ψ)(Ê/Q) −−−−→ qq(Ê/Q)[ψ] −−−−→ 0.
Thus the Selmer groups consist of nonzero rational numbers modulo squares and
keep track of the torsors that have solutions in every completion, the elements
of the subgroups W (E/Q) correspond to torsors with a rational point, and the
Tate-Shafarevich groups, their factor group, measures how far these two groups
are apart. In particular, a torsor T (φ)(b) gives rise to a nontrivial element [bQ×2]
(of order 2) in the Tate-Shafarevich group qq(E/Q)[φ] if it has rational points
everywhere locally but does not have a global rational point (in Q).

Finding out which of our torsors have rational points is important in view of
Tate’s formula

(1) 22+rank E = #W (E/Q) · #W (Ê/Q)

for rank E, the Mordell-Weil rank of the elliptic curve E. The fact that
#W (E/Q) | #S(φ)(E/Q) shows that the calculation of Selmer groups gives an
upper bound for the Mordell-Weil rank.
Note that the formula gives non-negative values for rank E because W (Ê/Q) has

a subgroup of order 4; in fact,

the torsor has the rational point (N,M, e) =

T (ψ)(+1) : N2 = M4 − k2e4 (1, 1, 0)

T (ψ)(−1) : N2 = −M4 + k2e4 (k, 0, 1)

T (ψ)(+k) : N2 = kM4 − ke4 (0, 1, 1)

T (ψ)(−k) : N2 = −kM4 + ke4 (0, 1, 1)
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This shows that 〈−1 · Q×2, k · Q×2〉 is a subgroup of W (Ê/Q) of order 4; we
will abbreviate this subgroup below by 〈−1, k〉.

2. Computing the Selmer Groups

For computing the Selmer groups we collect a number of lemmas. The first one is
the simplest version of Hensel’s Lemma one can imagine:

Lemma 1 (Hensel’s Lemma). Let p be a prime. An element a ∈ Z \ pZ has a
square root in Zp if and only if (a/p) = 1 for p odd or a ≡ 1 mod 8 for p = 2.

We also need a special case of a well known result due to F.K. Schmidt ([9,
Chap. X, Prop. 4.9]):

Lemma 2. For nonzero integers b1, b2 ∈ Z, the torsor N2 = b1M
4 + b2e

4 has
nontrivial solutions in Zp for all primes p - 2b1b2∞.

Now we want to compute the Selmer groups S(φ)(Ek/Q) and S(ψ)(Êk/Q) in
some cases when k is the product of odd primes. First we give criteria that allow to
decide whether a torsor T (b1) is an element in the Selmer group (that is, has local
solutions everywhere), and then we use these criteria to determine the cardinality
of the Selmer groups.

Lemma 3. Let k = p1 · · · pt be a product of distinct odd primes pi and write
k = b1c1 for some squarefree b1 > 0. Then b1Q×2 ∈ S(ψ)(Ê/Q) if and only if the
following conditions are satisfied:

i) (c1/p) = 1 or (−c1/p) = 1 for all primes p | b1;
ii) (b1/p) = 1 or (−b1/p) = 1 for all primes p | c1;
iii) b1 ≡ ±1 mod 8 or c1 ≡ ±1 mod 8.

Proof. We first check that these conditions are necessary. To this end, consider
the torsor T (ψ)(b1) : N2 = b1M

4 +b2e4 with b1 > 0 squarefree and b1b2 = −k2; we
assume that T (ψ)(b1) has a nontrivial solution with N,M, e ∈ Zp and (M, e) = 1.
Since b1 | k2 and b1 is squarefree, we can write k = b1c1 for some integer c1.
This gives N2 = b1M

4 − b1c
2
1e

4. Since b1 is squarefree, we have N = b1n and
b1n

2 = M4 − c21e
4 = (M2 + c1e

2)(M2 − c1e
2).

Now there are three cases to consider:
1. p | b1; then p is odd and p | e if and only if p | M , contradicting (M, e) = 1.

Thus p - Me, hence −c1 ≡ (M/e)2 mod p or c1 ≡ (M/e)2 mod p, and this
implies (−c1/p) = 1 or (c1/p) = 1, i.e. i).

2. p | c1; if p - n, then b1n
2 ≡ M4 mod p implies (b1/p) = 1; if p | n, on the

other hand, we get n = pr, M = pm, c1 = pc2 and so −b1r2 ≡ c22e
4 mod p,

hence (−b1/p) = 1, i.e. ii).
3. p = 2; if M is even, then e and c1 are odd, and b1n

2 ≡ −c21e4 ≡ −1 mod 8
shows that b1 ≡ −1 mod 8. If e is even, then M is odd, and b1n2 ≡M4 mod 8
shows b1 ≡ 1 mod 8. Finally, if M and e are odd, then b1n2 ≡ 1−c21 ≡ 0 mod 8;
but then 4 | n, hence c21 ≡ 1 mod 16 and hence c1 ≡ ±1 mod 8, and we have
proved iii).
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This proves necessity. Now assume that the conditions i) – iii) are satisfied; we
have to show that the torsor then has rational points in every completion of Q.
By Lemma 2, the torsor T (ψ)(b1) has a nontrivial solution in Qp for every prime
p - 2k. The finitely many other primes will now be treated with Hensel’s Lemma.

Again there are three cases:

1. p | b1: by assumption, one of ±c1 is a square modulo p, hence
√
±c1 ∈ Zp

for some choice of sign, and n = 0, M =
√
±c1 and e = 1 provide us with a

Zp-rational point on the torsor b1n2 = M4 − c21e
4.

2. p | c1: if (b1/p) = 1 then M = 1, e = 0 and n = 1/
√
b1 solve b1n2 = M4 − c21e

4.
If (−b1/p) = 1, then n = c1/

√
b1, M = 1 and e = 0 do the job.

3. p = 2: If b1 ≡ −1 mod 8, then
√
−b1 ∈ Z2, and n = c1/

√
−b1, M = 0 and e = 1

solve the torsor in question. If b1 ≡ 1 mod 8, then n = 1/
√
b1, M = 1 and e = 0

do it. The cases c1 ≡ ±1 mod 8 are taken care of similarly.
This proves our claims. �

The next lemma addresses torsors T (φ)(b) ∈ S(φ) for odd values of b | 2k:

Lemma 4. Let k = p1 · · · pt be a product of distinct odd primes pi and write
k = b1c1 for some squarefree b1. Then b1Q

×2 ∈ S(φ)(E/Q) if and only if b1 > 0
and the following conditions are satisfied:

i) (b1/p) = +1 for all p | c1;
ii) (c1/p) = +1 for all p | b1;
iii) p ≡ 1 mod 4 for all p | b1.

Proof. Consider T (φ)(b1) : N2 = b1M
4+b2e4 with b1 squarefree and b1b2 = 4k2;

if T (φ)(b1) is solvable in R, then we must have b1 > 0. As above, we assume that
T (φ)(b1) has a nontrivial solution with N,M, e ∈ Zp and (M, e) = 1.

Using k = b1c1, we find N = b1n and b1n
2 = M4 + 4c21e4. Let p | b1; then

p - M and −1 ≡ (2c1e2/M2)2 mod p, hence p ≡ 1 mod 4. For primes p | c1, we get
(b1/p) = +1.

Now for the converse. If p | b1, let i ∈ Zp denote a square root of −1, which
exists by iii). Then e = 1, n = 0 and M = (1 + i)

√
c1 ∈ Zp give us the desired

Zp-rational point.
If p | c1, we can take e = 0, M = and n = 1/

√
b1. Finally, consider p = 2. If

b1 ≡ 5 mod 8, then M = e = 1 and n =
√

(1 + 4c21)/b1 do it, if b1 ≡ 1 mod 8, we
can take e = 0, M = 1 and n = 1/

√
b1. �

Finally, we have to describe torsors T (φ)(b) ∈ S(φ) for even values of b | 2k:

Lemma 5. Let k = p1 · · · pt be a product of distinct odd primes pi and write
k = b1c1 for some squarefree b1 > 0. Then 2b1Q×2 ∈ S(φ)(E/Q) if and only if the
following conditions are satisfied:

i) (2b1/p) = +1 for all p | c1;
ii) (2c1/p) = +1 for all p | b1;
iii) p ≡ 1 mod 4 for all p | b1.
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Proof. The proof is analogous to that of Lemma 4, so we’ll skip some details.
As above, solvability in Zp implies 2b1n2 = M4 + c21e

4. If p | b1, then −1 is a
square modulo p, and iii) follows. Moreover, the congruence M4 ≡ −c21e4 mod p
shows that (c1/p) = (−1/p)4, and since (−1/p)4 = (2/p) for primes p ≡ 1 mod 4,
we have ii). Finally, p | c1 implies 2b1n2 ≡M4 mod p, hence i).

Showing that these conditions imply solvability over every completion is just as
straight forward. �

These lemmas allow us to compute the Selmer groups attached to φ and ψ in
many cases.

Proposition 6. Consider the elliptic curve E = Ek with k = qp1 · · · p2t, where
p1 ≡ . . . ≡ p2t ≡ 5 mod 8 and q ≡ 3 mod 8 are primes such that (pi/pj) = (pi/q) =
= +1 for all i 6= j. Then

S(ψ)(Ê/Q) = 〈−1, q, pi : 1 ≤ i ≤ 2t〉
S(φ)(E/Q) = 〈pi : 1 ≤ i ≤ 2t〉

Proof. There are two things to do: for showing that, say, 〈p1, . . . , p2t〉 ⊆
⊆ S(φ)(E/Q) it is sufficient to show that these generators pi satisfy the condi-
tions in Lemma 4; for showing that S(φ)(E/Q) is not larger we have to show that
none of the squarefree divisors b1 | k that are not in 〈pi : 1 ≤ i ≤ 2t〉 satisfy these
conditions.

Let us start with S(ψ)(Ê/Q) and write k = b1c1; then all positive prime divisors
of b1 and c1 are among {q, p1, . . . , p2t}, hence conditions i) and ii) of Lemma 3 are
clearly satisfied. As for iii), we simply observe that b1c1 = k ≡ 3 mod 8, hence
either b1 ≡ 7 mod 8 or c1 ≡ 7 mod 8, and we find that iii) is satisfied as well. This
shows that 〈q, p1, . . . , p2t〉 ⊆ S(ψ)(Ê/Q); but since −1 ∈ W (Ê/Q), we conclude
that 〈−1, q, p1, . . . , p2t〉 ⊆ S(ψ)(Ê/Q) as claimed.

Now consider S(φ)(E/Q): each T (φ)(pi) is clearly solvable since the conditions
of Lemma 4 are satisfied. Next, no negative b1 | b leads to solvable torsors; finally
consider the even torsors T (φ)(2b1) with b1 | b odd: condition ii) shows that b is a
product of pi, condition iii) then implies b1 = 1 since 1 = (c1/pi) and (2/pi) = −1
for all 1 ≤ i ≤ 2t. But then i) says that (2/pi) = 1 for all pi (b1 = 1 implies
c1 = k) which is a contradiction. �

Since we know that W (Ê/Q) ⊇ 〈−1, k〉, Proposition 6 and Tate’s formula (1)
tell us that E and Ê have rank at most 4t. We will improve this bound by
constructing nontrivial elements in the Tate-Shafarevich groups of Ê in the next
section.

3. Computing nontrivial elements in qq(E/Q)

The following result shows that W (Êk/Q) is as small as possible for quite a large
class of integers k:
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Theorem 7. Assume that k is a product of primes of the form ±3 mod 8, and
that these primes are quadratic residues of each other (in particular, at most one
of these primes is ≡ 3 mod 8). Then W (Ê/Q) = 〈−1, k〉.

Proof. Since T (ψ)(−1) : N2 = −M4 + k2e4 has the rational point (N,M, e) =
(k, 0, 1) and since W (Ê/Q) is a group, it is sufficient to consider torsors T (ψ)(b1)
with b1 > 0. Writing k = cd, we have T (ψ)(c) : N2 = cM4 − cd2e4, and putting
N = cn0 gives

cn2
0 = M4 − d2e4.

Now put d1 = gcd(M,d) and write M = d1m, d = d1d2, and n0 = d1n. Then we
find

T (ψ)(c) : cn2 = d2
1m

4 − d2
2e

4 = (d1m
2 − d2e

2)(d1m
2 + d2e

2).
Now consider the following cases:

A) 2 - m and 2 | e. Then gcd(d1m
2 − d2e

2, d1m
2 + d2e

2) = 1, hence
d1m

2 − d2e
2 = c1n

2
1 and d1m

2 + d2e
2 = c2n

2
2 with c1c2 = c and n1n2 = n.

Adding both equations gives 2d1m
2 = c1n

2
1 + c2n

2
2. Reducing modulo any

prime r | c1 gives 1 = (2d1c2/r) = (2/r) which is a contradiction unless c1 = 1
(the case c1 = −1 being clearly impossible). The same argument implies c2 = 1,
hence rational solvability in case A) implies c = 1.

B) 2 - me. Here gcd(d1m
2 − d2e

2, d1m
2 + d2e

2) = 2, hence d1m
2 − d2e

2 = 2c1n2
1

and d1m
2 + d2e

2 = 2c2n2
2 with c1c2 = c and n1n2 = 4n. Reducing the second

equation modulo some prime r | d1 gives 1 = (2c2d2/r) = (2/r) = −1, hence
a contradiction unless d1 = 1. Reduction modulo some prime r | d2 gives a
contradiction unless d2 = 1. Thus solvability in case 1B) implies c = k.

C) 2 | m and 2 - e. Here we find c = k exactly as above.
Thus if T (ψ)(c) ∈ W (Ê/Q) for c | k, then c = 1 or c = k; but these torsors do
have rational points, and we conclude that W (Ê/Q) = 〈−1, k〉. �

Corollary 8. If k is as in Proposition 6, then qq(Ê/Q)[ψ] ' (Z/2Z)2t, and in
particular we have rank E = rank Ê ≤ 2t.

Proof. Since S(ψ)(Ê/Q) has rank 2t+ 2 by Proposition 6, Theorem 7 and the
definition of qq(Ê/Q)[ψ] gives qq(Ê/Q) ' S(ψ)(Ê/Q)/W (Ê/Q) ' (Z/2Z)2t. �

Corollary 9. Let k = pqr, where p ≡ q ≡ 5 mod 8 and r ≡ 3 mod 4 are primes
such that (p/q) = (p/r) = (q/r) = +1. Then rank Ek ≤ 2.

Proof. Put t = 1 in Corollary 8. �
In particular, this applies to the following curves taken from [7]:

k factorization
2379 3 · 13 · 61
6355 5 · 31 · 41
8555 5 · 29 · 59
9595 5 · 19 · 101
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Our methods can also be used to prove

Proposition 10. Let k = p1 · · · pm be a product of primes pi ≡ 5 mod 8 such
that (pi/pj) = +1 whenever i 6= j. Then #qq(Ê/Q) ≥ 2m−1if m is odd and
#qq(Ê/Q) ≥ 2m−2 if m is even.

This is the corrected version of a corollary of the results of Aoki [2].

4. What Next?

Showing that the curves in [7] whose rank was conjectured to be 2 actually equals
2 can be done with Cremona’s software [3]; it is similarly straight forward to
come up with a lot of results like those in Section 3 above. What is needed,
however, is a general result embracing these special cases; since the conditions
that guarantee nontrivial elements in qq(Ê/Q)[ψ] can be formulated using the
splitting of primes in the genus field of Q(i,

√
2,
√
k ), one might start looking for

some kind of governing field (see Cohn & Lagarias) predicting nontrivial elements
in qq(Ê/Q)[ψ] or, more generally, in qq(Ê/Q)[2].

It is also possible that the methods described here allow us to prove that the
set of integers k for which the Mordell-Weil rank of Ek : y2 = x(x2 − k2) is 0
has density 1; without a better framework for proving the existence of nontrivial
elements in qq[2] such an investigation is, however, too technical to be practical.
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