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CONNECTIVITY OF PATH GRAPHS

D. FERRERO

Abstract. The aim of this paper is to lower bound the connectivity of k-path
graphs. From the bounds obtained, we give conditions to guarantee maximum
connectivity. Then, it is shown that those maximally connected graphs satisfying
the previous conditions are also super-λ. While doing so, we derive some properties
about the girth and the diameter of path graphs. Finally, the results are extended
to path graphs resulting from the iteration of the k-path graph operator.

1. Introduction

The k-path graph corresponding to a graph G has for vertices the set of all paths
of length k in G. Two vertices are connected by an edge whenever the intersection
of the corresponding paths forms a path of length k − 1 in G, and their union
forms either a cycle or a path of length k +1 in G. Intuitively, this means that the
vertices are adjacent if and only if one can be obtained from the other by ‘shifting’
the corresponding paths in G. Following the notation used by Knor and Niepel,
the k-path graph of G will be denoted as Pk(G). Path graphs were introduced
by Broersma and Hoede in [3] as a natural generalization of line graphs. Indeed,
for every graph G, the graph P1(G) coincides with the line graph of G. A char-
acterization of P2-path graphs is given in [3] and [9], some important structural
properties of path graphs are presented in [1], [11], [12], and [13], while distance
properties of path graphs are studied in [2] and [7]. The edge connectivity and
super edge-connectivity of line graphs was studied by Jixiang Meng [14]. The con-
nectivity of path graphs was studied by Xueliang Li [10] and later by Knor, Niepel
and Mallah [6, 8]. Note that the path graph can be thought of as an operator on
graphs, and therefore, we can study graphs arising from the iteration of the k-path
graph operator. Indeed, the s-iterated k-path graph of G is the graph P s

k (G) de-
fined as Pk(G) if s = 1, and Pk(P s−1

k (G)) if s > 1. Given a path u0, u1, . . . , uk in
G, the corresponding vertex in Pk(G) will be denoted by U = u0u1 . . . uk.

We recall next the definition of some concepts related to the connectivity of a
graph and refer the reader to [4, 5] for additional information. A graph G is called
connected if every pair of vertices is joined by a path. An edge cut in a graph G is
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a set A of edges such that G−A is not connected. The edge-connectivity λ(G) of a
graph G is the cardinality of a minimal edge cut of G. Since λ(G) ≤ δ(G), a graph
G is said to be maximally edge-connected when λ(G) = δ(G). A minimal edge cut
(C, C) is called trivial if C = {v} or C = {v} for some vertex v with deg(v) = δ(G).
A maximally edge-connected graph is called super-λ if every edge cut (C, C) of
cardinality δ(G) is trivial. The superconnectivity of a graph is denoted by λ1(G)
and it is defined as λ1(G) = min{|(C, C)|, (C, C) is a non trivial edge cut}. Then,
a graph G is super-λ if and only if λ1(G) > δ(G).

Following the notation of [6], for a graph G and two integers k and t, k ≥ 2
and 0 ≤ t ≤ k−2, by P ∗

k,t we denote an induced tree in G with diameter k + t and
a diametric path (xt, xt−1, . . . , x1, v0, v1, . . . vk−t, y1, y2, . . . , yt) such that all the
endvertices of P ∗

k,t are at distance no greater than t from v0 or vk−t, the degrees
of v1, v2 . . . vk−t−1 are 2 in P ∗

k,t and no vertex in V (P ∗
k,t) − {v1, v2 . . . vk−t−1} is

adjacent with a vertex in V (G)−V (P ∗
k,t). The path v1, v2 . . . vk−t−1 is the base of

P ∗
k,t, and for a path A of length k we say that A ∈ P ∗

k,t if and only if the base of
P ∗

k,t is a subpath of A.

Theorem A. [6] Let G be a connected graph with girth at least k + 1. Then,
Pk(G) is disconnected if and only if G contains a P ∗

k,t, 0 ≤ t ≤ k − 2, and a path
A of length k, such that A /∈ P ∗

k,t.

After a section presenting sufficient conditions for an iterated k-path graph
to be connected, Section 3 is devoted to the study of the edge connectivity and
superconnectivity of connected path graphs and the results are extended to iterated
path graphs, when possible.

The main results in Section 2 are:
Let k be a positive integer and let G be a connected graph with minimum degree

δ > 2(k − 1). Then,
a. PkG is connected. (Theorem 2.4)
b. If G has diameter D, then the diameter of Pk(G) is at most D + 2k.

(Theorem 2.6)
Regarding measures of the connectivity, the main results in Section 3 are:
a. Let k be a positive integer and let G be a connected graph with minimum

degree δ > 2(k − 1). Then, λ(Pk(G)) ≥ 2(δ − (k − 1)). (Theorem 3.4)
b. Let k be a positive integer and let G be a connected δ-regular graph with

δ > 2(k − 1). Then,
1. Pk(G) is maximally connected. (Corollary 3.5)
2. Pk(G) is super-λ. (Theorem 3.7)

2. Connected k-path graphs

Knor and Niepel [6] provided in Theorem A a characterization of connected k-path
graphs Pk(G) of graphs with large girth. In this section, we present a lower bound
on the minimum degree of a connected graph which suffices to assure that its
k-path graph is connected. Thus, this result complements the previous one, and
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as it will be shown, gives a condition that is preserved under the path graph
iteration.

Lemma 2.1. Let k be a positive integer and let G be a graph with minimum
degree δ > 2(k − 1). If U and V are two vertices in Pk(G) determined by paths in
G which share an endvertex, then there is a path of length 2k joining U and V .

Proof. Let the vertices U and V be determined by the paths U = u0u1 . . . uk and
V = v0v1 . . . vk in G. Since the paths u0, u1, . . . , uk and v0, v1, . . . , vk share an end-
vertex, whitout loss of generality we can assume u0 = v0. Since δ > 2(k−1), there
exists a vertex xk ∈ N(u0) \ {u1, . . . , uk−1, v1, . . . , vk−1}, and as a consequence,
there exist vertices U1 = xku0u1 . . . uk−1 and V1 = xkv0v1 . . . vk−1 in Pk(G),
U1 ∈ N(U) and V1 ∈ N(V ). Notice that the paths u0, u1, . . . , uk and v0, v1, . . . , vk

could eventually share other vertices in addition to an endvertex. Indeed, we
can repeat the previous reasonament with U1 and V1 and obtain a vertex
xk−1 ∈ N(xk)\{u0, . . . , uk−2, v0, . . . , vk−2} and vertices U2 = xk−1xku0u1 . . . uk−2

and V2 = xk−1xkv0v1 . . . vk−2 in Pk(G), U2 ∈ N(U1) and V2 ∈ N(V1). Repeat-
ing this procedure k times we will obtain two paths in Pk(G), Uk . . . U1U and
V V1 . . . Vk, where Uk = x1 . . . xku0 and Vk = x1 . . . xkv0. Then, Uk = Vk because
u0 = v0, and we have a path in Pk(G), the path U, U1, . . . , Uk−1, Uk, Vk−1, . . . , V1,
V , joining U and V . Clearly, the length of that path is 2k. �

The above lemma can be extended to two vertices in Pk(G) whose corresponding
paths in G share a vertex, which is not neccessarily and endvertex. We are going
to prove it, but to simplify the writing we first introduce some notation.

Let P = a0, a1, . . . , ar be a walk in G. If r ≥ k and no two vertices at dis-
tance smaller than or equal to k in P coincide, there exist vertices a0a1 . . . ak and
ar−kar−k+1 . . . ar in Pk(G). Moreover, the path P induces a path in Pk(G) between
them, which is going to be denoted as Ik(P ) or equivalently, Ik(a0, a1, . . . , ar).
Note that Ik(P ) has length r − k.

Lemma 2.2. Let k be a positive integer and let G be a graph with minimum
degree δ > 2(k − 1). If U and V are two vertices in Pk(G) determined by paths in
G which share a vertex, then there is a path of length at most 2k joining U and V .

Proof. Let the vertices U and V be determined by the paths U = u0u1 . . . uk

and V = v0v1 . . . vk in G. If the paths u0, u1, . . . , uk and v0, v1, . . . , vk share an
endvertex it suffices to apply Lemma 2.1. If not, there exist vertices us and vt such
that us = vt and {u0, . . . , us−1} ∩ {v0, . . . , vt−1} = ∅. Without loss of generality
we can assume s ≥ t. Then, proceeding as in the proof of Lemma 2.1, since
δ > 2(k − 1) it is possible to construct a path xk, . . . , xs+1, u0 which gives rise to
the paths Ik(xk, . . . , xs+1, u0, . . . , uk) and Ik(xk, . . . , xs+1, u0, . . . , us, vt+1, . . . , vk)
in Pk(G). The union of these two paths determines a path in Pk(G) joining U and
the vertex us−t . . . us−1vt . . . vk. At the same time, the vertex us−t . . . us−1vt . . . vk

is connected to V . Indeed, if we procceed as before, since δ > 2(k − 1)
we can find a path vk, y0, . . . , yt−1 in G from which arise the paths
Ik(us−t . . . us−1vt . . . vk, y0, . . . , yt−1) and Ik(v0 . . . vk, y0, . . . , yt−1) in Pk(G).
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Thus, the union of those paths connects the vertex us−t . . . us−1vt . . . vk with V .
As a consequence, there is path joining U and V obtained from the union of the
previous paths. Furthermore, the lengths of the four original paths used to connect
U and V are respectively k − s, k − t, t and t, so their union has length 2k − s + t
and since s ≥ t, it is at most 2k. �

Lemma 2.3. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). If U and V are two vertices in Pk(G) whose
corresponding paths in G do not share any vertex, then there is a of length at most
2k + D(G) path joining U and V .

Proof. Let the vertices U and V be determined by the paths U = u0u1 . . . uk

and V = v0v1 . . . vk in G. Let us assume that the shortest path between
{u0, . . . , uk} and {v0, . . . , vk} is the shortest path between the vertices us

and vt, denoted by us = z0, z1, . . . , zd = vt. Note that because of this choice,
{u0, . . . , uk} ∩ {z1, . . . , zd−1} = ∅ and {v0, . . . , vk} ∩ {z1, . . . , zd−1} = ∅. Since
δ > 2(k − 1) there exist paths xk, . . . , xs+1, u0 and vk, y0, . . . , yt−1, in such a way
that there are also paths Ik(xk, . . . , xs+1, u0, . . . , uk), Ik(xk, . . . , xs+1, u0, . . . , us,
z1, . . . , zd−1, vt, . . . , vk, y0, . . . , yt−1) and Ik(v0, . . . , vk, y0, . . . , yt−1) in Pk(G). The
union of those three paths forms a path joining U and V . Besides, the lengths of
those three paths are respectively k−s, d+k− t and t. Therefore, the total length
will be 2k + d − s. Since s ≥ 0 and d ≤ D(G), we conclude that the length of the
path between U and V is at most 2k + D(G). �

As a direct consequence of the previous lemmas we can obtain the following
theorem.

Theorem 2.4. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then Pk(G) is connected.

Corollary 2.5. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then, for every s ≥ 1, P s

k G is connected.

Proof. It is enough to see that the minimum degree of Pk(G) is lower bounded
by 2(δ − (k − 1)) which is greater than 2(k − 1) because δ > 2(k − 1). The proof
can be then completed by induction on s using Theorem 2.4. �

Also considering the statements about the length of the paths obtained in the
previous lemmas we can establish the following results regarding the diameter.

Theorem 2.6. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then D(Pk(G)) ≤ D(G) + 2k.

As above, the following corollary can be proved by induction.

Corollary 2.7. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then, for every s ≥ 1, D(P s

k (G)) ≤ D(G) + 2sk.
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3. Connectivity and Superconnectivity

This section is devoted to measure the connectivity of connected path graphs.

Lemma 3.1. Let k be a positive integer and let G be a connected graph with
minimum degree δ > k. Then, there exist δ − k edge disjoint paths of length 3
between any two adjacent vertices in Pk(G).

Proof. Let U = u0u1 . . . uk and V = u1 . . . ukuk+1 be two adjacent vertices in
Pk(G). Since δ > k, there exist bi ∈ N(uk) − {u1 . . . uk−1, uk+1}, i = 1, . . . , δ − k
and cj ∈ N(u1)−{u0, u2 . . . uk}, j = 1, . . . , δ−k, and as a consequence, there exist
vertices u1 . . . ukbi and cju1 . . . uk in Pk(G). Let γ be an isomorphism in the integer
set {1, . . . , δ − k}, then we can assign each bi with one particular cγ(i). Therefore,
there is a path Pi : u, u1 . . . ukbi, cγ(i)u1 . . . uk, v in Pk(G), which obviously has
length 3 and joins U and V . Let us see that these paths are edge disjoint. In
fact, the only case in which two different paths Pi and Pj could share a vertex is if
u1 . . . ukbi = cγ(i)u1 . . . uk, which implies in particular u2 = u1, that is not possible
because u0, u1, . . . uk is a path in G. Therefore, we have obtained the δ − k paths
between U and V claimed. �

•

•

•

•

u0u1 . . . uk u1 . . . ukuk+1

u1 . . . ukbi
cγ(i)u1 . . . uk

..............................................................................................................................................................................................

..............................................................................................................................................................................................

.........................................................................................................................................................................................................................

.........................................................................................................................................................................................................................

Figure 1. Paths given in Lemma 3.1.

Since cycles of length at least k + 1 are fixed points under the k-path graph
operator, the previous lemma gives rise to the following corollary, which illustrates
an interesting property of k-path graphs.

Corollary 3.2. Let k be an integer and let G be a connected graph with mini-
mum degree δ > k. Then, the girth of Pk(G) is 3 if k = 1 or 2 and G has triangles,
and 4 otherwise.

The above corollary shows that Theorem A does not work for iterated path
graphs if k ≥ 4.

Lemma 3.3. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then, there exist δ − (k − 1) edge disjoint paths of
length 3k − 1 between any two adjacent vertices in Pk(G).

Proof. Let U = u0u1 . . . uk and V = u1 . . . ukuk+1 be two adjacent vertices in
Pk(G). Since δ ≥ k, for each i = 1, . . . , δ − (k − 1) there exists a choice of vertices
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ai
2, . . . , a

i
k and bi

2, . . . , b
i
k+1 which determine the walks in G

Pi : ai
2, . . . , a

i
k, u0, u1, b

i
2, . . . , b

i
k+1 and Qi : bi

k+1, . . . , b
i
2, u1, . . . , uk+1.

Moreover, since δ ≥ 2(k− 1), for any integers i, j, 1 ≤ i, j ≤ δ− (k− 1)) we can
choose the vertices so that ai

k 6= aj
k and bi

2 6= bj
2 if i 6= j. Let γ be an isomorphism

in the integer set {1, . . . , δ − (k − 1)}, then we can associate each path Pi with a
path Qγ(i). Now, the union of the paths Ik(Pi) and Ik(Qγ(i)) determines a path
between U and V in Pk(G). Observe that the resulting paths are disjoint, because
the choice of Pi and Qγ(i) guarantees that they do not share any subsequence of
length k and the vertices that Ik(Pi) and Ik(Qγ(i)) have in common correspond to
common subpaths of length k. �

•

•

•
•• • • ••

ai
2 ai

k
u0 u1 u2 ukuk+1

bi
2

bi
k+1

..............................................................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 2. Paths given in Lemma 3.3.

Theorem 3.4. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k − 1). Then, λ(Pk(G)) ≥ 2(δ − (k − 1)).

Proof. As a consequence of Lemma 3.1 and Lemma 3.3, there are δ−k internally
disjoint paths of length 3 and δ− (k− 1) internally disjoint paths of length 3k− 1
joining any two adjacent vertices U and V in Pk(G). Let us show that a path
of length 3 cannot share an internal vertex with a path of length 3k − 1. Let
U = u0u1 . . . uk and V = u1 . . . ukuk+1, a path Ps of length 3 can be written as

Ps : U, u1 . . . ukbs, cγ(s)u1 . . . uk, V, for every s = 1, . . . δ − k

where bi and cγ(i) are chosen as in Theorem 3.1. Analogously, a path Qt of length
3k − 1 can be expressed as

Qt : U, at
ku0 . . . uk−1, . . . , a

t
2 . . . at

ku0u1, a
t
3 . . . at

ku0u1b
t
2, . . . ,

u1b
t
2 . . . bt

k+1, . . . , uk . . . u1b
t
2, V, for every t = 1, . . . δ − (k − 1)

where at
2, . . . , a

t
k and bt

2, . . . , b
t
k+1 are chosen as in Theorem 3.3.

Therefore, the general expression for an internal vertex in Qt is either

at
j . . . at

ku0 . . . ut
j−1 for every j = 2, . . . k

or
at

j . . . at
ku0u1b

t
2 . . . bt

j−1 for every j = 3, . . . k
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or
uj . . . u1b

t
2 . . . bt

k+2−j for every j = 1, . . . k .

Let us see that there are no possible values of s, t and j for which a vertex in the
above form could coincide with any of the two internal vertices of Ps. Reasoning by
contradiction, let us suppose that such s, t and j exist. For the vertex u1 . . . ukbs

we consider the following cases:
1. If at

j . . . at
ku0 . . . ut

j−1 = u1 . . . ukbs, then ut
j−2 = uk and since 2 ≤ j ≤ k this

implies that 0 ≤ j − 2 ≤ k − 2 so u0 . . . uk cannot be a path in G.
2. If at

j . . . at
ku0u1b

t
2 . . . bt

j−1 = u1 . . . ukbs, then at
j = u1 and since 3 ≤ j ≤ k the

vertex u1 appears at least twice in the sequence at
j . . . at

ku0u1b
t
2 . . . bt

j−1, which
must determine a path in G.

3. If uj . . . u1b
t
2 . . . bt

k+2−j = u1 . . . ukbs, then uj = u1 and since j 6= 1 the sequence
u0 . . . uk cannot determine a path in G.

Analogously, for the vertex cγ(s)u1 . . . uk we consider the following cases:
1. If at

j . . . at
ku0 . . . ut

j−1 = cγ(s)u1 . . . uk, then ut
j−1 = uk and since 2 ≤ j ≤ k the

sequence u0 . . . uk is not a path in G.
2. If at

j . . . at
ku0u1b

t
2 . . . bt

j−1 = cγ(s)u1 . . . uk, since 3 ≤ j ≤ k the vertex u1 already
appears in the sequence u1 . . . uk, which is not possible because it is a path
in G.

3. If uj . . . u1b
t
2 . . . bt

k+2−j = cγ(s)u1 . . . uk, then it must be j = 2 and j where
bt
2 = u0 which is not possible because of the choice of bt

2 in Theorem 3.1.
The previous paths, together with the edge between U and V form a set of

2(δ − (k − 1)) edge disjoint paths joining U and V . As a consequence, for each
edge (U, V ) contained in an edge cut, there must be at least 2(δ − (k − 1)) − 1
more edges in the edge cut, in order to disconnect the pair of vertices U and V .
Then, follows immediately that λ(Pk(G)) ≥ 2(δ − (k − 1)). �

Note that in general δ(Pk(G)) ≥ 2(δ − (k − 1)), but if G is δ-regular, then
δ(Pk(G)) = 2(δ − (k − 1)), so we can derive the following result.

Corollary 3.5. Let k be a positive integer and let G be a connected δ-regular
graph with δ > 2(k − 1). Then, Pk(G) is maximally connected. �

Since the condition δ > 2(k − 1) is preserved under the path graph iteration,
by induction, Theorem 3.4 can be extended to iterated path graphs.

Corollary 3.6. Let k be a positive integer and let G be a connected δ-regular
graph with δ > 2(k − 1). Then, for every positive integer s, P s

k (G) is maximally
connected.

The study of the superconnectivity of a graph is interesting once it is known
that the graph is maximally connected. For that reason, and as a consequence of
Corollary 3.5, we restrict the study of the superconnectivity to connected δ-regular
graphs G where Pk(G) is connected.

Theorem 3.7. Let k be a positive integer and let G be a connected δ-regular
graph with δ > 2(k − 1). Then, Pk(G) is super-λ.



66 D. FERRERO

Proof. Let A be a non trivial edge cut in Pk(G), we will show that |A| must be
greater than δ(Pk(G)). Suppose that |A| ≤ δ(Pk(G)). Since Pk(G) is maximally
connected, it can only be |A| = δ(Pk(G)). As a consequence of Lemma 3.1 and
Lemma 3.3, A must contain at least one edge in each of the 2(δ − k + 1) edge
disjoint paths joining the endpoints of every in A. But precisely because those
paths are edge disjoint and the set A is not trivial, the set A must contain at least
δ(Pk(G)) + 1 more edges. �

The previous theorem gives rise to a trivial lower bound for the superconnec-
tivity of path graphs, which is λ1(Pk(G)) ≥ 2(δ − k + 1) + 1.

As before, by induction we can obtain the following corollary.

Corollary 3.8. Let k be a positive integer and let G be a connected graph with
minimum degree δ > 2(k−1). Then, for every positive integer s, P s

k (G) is super-λ
and λ1(P s

k (G)) ≥ 2(δ − (k − 1)) + 1. �
Notice that the proofs for Lemmas 3.1 and 3.3, as well as the proofs for Theo-

rem 3.4 and its corollaries and Theorem 3.7 also work if the bound on the degree,
δ > 2(k − 1), is replaced by a more relaxed one, δ > k, but together with a lower
bound on the girth g, which must be g ≥ k + 1. However, as a consequence of
Lemma 3.1, the new results cannot be extended to iterated path graphs if k ≥ 4.
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