ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXII, 1(2003)
p. 15 – 22
On Standard Basis and Multiplicity of (Xa – Yb, Xc – Yd)
E. Boda and R. Farnbauer
Abstract. 
Let $I=(X^{a}-Y^{b},X^{c}-Y^{d})\cdot k[X,Y]$ be an ideal of
dimension zero in polynomial
ring in two variables. In this note a formula for standard basis of $I$
with respect of anti-graded lexicographic order is derived. As
a consequence the discussion on the common points of the plane
curves $V(X^{a}-Y^{b})$ and $V(X^{c}-Y^{d})$ is given.
AMS subject classification: 
13H15, Secondary 13P10
Keywords: 
Standard basis of ideal, local intersection multiplicity, Bezout Theorem
invariance
Download:     Adobe PDF
    Compressed Postscript
 
   
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2003, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE