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THE DIOPHANTINE EQUATION AX2 −BY 2 = C SOLVED VIA
CONTINUED FRACTIONS

R. A. MOLLIN, K. CHENG and B. GODDARD

Abstract. The purpose of this article is to provide criteria for the solvability of
the Diophantine equation a2X2− bY 2 = c in terms of the simple continued fraction

expansion of
√

a2b, and to explore criteria for the solvability of AX2 − BY 2 = C

for given A, B, C ∈ N in the general case. This continues work in [9]–[11].

1. Introduction

The equation ax2 − by2 = c has been a topic of interest for some time. For
instance, Gauss provided criteria for the solvability of |ax2 − by2| = 4 in terms of
the fundamental unit of the underlying real quadratic field Q(

√
ab) (see Corollary

3.5 below). Also, Eisenstein looked at the solvability of that equation in similar
terms (see [6, Exercise 2.1.15, p. 60] and Remark 3.2 below). In [15], H. C.
Williams gives criteria for the solvability of |x2 − ∆y2| = 4 with gcd(x, y) = 1
in terms of the simple continued fraction expansion of the quadratic irrational
(1 +

√
∆)/2 where ∆ ≡ 5(mod 8) is a fundamental discriminant. Similarly, in [3],

P. Kaplan and K. S. Williams gave criteria for the solvability of x2−Dy2 = −4 for
gcd(x, y) = 1 in terms of the simple continued fraction expansion of

√
D when D is

not a perfect square (also see [6, Exercise 2.1.14, pp. 59–60]). It is in this vein that
we are focused, namely toward a criterion for the solution of |a2X2 − bY 2| = c in
terms of the simple continued fraction expansion related to the radicand D = a2b.

2. Notation and Preliminaries

We will be studying solutions of quadratic Diophantine equations of the general
shape

(2.1) AX2 −BY 2 = C (A,B ∈ N, C ∈ Z),

where not both of A and B are squares. If x, y ∈ Z is a solution of (2.1), then it is
called positive if x, y ∈ N and it is called primitive if it is positive and gcd(x, y) = 1.
It is easily verified that, given two positive solutions x

√
A+y

√
B and u

√
A+v

√
B
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of (2.1), the following are equivalent:

(1) x < u, (2) y < v, and (3) x
√

A + y
√

B < u
√

A + v
√

B.

Hence, among the primitive solutions of (2.1), if such solutions exists, there is
one in which both x and y have their least values. Such a solution is called the
fundamental solution. We will use the notation

α = x
√

A + y
√

B

to denote a positive solution of (2.1), and we let

N(α) = Ax2 −By2

denote the norm of α. We will be linking such solutions to simple continued
fraction expansions that we now define.

Recall that a quadratic irrational is a number of the form

(P +
√

D)/Q

where P,Q,D ∈ Z with D > 1 not a perfect square, P 2 ≡ D (mod Q), and Q 6= 0.
Now we set:

P0 = P , Q0 = Q, and recursively for j ≥ 0,

(2.2) qj =

⌊
Pj +

√
D

Qj

⌋
,

(2.3) Pj+1 = qjQj − Pj ,

and

(2.4) D = P 2
j+1 + QjQj+1.

Hence, we have the simple continued fraction expansion:

α =
P +

√
D

Q
=

P0 +
√

D

Q0
= 〈q0; q1, . . . , qj , . . .〉 ,

where the qj for j ≥ 0 are called the partial quotients of α.
To further develop the link with continued fractions, we first note that it is

well-known that a real number has a periodic continued fraction expansion if and
only if it is a quadratic irrational (see [7, Theorem 5.3.1, p. 240]). Furthermore a
quadratic irrational may have a purely periodic continued fraction expansion which
we denote by

α = 〈q0; q1, q2, . . . , q`−1〉
meaning that qn = qn+` for all n ≥ 0, where ` = `(α) is the period length of the
simple continued fraction expansion. It is known that a quadratic irrational α has
such a purely periodic expansion if and only if α > 1 and −1 < α′ < 0. Any
quadratic irrational which satisfies these two conditions is called reduced (see [7,
Theorem 5.3.2, p. 241]). If α is a reduced quadratic irrational, then for all j ≥ 0,

(2.5) 0 < Qj < 2
√

D, 0 < Pj <
√

D, and qj ≤ b
√

Dc
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Finally, we need an important result which links the solutions of quadratic
Diophantine equations with the Qj defined above. We first need the following
notation.

Let D0 > 1 be a square-free positive integer and set:

σ0 =
{

2 if D0 ≡ 1 ( mod 4),
1 otherwise.

Define:

ω0 = (σ0 − 1 +
√

D0)/σ0, and ∆0 = (ω0 − ω′
0)

2 = 4D0/σ2
0 ,

where ω′
0 is the algebraic conjugate of ω0, namely

ω′
0 = (σ0 − 1−

√
D0)/σ0.

The value ∆0 is called a fundamental discriminant or field discriminant with as-
sociated radicand D0, and ω0 is called the principal fundamental surd associated
with ∆0. Let ∆ = f2

∆∆0 for some f∆ ∈ N. If we set

g = gcd(f∆, σ0), σ = σ0/g,D = (f∆/g)2D0, and ∆ = 4D/σ2,

then ∆ is called a discriminant with associated radicand D. Furthermore, if we
let

ω∆ = (σ − 1 +
√

D)/σ = f∆ω0 + h

for some h ∈ Z, then ω∆ is called the principal surd associated with the discrimi-
nant

∆ = (ω∆ − ω′
∆)2.

This will provide the canonical basis element for certain rings that we now define.
Let [α, β] = αZ + βZ be a Z-module. Then O∆ = [1, ω∆], is an order in

K = Q(
√

∆) = Q(
√

D0) with conductor f∆. If f∆ = 1, then O∆ is called the
maximal order in K. The units of O∆ form a group which we denote by U∆. The
positive units in U∆ have a generator which is the smallest unit that exceeds 1.
This selection is unique and is called the fundamental unit of K, denoted by ε∆.

It may be shown that any Z-module I 6= (0) of O∆ has a representation of the
form [a, b + cω∆], where a, c ∈ N with 0 ≤ b < a. We will be concerned only
with primitive ones, namely those for which c = 1. In other words, I is a primitive
Z-submodule of O∆ if whenever I = (z)J for some z ∈ Z and some Z-submodule J
of O∆, then |z| = 1. Thus, a canonical representation of a primitive Z-submodule
of O∆ is obtained by setting:

σa = Q and b = (P − 1)/2 if σ = 2, while b = P if σ = 1 for P,Q ∈ Z,

namely

(2.6) I = [Q/σ, (P +
√

D)/σ].

Now we set the stage for linking ideal theory with continued fractions by
giving a criterion for a primitive Z-module to be a primitive ideal in O∆. A
nonzero Z-module I as given in (2.6) is called a primitive O∆-ideal if and only if
P 2 ≡ D (mod Q) (see [7, Theorem 3.5.1, p. 173]). Henceforth, when we refer to
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an O∆-ideal it will be understood that we mean a primitive O∆-ideal. Also, the
value Q/σ is called the norm of I, denoted by N(I). Hence, we see that

I is an O∆-ideal if and only if α = (P +
√

D)/Q is a quadratic irrational.

When referring to an ideal I of O∆, we call I a reduced O∆-ideal if it contains
an element β = (P +

√
D)/σ such that I = [N(I), β], where β > N(I) and

−N(I) < β′ < 0. In fact, the following holds.

Theorem 2.1. Let ∆ be a discriminant with associated radicand D. Then I =
[Q/σ, b + ω∆] is a reduced O∆-ideal if Q/σ <

√
∆/2. Conversely, if I is reduced,

then Q/σ <
√

∆. Furthermore, if 0 ≤ b < Q/σ and Q >
√

∆/2, then I is reduced
if and only if Q/σ − ω∆ < b < −ω′

∆.

Proof. See [6, Corollaries 1.4.2–1.4.4, p. 19; pp. 23–28]. �

Now the stage is set for the appearance of the result that formally merges
ideals and continued fractions. We only need the notion of the equivalence of two
O∆-ideals I and J , denoted by I ∼ J to proceed. We write I ∼ J to denote the
fact that there exist nonzero integers α, β ∈ O∆ such that (α)I = (β)J , where (x)
denotes the principal O∆-ideal generated by x ∈ O∆. For a given discriminant ∆,
the class group of O∆ determined by these equivalence classes, denoted by C∆, is
of finite order, denoted by h∆, called the class number of O∆. Now we may present
the Continued Fraction Algorithm.

Theorem 2.2. Suppose that ∆ ∈ N is a discriminant, Pj, Qj are given by
(2.2)–(2.4), and

Ij = [Qj−1/σ, (Pj−1 +
√

D)/σ]
for nonnegative j ∈ Z. Then I1 ∼ Ij for all j ∈ N. Furthermore, there exists
a least natural number n such that In+j is reduced for all j ≥ 0, and these In+j

are all of the reduced ideals equivalent to I1. If ` ∈ N is the least value such that
In = I`+n, then for j ≥ n− 1,

αj = (Pj +
√

D)/Qj

all have the same period length ` = `(αj) = `(αn−1)

Proof. See [7, Theorem 5.5.2, pp. 261–266]. �

Remark 2.1. From the Continued Fraction Algorithm, we see that if

I = [Q/σ, (P +
√

D)/σ]

is a reduced O∆-ideal, then the set

{Q1/σ,Q2/σ, . . . , Q`/σ}
represents the norms of all reduced ideals equivalent to I. This is achieved via the
simple continued fraction expansion of α = (P +

√
D)/Q.

A immediate consequence of the Continued Fraction Algorithm is the following
application.
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Corollary 2.1. Let ∆ be a discriminant with radicand D and let c ∈ N with
c <

√
∆/2. Then

x2 −Dy2 = ±σ2c

has a primitive solution if and only if c = Qj/σ for some j ≥ 0 in the simple
continued fraction expansion of ω∆.

Also, the following consequence of the Continued Fraction Algorithm is of use
in the next section.

Corollary 2.2. If ∆ is a discriminant, and Qj/σ 6= 1, in the simple continued
fraction expansion of ω∆. If Qj/σ is a squarefree divisor of ∆, then ` = `(ω∆ =
= 2j. Conversely, if ` is even, then Q`/2/σ|∆ (where Q`/2/σ is not necessarily
squarefree).

Proof. See [5, Lemma 3.5, p. 831]. �

The following result will be useful in proving the main result in the next section.

Theorem 2.3. If D ∈ N is not a perfect square and n ∈ Z such that the Dio-
phantine equation x2 −Dy2 = n has a primitive solution X0 + Y0

√
D, then there

exists a unique element P1 ∈ Z with −|c|/2 < P1 ≤ |c|/2 such that

P1 +
√

D = (X0 − Y0

√
D)(x + y

√
D)

for some x, y ∈ Z given by

x =
X0P1 − Y0D

n
and y =

Y0P1 −X0

n
.

Proof. See [7, Theorem 6.2.7, pp. 302–303]. �

In the next section we require results on the following well-known sequences.
For a quadratic irrational

α =
P +

√
D

Q
= 〈q0; q1, . . .〉,

define two sequences of integers {Aj} and {Bj} inductively by:

(2.7) A−2 = 0, A−1 = 1, Aj = qjAj−1 + Aj−2 (for j ≥ 0),

(2.8) B−2 = 1, B−1 = 0, Bj = qjBj−1 + Bj−2 (for j ≥ 0).

By [7, Theorem 5.3.4, p. 246],

(2.9) A2
j−1 −B2

j−1D = (−1)jQjQ0 (for j ≥ 1),

There is also a pretty relationship between these sequences and the fundamental
unit given as follows.

Theorem 2.4. Let ∆ > 0 be a discriminant,

I = [Q/σ, (P +
√

D)/σ]

a reduced ideal in O∆, and
α = (P +

√
D)/Q.
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If Pj and Qj for j = 1, 2, . . . , `(α) = ` are defined by Equations (2.2)–(2.4) in the
simple continued fraction expansion of α, then

ε∆ =
∏̀
i=1

(Pi +
√

D)/Qi

and
N(ε∆) = (−1)`.

Also, either
ε∆ = A`−1 + B`−1

√
D,

or
ε3
∆ = A`−1 + B`−1

√
D.

Proof. See [6, Theorems 2.1.3–2.1.4, pp. 51–53]. �

3. Results

In what follows, we will employ the following notation. Given b ∈ N not a
perfect square, let T1,b + U1,b

√
b be the fundamental solution of the Pell equation

(3.10) x2 − by2 = 1.

Then the integers Tk,b and Uk,b are defined by

(T1,b + U1,b

√
b)k = Tk,b + Uk,b

√
b.

Note that any positive solution x0 +y0

√
b of Equation (3.10) must be a positive

power of the fundamental solution. In other words, x0 + y0

√
b = Tk,b + Uk,b

√
b for

some k ∈ N (see for instance [7]–[8]).
The following generalizes [9, Theorem 2.3, pp. 340-341] and [11, Theorem 2.1,

p. 221].
Theorem 3.1. Let a, b, c ∈ N, b not a perfect square, such that the congruence

a2 ≡ bP 2 (mod c) is solvable for some integer P , and let |t| ∈ N denote the smallest
value satisfying a2 − bP 2 = ct. Suppose that either,

(a) a
∣∣ Tk,b for some k ∈ N and c < a

√
b,

or
(b) |t| < a

√
b.

Then the following are equivalent.
(c) There exists a primitive solution to

(3.11) |a2X2 − bY 2| = c.

(d) For some integer j ≥ 0 in the simple continued fraction expansion of
√

a2b,
c = Qj when (a) holds or |t| = Qj when (b) holds.

Proof. First assume that (c) holds, so Equation (3.11) has a primitive solution
α = x0a + y0

√
b. If (a) holds, then a

∣∣ Tk,b for some k ∈ N, so there exist u, v ∈ N
such that a2u2 − bv2 = 1. Therefore, for D = a2b,

±c = (a2u2 − bv2)(a2x2
0 − by2

0) = (a2x0u + bvy0)2 − (x0v + y0u)2D.
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We now show that X = a2x0u + bvy0 and Y = x0v + y0u provide a primitive
solution of X2 − DY 2 = ±c. Clearly X, Y ∈ N. If p is a prime dividing both X
and Y , then

(3.12) a2x0u + bvy0 = pr,

and

(3.13) x0v + y0u = ps,

where r, s ∈ Z. Multiplying a2u times Equation (3.13) and subtracting v times
Equation (3.12), we get,

y0(u2a2 − bv2) = p(sa2u− rv),

but a2u2−bv2 = 1, so y0 = p(sa2u−rv). We have shown that p
∣∣ y0. Similarly, by

eliminating the y0 term from both Equations (3.12)–(3.13), it can be shown that
p
∣∣ x0, a contradiction to the primitivity of ax0 + y0

√
b. Hence, (X, Y ) provides

a primitive solution of X2 − DY 2 = ±c. We may therefore invoke Corollary 2.1.
Since c <

√
D, then there exists a nonnegative integer j such that c = Qj in the

simple continued fraction expansion of
√

D.
Now assume that (b) holds. Since a2x2

0− by2
0 = ±c, then for X0 = by0, Y0 = x0

and n = ∓bc,
X2

0 −DY 2
0 = b2y2

0 − ba2x2
0 = ∓bc = n,

so by invoking Theorem 2.3, we get that there is a unique P1 ∈ Z such that
P1 +

√
D = (X0 − Y0

√
D)(x + y

√
D) where bP = P1 by the minimal choice of P

and |t|, and

x =
X0P1 − Y0D

n
=

by0P1 − x0a
2b

∓bc
=

y0P1 − x0a
2

∓c
=

y0bP − x0a
2

∓c
∈ Z,

and

y =
Y0P1 −X0

n
=

x0P1 − by0

∓bc
=

x0P1/b− y0

∓c
=

x0P − y0

∓c
∈ Z.

If y = 0, then x0P = y0 so, since gcd(x0, y0) = 1, we must have that x0 = 1
and y0 = P . Therefore, by2

0 + ct = a2. However, since a + y0

√
b is a solution of

Equation (3.11) then a2 − by2
0 = ±c. Thus, t = ±1. so |t| = 1 = Q0 in the simple

continued fraction expansion of
√

a2b. Therefore, we may assume that y 6= 0.
Since P 2

1 − D = b2P 2 − ba2 = −bct, then x2 − Dy2 = ±t. Now we show that
this solution is primitive. If x = 0, then −y2D = t, so for y 6= 0, this means that
|t| > D, contradicting that |t| <

√
D. Thus, x = 0 implies y = 0, a contradiction.

Hence, x 6= 0. Thus, |x|, |y| ∈ N. If p is a prime dividing both x and y, then we
deduce that both

(3.14) y0bP − x0a
2 = cpr,

for some r ∈ Z and

(3.15) x0P − y0 = cps,
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for some s ∈ Z. Multiplying Equation (3.14) by −x0 and adding it to y0b times
Equation (3.15), we achieve,

x2
0a

2 − y2
0b = cp(sy0b− rx0),

but since x2
0a

2 − y2
0b = ±c, then p(sy0b − rx0) = ±1, thereby forcing p

∣∣ 1, a
contradiction. We have shown that |x|+ |y|

√
D is a primitive solution of equation

(3.11), so we may invoke Theorem 2.2. Since |t| <
√

D, then there exists a j such
that Qj = |t| in the simple continued fraction expansion of

√
D.

Now we assume the converse, namely that (d) holds. We first dispense with
the case where c = a2. In this case, let U + V

√
D be the fundamental solution

of x2 − Dy2 = 1. Thus, by setting X = U and Y = V a2 we get aX + Y
√

b is a
primitive solution of Equation (3.11). Note that when c = a2, then P = 0 and
t = 1. We may now assume that c 6= a2.

First assume that (a) holds and Qj = c in the simple continued fraction expan-
sion of

√
D. Since Qj = c, we may use Corollary 2.1 to conclude that there is a

primitive solution x0 + y0

√
D to the Diophantine equation x2 − Dy2 = ±c. As

above a2u2 − v2b = 1 for some u, v ∈ N, so

±c =
(
a2u2 − v2b

) (
x2

0 −Dy2
0

)
= a2 (x0u− by0v)2 − b

(
vx0 − a2y0u

)2
,

which yields a solution aX + Y
√

b to Equation (3.11) where

(X, Y ) = (ux0 − bvy0, vx0 − a2y0u).

We must show that it is primitive. If X = 0, then u = bvy0/x0, so

1 = a2u2 − v2b = a2b2v2y2
0/x2

0 − v2b,

which forces, (bvy0/x0)
∣∣ 1. Thus, x0 = bvy0, forcing y0 = 1 and x0 = bv, so

u = 1. Since 1 = a2 − v2b and b2v2 − a2b = ±c, then b2v2 − (1 + v2b) = ±c, so
b = c. However, bP 2 + ct = a2, so b

∣∣ a2. Since a2 = 1 + v2b, then this means that
b
∣∣ 1, a contradiction. We have shown that X 6= 0. If Y = 0, then v = a2y0u/x0,

so 1 = a2u2 − a4y2
0u2b/x2

0 forcing (a2u/x0)
∣∣ 1. Thus, x0 = a2u and v = y0.

Therefore,

c = a2X2 = a2(ux0 − bvy0)2 = a2(a2u2 − bv2)2 = a2,

so c = a2, a contradiction. We have shown that |X|, |Y | ∈ N. It remains to show
that gcd(X, Y ) = 1. If p is a prime dividing both X and Y , then there are integers
r, s such that

(3.16) ux0 − bvy0 = pr,

and

(3.17) vx0 − a2y0u = ps.

multiplying v times Equation (3.16) and subtracting u times Equation (3.17), we
get y0 = y0(a2u2 − bv2) = p(rv− su), from which we get that p

∣∣ y0. Similarly, we
eliminate the y0 term from both Equations (3.16)–(3.17) and we get that p

∣∣ x0,
contradicting the primitivity of x0 + y0

√
D.
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Now assume that (b) holds and |t| = Qj in the simple continued fraction ex-
pansion of

√
D. Thus, by Corollary 2.1, there is a primitive solution x0 + y0

√
D

to the Diophantine equation X2 −DY 2 = ±t. By Theorem 2.3 there is a unique
P1 ∈ Z such that P1 +

√
D = (x0 − y0

√
D)(x + y

√
D) where P1 = Pb by the

minimal choice of |t|,

x =
x0P1 − y0D

±t
=

x0Pb− y0D

±t
∈ Z,

and

y =
y0P1 − x0

±t
=

y0Pb− x0

±t
∈ Z.

Since P 2
1 −D = −bct, then x2 −Dy2 = ±bc. Hence,

(3.18) b(x/b)2 − y2a2 = ±c,

which yields a solution to Equation (3.11). It remains to show that this is a
primitive solution. If y = 0, then y0bP = x0, so by the relative primality of x0

and y0, this means that y0 = 1 and x0 = bP . Therefore, since a2b = b2P 2 + bct by
hypothesis,

±t = x2
0 − a2b = b2P 2 − b2P 2 − bct = −bct,

so b = 1, a contradiction to the fact that b is not a perfect square. Thus, y 6= 0.
If x = 0, then by Equation (3.18), a2y2 = c. However, x = 0 also means that
y0 = x0P/a2 from the definition of x, so

±t = x2
0 −Dy2

0 = x2
0 − bx2

0P
2/a2 = x2

0(1− bP 2/a2) = x2
0ct/a2.

Thus, x2
0c = a2. Since a2y2 = c, this means that x2

0a
2y2 = a2, so x0 = |y| = 1 and

c = a2, a contradiction. We have shown that |x|, |y| ∈ N. It remains only to prove
that x and y are relatively prime. If p is a prime dividing both x and y, then there
exist r, s ∈ Z such that

(3.19) x0bP − y0a
2b = tpr,

and

(3.20) y0bP − x0 = tps.

Multiplying Equation (3.19) by y0 and subtracting x0 times Equation (3.20), we
get

±t = x2
0 − y2

0D = t(ry0 − sx0)p,

from which it follows that p
∣∣ 1, a contradiction that secures the result. �

When a = c = 1, we always have a solution of the Pell Equation (3.11) since
c = 1 = Q0 in the simple continued fraction expansion of

√
b. However, when

c = 1 6= a, then a little more can be said.

Corollary 3.1. If a, b ∈ N with b not a perfect square, then

(3.21) a2X2 − bY 2 = 1

has a solution if and only if a
∣∣ Tk,b for some k ∈ N.
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Proof. If a
∣∣ Tk.b for some k ∈ N, then by Theorem 3.1, Equation (3.21) has

a solution. Conversely, if ax0 + y0

√
b is a solution of the equation, then by the

discussion preceding the theorem, ax0 + y0

√
b = Tk,b + Uk,b

√
b for some k ∈ N.

Hence, a
∣∣ Tk,b. �

Remark 3.1. Corollary 3.1 is a well-known result (see [13] for example). In
fact, it can be shown that if ax0 + y0

√
b is the fundamental solution of Equation

(3.21), then all positive solutions of (3.21) are given by (ax0 + y0

√
b)2k−1 for all

k ∈ N. In general, if A > 1, B > 1, and
√

Ax +
√

By is a primitive solution of
Ax2 −By2 = 1, then there exists a j ≥ 0 such that

√
Ax +

√
By = (T1,AB + U1,AB

√
AB)2j+1,

(see [13, Theorem 4, p. 506]).

The following immediate consequence of Theorem 3.1 is an extension of the
ideas expressed in Corollary 2.1.

Corollary 3.2. Suppose that D is a radicand, c ∈ N with DP 2 ≡ 1(mod c)
solvable for some integer P with |t| ∈ N the smallest value such that 1−DP 2 = ct
with c|t| < D. Then |X2 −DY 2| = c has a primitive solution if and only if either
c or |t| is equal to Qj for some j ≥ 0 in the simple continued fraction expansion
of
√

D.

Example 3.1. Let D = 45 and c = 11, then P = 1 and t = −4. Then

|X2 − 45Y 2| = 11

has a primitive solution since |t| <
√

D =
√

45 and |t| = 4 = Q2 in the simple
continued fraction expansion of

√
45. One such solution is given by 672−45 ·102 =

= −11.

The following consequence of Theorem 3.1 has some connections to well-known
problems (see Remark 3.2 below).

Corollary 3.3. If D ≡ 1(mod 4) is a radicand, then

|X2 −DY 2| = 4

has a primitive solution if and only if 4 = Qj for some j > 0 in the simple
continued fraction expansion of

√
D.

Proof. If D ≥ 17, then c = 4 <
√

D and a = 1
∣∣ T1,D, so Theorem 3.1 applies

and we are done. If D < 17, then (D − 1)/4 = t <
√

D and P = 1 in Theorem
3.1. When D = 5, t = 1 = Q0 in the simple continued fraction expansion of

√
5

and when D = 13, t = 3 = Q2 in the simple continued fraction expansion of
√

13,
so by Theorem 3.1, we have secured the proof. �

Remark 3.2. There is an underlying interplay between quadratic orders that
we have not yet addressed. In the above, we have been tacitly assuming that we
are working in the order Z[

√
a2b], which means that the underlying discriminant
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is ∆ = 4a2b. For instance, if a = 1, b = 65, c = 4, t = −16, and P = 1, then by
Theorem 3.1

X2 − 65Y 2 = ±4
has no primitive solutions, since c <

√
a2b =

√
65, but c 6= Qj in the simple

continued fraction expansion of
√

65. In fact, since `(
√

65) = 1, then the only such
Qj is Q0 = Q1 = 1. Thus, by Theorem 2.2, there can be no primitive, principal
ideal of norm 4 in Z[

√
65]. On the other hand, by Theorem 2.2, in the maximal

order Z
[
(1 +

√
65)/2

]
we have a primitive ideal of norm 4 since 4 = Q1/2 in the

simple continued fraction expansion of (1 +
√

65)/2. By Corollary 2.1, this means
that X2 − 65Y 2 = ±16 has a primitive solution. In fact, X = 7, Y = 1 yields
X2 − 65Y 2 = −16. Note that [4, (7 +

√
65)/2] is a principal ideal of norm 4 in

Z
[
(1 +

√
65)/2

]
.

By Corollary 3.3, if D ≡ 1(mod 4) is a radicand, then

(3.22) |X2 −DY 2| = 4

has a primitive solution if and only if Qj = 4 for some j > 0 in the simple
continued fraction expansion of

√
D, and this in turn is tantamount to saying that

[4, 1 +
√

D] is a principal ideal in Z[
√

D], by Theorem 2.2. Observe that in the
above illustration, [4, 1 +

√
65] is not principal in Z[

√
65].

When D ≡ 5(mod 8) is a radicand, then Equation (3.22) has a primitive so-
lution if and only if the fundamental unit εD of Z[(1 +

√
D)/2] is not in Z[

√
D].

This is related to a problem of Eisenstein, also investigated by Gauss (see [6,
pp. 59–61] for details). In general, if D ≡ 1(mod 4), if the (more specific) equa-
tion X2 − DY 2 = −4 has a primitive solution, then εD is not in Z[

√
D], but

the converse fails. For instance, if D = 21, then ε21 = (5 +
√

21)/2 6∈ Z[
√

21],
but X2 − 21Y 2 = −4 has no primitive solution. However, it is clear that for
D ≡ 1(mod 4), x2 −Dy2 = −4 has a primitive solution if and only if εD 6∈ Z[

√
D]

and N(εD) = −1.

Example 3.2. Let a = 3, b = 85, c = 4, t = −19, and P = 1. Then |t| = 19 = Q2

in the simple continued fraction expansion of
√

765 =
√

a2b. Thus, by Theorem
3.1, 9X2 − 85Y 2 = ±4 has a primitive solution. In fact, X = 3, Y = 1 provides
a primitive solution to 9X2 − 85Y 2 = −4. Notice that, although c = Q4 = 4 in√

765, a = 3 does not divide Tk,85 for any k ∈ N. The reason is that

T1,85 + U1,85

√
85 = 285769 + 30996

√
85,

so 3
∣∣ U1,85. Thus, 3 - Tk for all k ∈ N since U1,85

∣∣ Uk,85 for all k ∈ N (see [7,
Exercise 6.5.13, p. 355]). Hence (a) of Theorem 3.1 fails, which is the reason for
invoking the theorem via (b) above.

With reference to the problems discussed in Remark 3.2, notice that D = a2b =
= 765 ≡ 5(mod 8) and ε765 = (83 + 3

√
765)/2 6∈ Z[

√
765].

Example 3.3. Let a = 3, b = 19, c = 5, t = −2, and P = 1. Since 3 - Tk,19

for any k ∈ N, given that ε19 = 170 + 39
√

19 with 3
∣∣ U1,19 (see the argument

in Example 3.2), and |t| = 2 = Q1 in the simple continued fraction expansion
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expansion of
√

171 =
√

a2b, then we invoke Theorem 3.1 via (b) to get that
9X2 − 19Y 2 = ±5 has a primitive solution. In fact, X = 3, Y = 2 provides a
primitive solution of 9X2 − 19Y 2 = 5.

The following shows that conditions (a)–(b) in Theorem 3.1 are essential for
the equivalence of (c)–(d). In other words, the equivalence of (c)–(d) fails in the
absence of one of (a) or (b) holding, so that we cannot dispense with conditions
(a)–(b) in the hypothesis.

Example 3.4. Let a = 3, b = 19 and c = 17. Then P = 8 and t = −71. Since
a = 3

∣∣ U1,19 = 39, then 3 cannot divide Tk,19 for any k ≥ 0 since (see the argument
in Example 3.2). Thus, (a) of Theorem 3.1 fails to hold. Also, |t| > a

√
b = 3

√
19,

so (b) of Theorem 3.1 fails to hold as well. Yet,

a2X2 − bY 2 = 9X2 − 19Y 2 = 17 = c,

has the primitive solution X = 2, Y = 1 and there does not exist any j ≥ 0 such
that either c or |t| equals any Qj in the simple continued fraction expansion of√

D = a
√

b =
√

171. In fact, the only such Qj are Q0 = Q2 = 1 and Q1 = 5 since
`(
√

171) = 2.

The following illustrates that Theorem 3.1 fails without the hypothesis on the
solvability of the congruence a2 ≡ bP 2 (mod c). Note that, as shown in [12, pp.
164–169], the existence of a solution to the congruence is necessary and sufficient
for the existence of a solution to a2x2− by2 = ct for some integer t with |t| < a

√
b.

Example 3.5. If a = 7, b = 3, and c = 5, then

72X2 − 3Y 2 = ±5

has no solutions since there is no integer P such that 3P 2 ≡ 49(mod 5), given that
the Legendre symbol (3/5) = −1. Also, c = 5 < 7

√
3 = a

√
b, and a = 7

∣∣ T2,3 =
= 7 = T2,b, namely even in the presence of the satisfaction of (a) in Theorem 3.1,
we do not have a solution of the displayed equation.

The following illustrates the case where (a) does not hold, but (b) does in
Theorem 3.1.

Example 3.6. Let a = 5, b = 3, c = 22, P = 1, and t = 1. We have that
c = 22 > 5

√
3, so (a) fails, but t = 1 < a

√
b so (b) holds. Since t = Q0 = 1 in the

simple continued fraction expansion of
√

75 = a
√

b, then by Theorem 3.1,

a2X2 − bY 2 = 25X2 − 3Y 2 = 22 = c,

has a primitive solution, the smallest positive of which is given by X = Y = 1.

The following illustrates the case where (a) holds but (b) fails.

Example 3.7. Let a = 13, b = 5719, c = 3, P = 1, and t = −1850. Since
|t| = 1850 > 13

√
3 = a

√
b, then (b) of Theorem 3.1 fails. However, c = 3 < a

√
b

and a = 13
∣∣ T3,5719 whose prime factorization is given by

T3,5719 = 13 · 73 · 3090595037619968783 · 491670203565799 · 329685203,
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where, for interests sake,

T1,b + U1,b

√
b = 491670203565799 + 6501504110940

√
5719,

with both T1,b and T2,b prime. Since c = Q69 = 3 in the simple continued fraction
expansion of a

√
b =

√
966511 (where `(

√
966511) = 156), then by Theorem 3.1,

a2X2 − bY 2 = 169X2 − 5719Y 2 = −3 = −c

has a primitive solution, one of which is given by X = 104018 and Y = 17881.

Example 3.7 is related to another problem involving continued fractions and
solutions of Diophantine equations investigated by the first author, A. J. van der
Poorten, and H. C. Williams (see [6, pp. 96–104], especially [6, Example 3.5.3,
p. 101]).

The following is an instance where both (a) and (b) hold in Theorem 3.1.

Example 3.8. Let a = 7, b = 13, c = 9, P = 1, and t = 4. Here c = 9 <
< 7

√
13 = a

√
b and 7

∣∣ T2,13 = T2,b = 842401 = 7 · 17 · 7079, where T1,13 +
+ U1,13

√
13 = 649+180

√
13, so (a) holds. Also, t = 4 < a

√
b, so (b) holds as well.

Moreover, c = 9 = Q2 and t = 4 = Q8 in the simple continued fraction expansion of
a
√

b =
√

637. Thus, by Theorem 3.1,

a2X2 − bY 2 = 49X2 − 13Y 2 = 9,

has a primitive solution. One such solution is X = 5363 and Y = 10412.

In the examples thus far, we have had relative primality between a, b, and c.
Now we illustrate an interesting case covered by Theorem 3.1, where the gcds are
not 1.

Example 3.9. Let a = 9, b = 5, c = 81, so t = 1 and P = 0. Then,

a2X2 − bY 2 = 92X2 − 5Y 2 = 81 = c = a2

has the primitive solution X = 161, Y = 648. In this case, (b) of Theorem 3.1
holds since |t| < a

√
b = 9

√
5, and of course t = Q0 = 1 in the simple continued

fraction expansion of
√

D =
√

405 =
√

a2b.
Notice as well in this example that if t is not minimally chosen, for instance

t = −4 and P = 9, then |t| 6= Qj for any j ≥ 0 in the simple continued fraction
expansion of

√
405 since Q0 = 1 = Q2 and Q1 = 5 given that `(

√
405) = 2.

Of course, what underlies this example, when we divide through the displayed
equation by 81, is that 1612−722 ·5 = 1. Here 161+72

√
5 = ((1+

√
5))/2)2 where

(1 +
√

5)/2 is the fundamental unit of Z[(1 +
√

5)/2]. Numerous similar examples
may be depicted with underlying fundamental units. For instance, if a = 7 · 13
and b = c = 13, then

72 · 132 · 562338770402 − 13 · 14192788896012 = −13,

where (14159 + 561
√

72 · 13
2

)3

= 1419278889601 + 56233877040
√

72 · 13,

and (14159 + 561
√

72 · 13)/2 is the fundamental unit of Z[(1 +
√

72 · 13)/2].
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Example 3.10. If a = 3, b = 65, c = 8, t = −7, and P = 1, then c = 8 <
< 3

√
65 = a

√
b, 3

∣∣ T2,65 = 129, and |t| = 7 < a
√

b, so (a)–(b) of Theorem 3.1 are
satisfied. However,

9X2 − 65Y 2 = ±8
is not solvable since 8 = c 6= Qj and 7 = |t| 6= Qj for any j ≥ 0 in the simple
continued fraction expansion of a

√
b =

√
585. Note, however, that

(3.23) 9X2 − 65Y 2 = −56

is solvable since, in this case c = 56, P = 1, and t = −1, so |t| = Q0 in the
simple continued fraction expansion of

√
585, the smallest positive solution being

X = Y = 1. Observe that the only Qj in the simple continued fraction expansion
of
√

585 are Q0 = 1, Q1 = 9 = Q4, Q2 = 16, and Q3 = 29 since `(
√

585) = 8.

Remark 3.3. Notice in Example 3.10, the solution to Equation (3.23) given by
X = Y = 1 is also a solution to 9X4 − 65Y 2 = −56. Recent developments in the
related Diophantine equation

(3.24) a2X4 − bY 2 = 1

are given as follows. Bennet and Walsh [1] have shown that Equation (3.24) has
at most one solution and if that solution exists, then the least value of k ∈ N
such that a

∣∣ Tk,b must satisfy that Tk,b = am2 for some m ∈ N. Thus, for
instance, 9X4−65Y 2 = 1 cannot have a solution since, as shown in Example 3.10,
T2,b = T2,65 = 129 = 3 · 43. Similarly, the Diophantine equation

(3.25) a2X2 − bY 4 = 1

has been shown by Walsh [14], as an extension of work by Ljunggren [4], to have
at most one solution X, Y ∈ N and if it exists, then given the positive solution
u
√

a + v
√

b of aX2 − bY 2 = 1,

X
√

a + Y
√

b = (u
√

a + v
√

b)`,

where v = k2`, with ` is odd and squarefree. For instance, in Example 3.10,
3u2 − 65v2 = 1 can have no solution since 9X2 − 65Y 4 = 1 has no solution.

It would be of great interest and value to extend this work to solutions of the
more general equations a2X4 − bY 2 = c and a2X2 − bY 4 = c for given c ∈ Z in
terms of continued fractions as we have for the case a2X2 − bY 2 = c above.

In [11], we looked not only at the Diophantine equation studied above, but also
the relationship between solutions of them in the following sense. The next result
substantially generalizes [11, Theorem 2.3, p. 222].

Theorem 3.2. Suppose that D = ab is an odd radicand, c ∈ N is odd, and
gcd(a, c) = 1 = gcd(b, c). Then if the Diophantine equation

(3.26) ax2 − by2 = ±4c

has a primitive solution so does the Diophantine equation

(3.27) aX2 − bY 2 = ±c3.
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Proof. If Equation (3.26) has a primitive solution x
√

a + y
√

b, then set

X =
x(ax2 ∓ 3c)

2
and Y =

y(ax2 ∓ c)
2

.

Since a, b, c are odd, then x cannot be even given that x
√

a + y
√

b is a primitive
solution of (3.26) and gcd(a, c) = gcd(b, c) = 1. Thus, X, Y ∈ Z. We have,

(a2x2 −Dy2)3 = (ax(a2x2 + 3Dy2))2 −D(y(3a2x2 + Dy2))2 = ±64a3c3.

Moroever,

ax(a2x2 + 3Dy2) = ax(4a2x2 − 3(a2x2 −Dy2)) = ax(4a2x2 ∓ 12ac) =

4a2x(ax2 ∓ 3c) = 8a2X,

and
y(3a2x2 + Dy2) = y(4a2x2 − (a2x2 −Dy2)) = y(4a2x2 ∓ 4ac) =

4ay(ax2 ∓ c) = 8aY.

Hence,
±64a3c3 = (8a2X)2 −D(8aY )2,

so

(3.28) ±c3 = aX2 − bY 2.

It remains to show that X
√

a + Y
√

b is a primitive solution. If a prime p divides
both X and Y , then by (3.28), p

∣∣ c. Since p
∣∣ X and gcd(a, c) = 1, then p

∣∣ x.
By (3.26), p

∣∣ b or p
∣∣ y, both of which are contradictions since gcd(b, c) = 1 =

= gcd(x, y). �

The following is immediate as the special case where c = 1.

Corollary 3.4. ([11, Theorem 2.3, p. 222]) If D = ab is an odd radicand and
ax2 − by2 = ±4 has a solution, then aX2 − bY 2 = ±1 has a (primitive) solution.

Example 3.11. A primitive solution of 5x2 − 161y2 = −4 is given by (x, y) =
= (17, 3). By Corollary 3.4, there must be a solution to 5X2 − 161Y 2 = ±1.
Indeed, X = 12308, and Y = 2169 provides a solution to 5X2 − 161Y 2 = −1.

Example 3.12. A primitive solution of 17x2 − 5y2 = −12 is given by (x, y) =
(7, 13). By Theorem 3.2, there must be a primitive solution to 17X2−5Y 2 = ±27.
Such a solution is given by (X, Y ) = (77, 142), which yields 17·772−5·1422 = −27.

The following consequence is the result of Gauss cited in the introduction.

Corollary 3.5. (Gauss [2, Article 187, p. 156])
Suppose that ∆ = D is a fundamental discriminant. Then N(ε∆) = −1 if and

only if

(3.29) |ax2 − by2| = 4

has no primitive solution where D = ab unless either a = 1 or b = 1.
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Proof. Suppose that N(ε∆) = −1 and Equation (3.29) has a primitive solution
with D = ab. Thus, by Corollary 3.4, ax2 − by2 = ±1 has a solution, so (ax)2 −
−Dy2 = ±a, where we may assume without loss of generality that a <

√
D. Hence,

by Theorems 2.1–2.2, I = [a,
√

D] is a reduced principal ideal in Z[
√

D], and
a = Qj for some j ≥ 0 in the simple continued fraction expansion of

√
D. If j > 0,

then by Corollary 2.2, `(
√

D) = 2j. Thus, by Theorem 2.4, N(ε∆) = (−1)` = 1,
a contradiction, so a = 1. We have shown that if N(ε∆) = −1, then Equation
(3.29) has no primitive solution with D = ab unless a = 1 or b = 1, since the latter
will occur under the assumption that b <

√
D in the above argument.

Conversely, assume that Equation (3.29) has no primitive solution with D = ab
unless a = 1 or b = 1. We need to show that N(ε∆) = −1. Suppose that
N(ε∆) = 1. Then by Theorem 2.4, ` = `(ω∆) is even. Thus, by Corollary 2.2,
Q`/2/2

∣∣ ∆. Hence, by Theorem 2.2 and Corollary 2.1, there exist x, y ∈ Z such
that x2 −Dy2 = ±4a, where a = Q`/2/2. Since a

∣∣ ∆ = D, then aX2 − by2 = ±4
where X = x/a and b = D/a. By hypothesis, a = 1 or b = 1. However, a 6= 1
since a = Q`/2/2 is the middle of the period. Therefore, b = 1, so D = a = Q`/2/2.
However, by the inequalities in (2.5), D = a < 2

√
D, a contradiction. �

Example 3.13. Since |13x2 − 5y2| = 4 has no primitive solution, then,
N(ε65) = −1.

Remark 3.4. Theorem 3.2 dealt with the solvability of two related Diophantine
equations. Another similar question that arises is the related solvability of the two
Diophantine equations a2x2− by2 = c ∈ N and a2x2− by2 = −c. In [10, Corollary
4. p. 282], it is it incorrectly claimed that both of them cannot have primitive
solutions when `(

√
b) is even. A counterexample is given by 12 − 34 = −33 and

132 − 22 · 34 = 33, where `(
√

34) is even. However, the following does provide a
situation where the parity of `(

√
D) is necessary and sufficient.

Theorem 3.3. Suppose that D is an integer, which is not a perfect square, and
c is an integer such that |c| = 1 or |c| is a prime not dividing D. If

(3.30) x2 −Dy2 = c

has a primitive solution, then

(3.31) X2 −DY 2 = −c

has a primitive solution if and only if `(
√

D) is odd.

Proof. If `(
√

D) is odd, then by Theorem 2.4, N(ε∆) = −1 where ∆ = 4D.
Thus, there exist integers u, v such that u2 −Dv2 = −1. Therefore, if x0 + y0

√
D

is a primitive solution of Equation (3.30), then

(x0 + y0

√
D)(u + v

√
D) = (x0u + y0vD) + (uy0 + vx0)

√
D

is a primitive solution of Equation (3.31).
Conversely, suppose that both Equations (3.30)–(3.31) have primitive solutions,

say α0 = x0 + y0

√
D and β0 = X0 + Y0

√
D respectively. If |c| = 1, then by
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Theorem 2.4, `(
√

D) is odd, so we may assume that |c| is a prime p. In fact, we
will assume that c = p without loss of generality. Then N(α0/β0) = −1, where

α0

β0
=

x0 + y0

√
D

X0 + Y0

√
D

=
(x0 + y0

√
D)(X0 − Y0

√
D)

X2
0 − Y 2

0 D
=

(x0X0 − y0Y0D) + (y0X0 − x0Y0)
√

D

−p
.

However, X2
0 times x2

0 − y2
0D = p minus x2

0 times X2
0 − Y 2

0 D = −p yields,

D(Y 2
0 x2

0 − y2
0X2

0 ) = p(X2
0 + x2

0),

so since gcd(p, D) = 1, then either

p
∣∣ (Y0x0 − y0X0) = Y1 or p

∣∣ (y0X0 + Y0x0) = Y2.

If p
∣∣ Y1, then p

∣∣ X1 where X1 = (x0X0 − y0Y0D) since,

N(X2
1 − Y 2

1 D) = −p2.

Therefore, N((X1/p)2 − (Y1/p)2D) = −1. Hence, N(ε∆) = −1, which implies
by Theorem 2.4, that `(

√
D) is odd. Now we may assume that p

∣∣ Y2. Since
N(α0/β′

0) = −1, where

α0

β′
0

=
x0 + y0

√
D

X0 − Y0

√
D

=
(x0 + y0

√
D)(X0 + Y0

√
D)

−p
=

(x0X0 + y0Y0D) + (x0Y0 + y0X0)
√

D

−p
=

(x0X0 + y0Y0D) + Y2

√
D

−p
,

so, p
∣∣ (x0X0 + y0Y0D) = Y3. Thus,

−1 = N(αo/β′
0) = N((Y3/p) + (Y2/p)

√
D),

so as above N(ε∆) = −1 and `(
√

D) is odd. �

Example 3.14. Let D = 34 and c = 47. Then x2 − 34y2 = 47 has the primitive
solution given by x = 9 and y = 1. However, x2 − 34y2 = −47 has no solution
since `(

√
34) = 4.

Example 3.15. Let D = 65 and c = 29. Then x2−65y2 = −29 has the primitive
solution given by x = 6 and y = 1. Also, x2−65y2 = 29 has the primitive solution
given by x = 17 and y = 2. Here `(

√
65) = 1.

Example 3.16. Let D = 845 and p = 29. Then x2 − 845y2 = −29 has the
primitive solution given by x = 436 and y = 15. Also, x2 − 845y2 = 29 has the
primitive solution given by x = 407 and y = 14. Here `(

√
845) = 5.

As seen by the counterexample in Remark 3.4, Theorem 3.3 is the best we can
hope for in this regard since thecounterexample employs a value c with only two
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prime factors. It would of course be most valuable to find a general criterion for
the mutual solvability of the two Diophantine equations AX2 − BY 2 = C and
Ax2 −By2 = −C for A,B,C ∈ N.
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