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ON STANDARD BASIS AND MULTIPLICITY OF
(Xa − Y b, Xc − Y d)

E. BOĎA and R. FARNBAUER

Abstract. Let I = (Xa − Y b, Xc − Y d) · k[X, Y ] be an ideal of dimension zero
in polynomial ring in two variables. In this note a formula for standard basis of
I with respect of anti-graded lexicographic order is derived. As a consequence the
discussion on the common points of the plane curves V (Xa − Y b) and V (Xc −Y d)
is given.

Introduction

Let A = k[X1, X2, ..., Xn] be a polynomial ring over a field k and let > be a linear
ordering on A (precisely on the set of monomials xα =: Xα1

1 Xα2
2 . . . Xαn

n ). Any
total ordering on A that is compatible with multiplication and that satisfies 1 > Xi

for all i = 1, . . . , n is called a local order on A. One of the local orderings on A is
the anti-graded lexicographic order, (alex, for short) which is defined as follows:

Let α, β ∈ Zn
≥0. We say that xα >alex xβ if

|α|=
n∑

i=1

αi<|β|=
n∑

i=1

βi

or
|α| = |β| and in the difference α − β the left-most nonzero entry is positive.

Let now f =
∑
α

cαxα be a polynomial in A, where cα ∈ k. The leading term of f

with respect to the alex ordering on A is the product cαxα where xα is the largest
monomial of f . We shall use the notation Lt(f) for the leading term of f . Suppose
that I is an ideal of A. Consider the ideal Lt(I) generated by leading terms from
I. The ideal Lt(I) will be said to be a leading ideal of I. One of the intriguing
questions, which can be raised here, is to find a basis of Lt(I). In Theorem 2 we
give a solution to this problem.
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Definition. Let I be an ideal of A = k[X1, X2, . . . , Xn] which is contained in
M =: (X1, X2, . . . , Xn)A. Let > denote a local order in A. A standard basis of I
is the set {g1, g2, . . . , gt} of polynomials of I such that

Lt(I) = (Lt(g1),Lt(g2), . . . ,Lt(gt))A.

There is an effective method how to find a standard basis for an ideal in terms
of S-polynomials (Buchberger’s Criterion):
Having nonzero polynomials f and g in M =: (X1, X2, . . . , Xn)A, we can con-

sider Lt(f) = cxα, Lt(g) = dxβ and xγ , the least common multiple of xα and xβ .
An S-polynomial of f and g is the polynomial

S(f, g) =:
xγ

Lt(f)
f − xγ

Lt(g)
g.

Now let Γ = {f1, f2, ..., ft} be a set of polynomials of A = k[X1, X2, ..., Xn]
(with the local order). Then every polynomial f ∈ A can be expressed as:

f = a1f1 + a2f2 + ...+ atft + r

with ai, r ∈ A and either r = 0 or no monomial of r is divisible by any
Lt(f1),Lt(f2), . . . ,Lt(ft). The polynomial r is called a remainder of f on division
by Γ and marked by fΓ.
Now we can formulate the well-known Buchberger’s Criterion for standard basis

of any ideal:
A set Γ = {g1, g2, . . . , gt} of polynomials of I is a standard basis of I if and only

if for all pairs gi, gj of Γ it holds

S (gi, gj)
Γ = 0.

see [C, Chap. 4],
In the next part of this note we use Buchberger’s Criterion for producing stan-

dard basis of one class of zero dimensional ideals.

Standard basis of the ideal (Xa − Y b, Xc − Y d).

Assume that (Xa − Y b, Xc − Y d) · R is an ideal of dimension zero in polynomial
ring R := k[X, Y ]. (Dimension zero is equivalent to the statement ad 6= bc.) We
shall derive a standard basis of (Xa−Y b, Xc−Y d) ·R in anti-graded lexicographic
order of R.
Without loss of generality we can suppose a ≥ b and d > c, or a > b and c > d.

Theorem 1. Let q = (Xa − Y b, Xc − Y d) be an ideal in R of dimension zero.
Let a ≥ b and d > c. Then a standard basis of q is {Y b − Xa, Xc − Y d}.
Proof. Set F = Y b − Xa, G = Y d − Xc and Γ = {F, G}. For the S-polynomial

of F and G it holds

S(F, G) = Y b+d − Xa+c and hence S (F, G)Γ = 0.

�
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Let us continue with the rest case a > b and c > d. In addition, we can assume

that b > d. If k denotes the integral part of
b

d
, then we get 0 ≤ b

d
− k < 1.

It is easy to see that for the decimal part
b

d
− k the following statement holds:

Lemma 1. There is only one integer n ∈ N , n ≥ 2 such that
a)

1
n+ 1

<
b

d
− k ≤ 1

n
, or

b) 1− 1
n

<
b

d
− k ≤ 1− 1

n+ 1
.

Before formulating the main result we bring a list of important polynomials:
F = Xa − Y b,
G = Xc − Y d,
H = XkcY b−kd − Xa,
K = X(n+1)a−nkc − X(k+1)cY (n+1)b−(k(n+1)+1)d,
T = X(k+1)c − Xna−(n−1)kcY (nk+1)d−nb, (∗)
U = X(n−1)(k+1)c−(n−2)aY nb−(nk+(n−1))d − X2a−kc,
V = Xn(k+1)c−(n−1)a − X2a−kcY ((n+1)k+n)d−(n+1)b,
W = Xa · Y (k+1)d−b − X(k+1)c.

Theorem 2. Let q = (Xa −Y b, Xc −Y d) be an ideal in R of dimension zero,

and let a > b, c > d, b > d. Assume that k is the integral part of
b

d
and that n is

the integer assigned to
b

d
−k as given in Lemma 1. Then there are five possibilities

for a standard basis of q. More precisely,

(i) If bc < ad, then the standard basis of q is

(F, G, H, T ) or (F, G, H, U, V, W )1

according to integer n satisfying the relation a) or b) in Lemma 1, respec-
tively.
(ii) If ad < bcThen the standard basis of q is

(F, G, H),

whenever a − kc ≤ b − kd. In addition, if a − kc > b − kd, then the standart
basis if q is

(F, G, H, K, T ) or (F, G, H, U, W )

with respect to integer n given by respective cases a) or b) in Lemma 1.

Proof. Part (i). Suppose that integer n satisfies the following relation

1
n+ 1

<
b

d
− k ≤ 1

n
.

We shall apply Buchberger’s Criterion. Let us calculate S-polynomials and their
remainders of all pairs of {F, G, H, T} = Γ.
1Se the list (∗) of polynomials
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For F and G we have S(F, G) = XcY b−d−Xa. Since d < b for all i = 1, . . . , k−1
and b − kd < a − kc, we get

S(F, G) = G(XcY b−2d +X2cY b−3d + . . .+X(k−1)cY b−kd) +H,

so S (F, G)Γ = 0.
Let us take F and H .

S(F, H) = XaY kd − XaXkc

= G(Y (k−1)d +XcY (k−2)d + . . .

+X(k−1)c)Xa ,

and therefore S (F, H)Γ = 0. ConsiderG and H .

S(G, H) = XaY (k+1)d−b − X(k+1)c

= H(Xa−kcY (2k+1)d−2b +X2a−2kcY (3k+1)d−3b + . . .

+X(n−1)a−(n−2)kcY (nk+1)d−nb) + T ,

so S (G, H)Γ = 0. Now, take H and T .

S(H, T ) = Xna−(n−1)kc(Y ((n−1)k+1)d−(n−1)b − X((n−1)k+1)c−(n−1)a)
= H(Xna−nkcY (nk+1)d−nb) + T (Xa−kc)

and S (T, H)Γ = 0. Because the leading terms of pairs F , T and G, T are relatively
prime, it holds

S (F, T )Γ = S (G, T )Γ = 0.

and Γ is a standard basis.

Consider now 1− 1
n

<
b

d
− k ≤ 1− 1

n+ 1
, and Γ =: {F, G, H, U, V, W}.

S (F, G)Γ = S (F, H)Γ = S (G, H)Γ = 0 by the same argument as above.

S (F, V )Γ = S (G, V )Γ = 0 because the leading terms are relatively prime. For
the rest pairs we have

S(F, W ) = X(k+1)cY 2b−(k+1)d − X2a

= H(XcY b−d +Xa−(k−1)cY (k−1)d +X2a−(2k−1)cY (2k−1)d−b + . . .

+Xma−(mk−1)cY (mk−1)d−(m−1)b)+
+W (Xma−(mk−1)cY ((m−1)k−2)d−(m−2)b+
+X(ma−((m−1)k−2)c)−aY ((m−2)k−3)d−(m−3)b + . . .)

m = k, so S (F, W )Γ = 0.

S(F, U) = X2a−kcY (n(k+1)−1)d−(n−1)b − X(k+1)(n−1)c−(n−3)a

= G(X2a−kcY (n(k+1)−2)d−(n−1)b + . . .

+X2a−(k−(m−2))cY (n(k+1)−m)d−(n−1)b)+
+W (Xa−(k−(m−1))cY ((n−1)(k+1)−m)d−(n−2)b+
+XmcY ((n−2)(k+1)−m)d−(n−3)b + . . .)

m = k + 1, so S (F, U)Γ = 0.
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S(G, W ) = X(k+1)cY b−kd − Xa+c = HX c

so S (G, W )Γ = 0.

S(G, U) = X2a−kcY n((k+1)d−b) − X(nk+n−k)c−(n−2)a

= W (Xa−kcY (n−1)(k+1)d−(n−1)b +XcY (n−2)(k+1)d−(n−2)b+
+X(k+2)c−aY (n−3)(k+1)d−(n−3)b + . . .)

so S (G, U)Γ = 0.

S(H, W ) = X(k+1)cY 2b−2kd−d − X2a−kc

= W (X(k+1)c−aY 3b−3kd−2d) + U

so S (H, W )Γ = 0.

S(H, U) = X2a−kcY (n−1)((k+1)d−b) − X(nk−2k+n−1)c−(n−3)a

= W (Xa−kcY (n−2)((k+1)d−b) +XcY (n−3)((k+1)d−b)+
+X(k+2)c−aY (n−4)((k+1)d−b) + . . . )

so S (H, U)Γ = 0.

S(H, V ) = X2a−kcY n((k+1)d−b) − X(nk+n−k)c−(2−n)a

= W (Xa−kcY (n−1)((k+1)d−b) +XcY (n−2)((k+1)d−b)+
+X(k+2)c−aY (n−3)((k+1)d−b) + . . . )

so S (H, V )Γ = 0.

S(W, U) = Xn(k+1)c−(n−1)a − Y ((n+1)k+n)d−(n+1)bX2a−kc = V

so S (W, U)Γ = 0.

S(W, V ) = W (Xa−kcY ((n+1)k+n)d−(n+1)b) +YX (k+1)c−a

so S (W, V )Γ = 0.

S(U, V ) = X2a−kcY (k+1)d−b − Xa+c =W (Xa−kc)

so S (U, V )Γ = 0.

The remainders of all S-polynomials are equal zero and this completes proof of
the part (i).
The proof of the part (ii) is similar. �

One of the applications of standard basis relates to the multiplicity theory. Let
Q be any primary ideal in RM belonging to a maximal ideal in RM (RM denotes
the localization of polynomial ring R by the ideal M =: (X, Y )·R). Let e0(Q;RM )
denote the leading term of the Hilbert-Samuel polynomial dimk(RM/Qn+1 ·RM ).
For the Samuel multiplicity of Q in RM (see [Z-S]). Since ring RM is a two-
dimensional Cohen-Macaulay local ring, for the ideal Q generated by two elements
(parameter ideal) holds

e0(Q;RM ) = dimk(RM/Q · RM ).
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We can apply these notions to our ideal I. RM = (Xa − Y b, Xc − Y d) · RM . For
the calculation of Samuel multiplicity of (Xa − Y b, Xc − Y d) · RM is important
this proposition:

Lemma 2. Let J ∈ R := k[X, Y ] be an ideal contained in maximal ideal
M = (X, Y ) ·R. Let Lt(J) be the leading ideal of J with respect to the local order
in R. Then

dimk(RM/J · RM ) = dimk(RMLt(J) · RM ).

Proof. See [C, Chap. 4, $ 3, Cor. 4. 5]. �
As an application we give another proof of the main theorem of [B-O].

Theorem 3. e0((X a −Y b,X c −Y d)·RM ;RM ) = min {a · d , b · c}.
Proof. By Lemma 4 and the formula above the Samuel multiplicity of

(Xa − Y b, Xc − Y d) · RM is equal to the length of the (M –primary) leading
ideal q = Lt((Xa −Y b, Xc −Y d) ·RM ). In the case of Theorem 1 is q = (Xc, Y b)
and therefore l(q) = bc < ad.

In the case of Theorem 3.
(i) if bc < ad, then

q = (Y d, XkcY b−kd, X(k+1)c)

for n according a) of Lemma 1 or

q = (Y d, XkcY b−kd, XaY (k+1)d−b, X(n−1)(k+1)c−(n−2)aY nb−(nk+(n−1))d,
Xn(k+1)c−(n−1)a)

for n according b) of Lemma 1.

(ii) if ad < bc, then

q = (Y d, Xa)

if a − kc ≤ b − kd , or
q = (Y d, XkcY b−kd, Xna−(n−1)kcY (nk+1)d−nb, X(n+1)a−nkc)

if a − kc > b − kd for n according a) of Lemma 1 or

q = (Y d, XkcY b−kd, XaY (k+1)d−b, X2a−kc)

if a − kc > b − kd for n according a) of Lemma 1.

For the calculation of the length of q we have

l(q) = l((X(k+1)c, Y d, XkcY b−kd))
= (k + 1)c(b − kd) + kdc − kc(b − kd)
= b · c
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or

l(q) = l((Xn(k+1)c−(n−1)a, Y d, X(n−1)(k+1)c−(n−2)aY nb−(nk+(n−1))d,
XaY (k+1)d−bXkcY b−kd))

= (n(k + 1)c − (n − 1)a)(nb − (nk + (n − 1))d)+
+((n − 1)(k + 1)c − (n − 2)a)
((k + 1)d − b) + a(b − kd) + dkc − ((n − 1)(k + 1)c − (n − 2)a)
(nb − (nk + (n − 1))d)− a((k + 1)d − b − kc(b − kd)

= bc

in (i) and

l(q) = l((Y d, Xa)) = ad

or

l(q) = l((X(n+1)a−nkc, Y d, XkcY b−kd, Xna−(n−1)kcY (nk+1)d−nb))
= l((X(n+1)a−nkc, Y d, XkcY b−kd))− l((X(n+1)a−nkc,

Y d, XkcY b−kd) : (Xna−(n−1)kcY (nk+1)d−nb))
= l((X(n+1)a−nkc, Y d, XkcY b−kd))−

−l((Xa−kc, Y (n+1)b−d(k(n+1)+1)))
= (((n+ 1)a − nkc)(b − kd) + dkc − (a − kc)((n+ 1)b − d(k(n+ 1) + 1)))
= ad

or

l(q) = l((X2a−kc, Y d, XkcY b−kd, XaY (k+1)d−b))
= l((X2a−kc, Y d, XkcY b−kd))−

−l((X2a−kc, Y d, XkcY b−kd) : (XaY (k+1)d−b))
= l((X2a−kc, Y d, XkcY b−kd))− l((Xa−kc, Y 2b−(2k+1)d)
= ((2a − kc)(b − kd) + dkc − (kc(b − kd)))− ((a − kc)(2b − (2k + 1)d))
= ad

in (ii) (see [B-S] and [L]). �

common points of V (Xa − Y b) and V (Xc − Y d).

Let now R := k[X, Y ] be a polynomial ring over an algebraic closed field k. In
addition, let V and W be plane algebraic curves of E2 defined over k by equations
Xa − Y b = 0 and Xc −Y d = 0, respectively. Suppose that the intersection V ∩W
consists only of isolated points (equivalently the ideal I = (Xa − Y b, Xc − Y d) ·R
is of dimension zero).
How many times meet the curves V and W at origin O? Let us denote this

multiplicity number as i(O;V, W ). By well known Bezout’s Theorem i(O;V, W ) =
= e0(I.RM ;RM ) (see [V] for details).
So, as consequence of the main theorem

i(O;V, W ) = min {a · d , b · c}.
which is the multiplicity of V ∩ W at origin O.
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Another question concerns the number of all common points of V ∩ W in E2.
By the construction of Gröbner Basis of I (with respect to any monomial order in
R), the leading ideal of I and the length of this ideal we can prove this conjecture:

Conjecture 1. The number of all common points of the curves V and W in
E2 is equal to max {a · d , b · c}.
Last question relates to the common asymptotic directions (points in infinity)

of studying curves. If V and W are projective closures of V and W in exten-
ded Euclidean plane E2 , than we can formulate the classical Bezout’s Theorem:
max {a, b} ·max {c, d} = number of common points of V and W in E2. So we are
able formulate the last conjecture:

Conjecture 2. The number of all common asymptotic directions of the curves
V and W in E2 is equal to max {a, b} ·max{c, d} −max{a · d , b · c}.
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