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LYAPUNOV EXPONENTS FOR THE PARABOLIC
ANDERSON MODEL

M. CRANSTON, T. S. MOUNTFORD and T. SHIGA

Abstract. We consider the asymptotic almost sure behavior of the solution of the

equation

u(t, x) = u0(x) + κ

∫ t

0
∆u(s, x)ds +

∫ t

0
u(s, x)∂Bx(s)

u(0, x) = u0(x)

where {Bx : x ∈ Zd} is a field of independent Brownian motions.

1. Introduction

We make an asymptotic study of the Lyapunov exponent of the parabolic Anderson
model with white noise potential. Start with a collection of independent, one-
dimensional, Brownian motions {Bx(t) : x ∈ Zd, t ≥ 0}. This provides a random
environment defined on a probability space (Ω,F , Q). Fixing a κ > 0 denote by
(X(t), t ≥ 0,Ft, Px) the symmetric random walk on Zd with jump rate κ. We
assume this process is independent of the field {Bx(t) : x ∈ Zd, t ≥ 0}. Under Px,
{X(t), t ≥ 0} is the pure jump Markov process on Zd started at x with generator
κ∆ where ∆ is the discrete Laplacian defined by ∆f(x) = 1

2d

∑
|y−x|=1(f(y) −

−f(x)). Then we consider the solution of the stochastic equation

u(t, x) = u0(x) + κ

∫ t

0

∆u(s, x)ds+
∫ t

0

u(s, x)∂Bx(s)(1.1)

u(0, x) = u0(x)(1.2)

where ∂ denotes the Stratonovich differential. A result of Carmona and Molchanov
[4] is that provided u0 is bounded, the solution is given by means of the Feynman-
Kac formula

u(t, x) = Ex[u0(X(t))e
∫ t
0 dBX(s)(t−s)] .
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For important background material on the significance of the model we refer the
reader to the memoir [4] and the references therein. The equation (1.1) and its
variants arise in a variety of circumstances. Equation (1.1) can be written in
differential form as

∂u

∂t
= κ∆u+ V u

with a potential V = ∂B. The elliptic version of this equation originated in the
work of Anderson on entrapment of electrons in crystals with impurities. The
parabolic equation can be viewed as a scalar version of magnetic fields in the
presence of turbulence as described in Molcahnov and Ruzmaikin [10] and also
has an interpretation as a population model. Additional references on the subject
is Zeldovitch, Molchanov, Ruzmaikin, and Sokoloff [14] and Shiga [12].

When κ = 0, the solution is simply u(t, x) = u0(x)e−Bx(t). In this case,
limt→∞

1
t log u(t, x) = 0. However, when κ > 0 the situation is quite different.

A result of [4] is that when u0 has compact support, then

lim
t→∞

1
t

log u(t, x) = λ(κ), Q a.s.

The positive constant λ(κ) is called the Lyapunov exponent. This was proven by
a subadditivity argument which did not extend to the noncompact support case.
Moreover, λ(κ) is independent of u0 and a principal result of [4] was the existence
of constants c1, c2 such that for all small κ > 0,

c1
/

log
1
κ
≤ λ(κ) ≤ c2 log log

1
κ

/
log

1
κ
.

This was improved in their later work [5] to

c1
/

log
1
κ
≤ λ(κ) ≤ c2

/
log

1
κ
,

again for small κ. That is, λ is continuous at 0 but increases dramatically with κ.
In the present paper we remove the restriction that u0 has compact support by
showing1

lim
t→∞

1
t

log u(t, x) = λ(κ)

when u0 is a bounded nonnegative, not identically 0 function and that again λ(κ)
is independent of u0. This will follow from the case where u0 has compact support
and a recurrence property of oriented percolation. We also show

lim
κ↓0

λ(κ) log
1
κ

= c

where we identify c by means of a subadditive ergodic theory argument. We would
like to remark that subadditivity plays a major role in the theory of stochastic
flows. It is the main ingredient in the proof of Oseledets Theorem. We refer the
reader to the books [2] and [3] for further information on the subject. In the final

1After this work was submitted, L. Koralov kindly pointed out the reference Asymptotics for

the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random

Oper. Stochastic Equations, 9 (2001), no.1, 77–86, by R. Carmona, L. Koralov, S. Molchanov,
where this limit was also established.
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section we use results of [7] to show that λ(κ) is the derivative at p = 0 of the
moment Lyapunov exponent, Mp(t) = EQ[up(t, x)].

Our results differ in approach from earlier work on the subject in their use of the
subadditive ergodic theorem and percolation theory. This approach was developed
in Mountford [11] in dealing with survival probabilities of the random walk X(t)
in a disastrous environment. In the present context this relies on introducing the
space of deterministic paths on which the measure Px is concentrated when the
paths of X are restricted to have a specific number of jumps. For an interval
[a, b] = I ⊂ [0,∞) and γ : I → Z let N(γ, I) denote the number of jumps of γ in
the interval I. We shall only deal with paths γ which are right continuous with
left limits. Then for x ∈ Zd define

Γx
I,j = {γ : I → Zd, γ(a) = x, |γ(s)− γ(s−)| ≤ 1, for all s ∈ I,N(γ, I) = j}.

We also define Γx,ε
I,j to be the intersection of Γx

I,j with those paths with jump times
separated from one another by ε and such that there are no jump times within ε

2
of the boundary of I. Now we consider the functional

Ax
I,j = sup

γ∈Γx
I,j

∫ b

a

dBγ(s)(b− s) .

The corresponding functional when restricting jumps to be ε apart will be

Ax,ε
I,j = sup

γ∈Γx,ε
I,j

∫ b

a

dBγ(s)(b− s) .

Obviously, Ax
I,j ≥ Ax,ε

I,j . The functional Ax,ε
I,j will be important in establishing the

lower bound in Theorem 2.14. We simplify the notation a little by first setting
A0,n = A0

[0,n],n. The fact that time is running in opposite directions in the func-
tional A makes it a little clumsy to work with. Instead we define a functional with
the same distribution. This will suffice to give all the conclusions we need about
A. Thus, we set

~Ax
I,j = sup

γ∈Γx
I,j

∫ b

a

dBγ(s)(s).

Make the simplified notation ~A0
[0,n],n = ~A0,n. Similarly, set

~Ax,ε
I,j = sup

γ∈Γx,ε
I,j

∫ b

a

dBγ(s)(s)

and use the simplified notation ~Aε
0,n = ~A0,ε

[0,n],n. One thing to notice here is that
time in the dB and γ terms are running in the same direction for the functionals
denoted by ~A . A very important fact is a scaling relation for the functionals
A[0,n],j and ~A[0,n],j inherited from the scaling properties of the Brownian field

{Bx(t) : t ≥ 0, x ∈ Zd}. Namely, for j, n ∈ Z, (using the notation L= for equality
in law)
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A0
[0,n],jn = sup

γ∈Γ0
[0,n],jn

∫ n

0

dBγ(s)(n− s) = sup
γ∈Γ0

[0,n],jn

∫ jn

0

dBγ( s
j )(n−

s

j
)

= sup
γ∈Γ0

[0,jn],jn

∫ jn

0

dBγ(s)(
1
j
(jn− s)) L=

1√
j

sup
γ∈Γ0

[0,jn],jn

∫ jn

0

dBγ(s)(jn− s)

=
1√
j
A0

[0,jn],jn.

A similar computation gives the same scaling relation for ~A[0,n],jn.

Another observation is that ~A0,n is the supremum of the centered Gaussian field
{
∫ b

a
dBγ(s)(s) : γ ∈ Γ0

[0,n],n}. Thus, results such as Borell’s inequality are available
for our analysis. For the reader’s convenience, we state the results from the theory
of Gaussian processes which we shall use. Both results may be found in Adler [1].

Theorem 1.1. (C. Borell) Let T be a Polish space and {Xt}t∈T be a centered,
separable, Gaussian field with supt∈T Xt < ∞ a.s.. Then E (supt∈T Xt) < ∞
and for all λ > 0

P

(
| sup

t∈T
Xt − E

(
sup
t∈T

Xt

)
| > λ

)
≤ 2e−λ2/2σ2

T ,

where σ2
T = supt∈T E(X2

t ).

Let (Xt)t∈T be a centered separable Gaussian field with the pseudo-metric ρ on
T ;

ρ(t, s) =
√
E(Xt −Xs)2.

Theorem 1.2. (Fernique-Talagrand) There exists a universal constant K >
0 such that

E(sup
t∈T

Xt) ≤ K

∫ ∞

0

√
logN(ε)dε

where N(ε) is the least number of ρ-balls of radius ε required to cover T.

Next, given m,n ∈ Z+ determine x ∈ Zd as follows, let x be the smallest value
of γ(m) under any well ordering of Zd taken among paths γ which achieve the
maximum for

∫m

0
dBγ(s)(s). Then set ~Am,m+n = ~Ax

[m,m+n],n. Since ~A0,m+n is a
supremum over paths which have m + n jumps on the interval [0,m + n] which
doesn’t impose any restriction on how many jumps occur in [0,m] or [m,m + n]
it follows that

~A0,m+n ≥ ~A0,m + ~Am,m+n.

Then by Liggett’s subadditive ergodic theorem (applied to − ~A0,n) we have the
following
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Theorem 1.3. There is a positive α such that

lim
n→∞

~A0,n

n
= α .

For ε > 0 there is an α(ε) such that

lim
n→∞

~Aε
0,n

n
= α(ε) .

Moreover, limε↓0 α(ε) = α.

Proof. The conditions of Liggett’s subadditive ergodic theorem [9] apply. The
positivity of α is already apparent if one considers the supremum of

∫ t

0
dBγ(s)(s)

over paths which are constrained to visit only two adjacent sites in Zd. The
finiteness of α follows from the entropy bound in Theorem1.2. Namely, for some
universal constant K,

EQ[ ~A0,n] ≤ K

∫ ∞

0

√
logN(ε)dε,

where N(ε) is the smallest number of ε balls required to cover Γ0
[0,n],n using balls

with respect to the canonical metric ρ. By scaling, EQ[ ~A0,n] =
√
nEQ[ ~A[0,1],n].

Thus we will apply the entropy bound to EQ[ ~A[0,1],n]. Let Wn be the set of n-step
random walk paths on Zd and let

Tn = {t = (t1, · · · , tn) : 0 < t1 ≤ · · · ≤ tn ≤ 1}.

Identify Γ[0,1],n with Wn×Tn, where Wn represents the sequence of jumps and Tn

gives the jump times. Then it holds that

ρ((w, t), (w̃, s))2 = EQ[
n∑

k=0

(Bwk
(tk+1)−Bwk

(tk))−
n∑

l=0

(Bw̃l
(sl+1)−Bw̃l

(sl))]2

= 2(1−
n∑

k=1

n∑
l=1

δwkw̃l
|(tk, tk+1) ∩ (sl, sl+1)|) ≤ 2,

with tn+1 = sn+1 = 1. As is easily seen, the ρ balls of radius
√

2εn centered at
the points

(w, (t1, · · · , tn)),

which have ki evenly spaced jumps in ((i − 1)ε, iε], 1 ≤ i ≤ 1
ε , and such that∑ 1

ε
i=1 ki = n cover Wn × Tn. And since the number of vectors (k1, k2, · · · , k 1

ε
)

which have nonnegative integer components and with
∑ 1

ε
i=1 ki = n is by elementary

combinatorics,
(
[ 1ε ]+n

n

)
, we have

N(
√

2εn) ≤ (2d)n

(
[ 1ε ] + n

n

)
.
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Thus,

N(ε) ≤ (2d)n

(
[ 2n

ε2 ] + n

n

)
.

But by Stirling’s formula,(
[ 2n

ε2 ] + n

n

)
' c

((1 + 2
ε2 )n)(1+

2
ε2

)n+ 1
2

nn+ 1
2 ( 2

ε2n)
2

ε2
n+ 1

2
≤ cCnε−2n.

Hence

N(ε) ≤ c(2dC)nε−2n.

Thus, ∫ ∞

0

√
logN(ε)dε ≤

√
n

∫ 2

0

√
log

M

ε2
dε ≤ C

√
n.

Thus we obtain

EQ[ ~A[0,n],n] ≤ Cn,

which implies

α = lim
n→∞

1
n
EQ[ ~A[0,n],n] = sup

n

1
n
EQ[ ~A[0,n],n] ≤ C.

The proof for the second claim is entirely analogous.The proof that limε↓0 α(ε) = α
is straightforward and is omitted. �

From the scaling property we have immediately

Corollary 1.4. For any j ∈ Z

lim
n→∞

1
n
~A0

[0,n],jn =
√
jα, Qa. s. .

The Corollary quantifies the improvement in the functional ~A0
[0,n],jn as a func-

tion of j: with more jumps, a greater value is achieved. Now when considering
which paths of the Markov process X contribute the principal term in u(t, x),
paths with jt jumps give a potentially greater value for

∫ t

0
dBX(s)(t − s) but the

probability of making jt jumps in [0, t] decreases with j for j large. Our work
shows that j∗t jumps, with

j∗ =
α2

4 log2 1
κ

is the optimal number of jumps during [0, t] in terms of balancing payoff∫ t

0
dBX(s)(t− s) versus probability. Thus, the principal contribution in the Feyn-

man-Kac representation for u(t, x) arises from paths with j∗t jumps.
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2. Existence of a limit for log u(t,x)
t

We aim to establish the existence, for arbitrary bounded, nonnegative u0, of the

lim
t→∞

1
t

log u(t, x), Q a. s..

In fact, we shall assume without loss of generality that u0(0) > 0. Recall, this was
established by Carmona and Molchanov [4] in the case of compactly supported u0.
We first establish an existence result for a functional with the same distribution
as u(t, x) when u0 is taken to be identically 1. In this paper we treat explicitly the
case where dimension d = 1. This is simply to minimize notation. It will be clear
that the arguments easily extend to higher dimensions. Also we make use of some
large deviations results, Theorem 1.1 and Theorem 2.11.

Theorem 2.1. There is a λ1(κ) such that for any x ∈ Zd

λ1(κ) = lim
t→∞

1
t

logEx[e
∫ t
0 dBX(s)(s)], Q a. s.

Proof. By translation invariance we may take x equal to 0. Set

v(t, y) = E0[e
∫ t
0 dBX(s)(s)1y(X(t))]

Z(t) = max
y∈Z

v(t, y) .

The functional logZ(t) is superadditive and Liggett’s subadditive ergodic The-
orem (applied to − logZ(t)) gives the Qa. s. existence of

lim
t→∞

logZ(t)
t

= λ1(κ)

for some constant λ1(κ). From its definition we have that

Z(t) ≥ E0[e
∫ t
0 dBX(s)(s)10(X(t))]

and so (recalling the results of Carmona and Molchanov [4] mentioned in the
Introduction) we have that λ1(κ) ≥ λ(κ) > 0.

However,
logE0[e

∫ t
0 dBX(s)(s)] ≥ logZ(t)

so
lim inf
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(s)] ≥ λ1(κ), Q a.s.

On the other hand,
1
t

logE0[e
∫ t
0 dBX(s)(s)] =

1
t

log
(
E0[Σ|x|≤t2e

∫ t
0 dBX(s)(s)1x(X(t))] +

+ E0[e
∫ t
0 dBX(s)(s)1(t2,∞)(|X(t)|)]

)
≤ 1

t

(
log(ct2eZ(t) + E0[e

∫ t
0 dBX(s)(s)1(t2,∞)(|X(t)|)])

)
.
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But,

EQ[E0[e
∫ t
0 dBX(s)(s)1(t2/2,∞)(|X(t)|)]] = E0[EQ[e

∫ t
0 dBX(s)(s)1(t2/2,∞)(|X(t)|)]]

= e
t
2P0(|X(t)| ≥ t2/2) ≤ e−ct2 ,

for some positive c. Chebychev’s inequality then implies

Q(E0[e
∫ t
0 dBX(s)(s)1(t2/2,∞)(|X(t)|)] > 1

K
) ≤ e−ct2

for K very large but fixed. So by Borel-Cantelli,

Q(E0[e
∫ n
0 dBX(s)(s)1(n2/2,∞)(|X(n)|)] > 1

K
, i.o.) = 0.

Now define a stopping time T with respect to Ft = σ{Bx(s) : x ∈ Z, 0 ≤ s ≤ t}
by T = inf{t ≥ N0 : E0[e

∫ t
0 dBX(s)(s)1(t2,∞)(|X(t)|)] ≥ 1}.

A simple two moment argument then gives that on the event {T < ∞}, for
T ∈ (n − 1, n], one has Q(E0[e

∫ n
0 dBX(s)(s)1(n2/2,∞)(|X(n)|)] < 1

K |FT ) tends to 0
as N0 tends to ∞. Letting N0 tend to infinity one obtains that Q a.s. there exists
t0 so that

E0[e
∫ t
0 dBX(s)(s)1(t2,∞)(|X(t)|)] ≤ 1, for t ≥ t0.

Thus, for t large,
1
t

logE0[e
∫ t
0 dBX(s)(s)] ≤ 1

t
log(ct2eZ(t) + 1)

≤ Z(t)
t

+
O(log t)

t
.

Consequently, Qa.s.,

lim sup
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(s)] ≤ λ1(κ)

and therefore,

lim
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(s)] = lim

t→∞

1
t

logZ(t)

and the Theorem is proved. �

Our goal of proving the existence of limt→∞
1
t log u(t, x), Q a. s., is enabled by

the introduction of a few auxiliary functionals.
Set

Z(t, t2) = max
x∈Zd,|x|≤t2

v(t, x).

Notice that v(t, x) L= E0[e
∫ t
0 dBX(s)(t−s)1x(X(t))] and we will use information about

v to get the result on u. We also remark that by translation invariance, v(t, x−y) L=
L= Ey[e

∫ t
0 dBX(s)(s)1x(X(t))] .

Theorem 2.2. For any x ∈ Zd

λ(κ) = lim
t→∞

1
t

logEx[e
∫ t
0 dBX(s)(s)] , Q a. s. .
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The proof will be broken up into a sequence of lemmas.

Lemma 2.3. For M sufficiently large, if a < 2, then

Q(E0[e
∫ t
0 dBX(s)(s)1[Mt,∞)(N(X, t))] ≤ eat) ≥ 1− e−(2+a)t.

Proof. By Fubini and Cauchy-Schwarz,

EQ[E0[e
∫ t
0 dBX(s)(s)1[Mt,∞)(N(X, t))]] = E0[EQ[e

∫ t
0 dBX(s)(s) ]1[Mt,∞)(N(X, t))]

= et/2P0(N(X, t) ∈ [Mt,∞))

≤ e(1/2+eκ−κ−M)t.

Then, providedM is large enough, Chebychev’s inequality completes the proof. �

Now fix an ε > 0. In all that follows we shall assume, without loss of generality,
that Mt ∈ Z.

Lemma 2.4. For M and t sufficiently large,

Q(E0[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))] ≥ e(λ1(κ)− ε

100 )t) ≥ 1− ε100.

Proof. Using Lemma 2.3, with a = −1, and Theorem 2.1, we have for large t,
with Q probability at least 1− ε100, that

E0[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))] = E0[e

∫ t
0 dBX(s)(s)]

− E0[e
∫ t
0 dBX(s)(s)1[Mt,∞)(N(X, t))]

≥ e(λ1(κ)− ε
50 )t − e−t

and the lemma follows by a little algebra. �

An immediate consequence is the following,

Corollary 2.5. For t and M sufficiently large, given any x ∈ Z, there exists an
x∗(t, x) ∈ σ(By(s) : y ∈ Z, |y − x| ≤Mt, s ≤ t) such that

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗(t,x)(X(t))] ≥ e(λ1(κ)− ε

99 )t) ≥ 1− ε100.

A more refined consequence is

Corollary 2.6. Given any x ∈ Z there exist x∗+ = x∗+(t, x) > x and
x∗− = x∗−(t, x) < x, with x∗±(t, x) ∈ σ(By(s) : y ∈ Z, |y − x| ≤Mt, s ≤ t) such that

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗+

(X(t))] ≥ e(λ1(κ)− ε
99 )t) ≥ 1− ε50

and

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗−

(X(t))] ≥ e(λ1(κ)− ε
99 )t) ≥ 1− ε50.

Proof. This is an easy use of the FKG inequalities [8] and the observation that
the events

{Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗(X(t))] ≥ e(λ1(κ)− ε

99 )t, for somex∗ > x}
and

{Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗(X(t))] ≥ e(λ1(κ)− ε

99 )t, for somex∗ < x}
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are positively correlated, equally likely and the probability of their union is at
least 1− ε100 by Corollary 2.5. �

We can move the points x∗± a little further away from x,

Lemma 2.7. For M and t sufficiently large there is a c1 = c1(κ,M) such that
for all x ∈ Z there exist x∗+ = x∗+(t, x) ∈ [x + ε

2Mt, x + (1 − ε
2 )Mt] and x∗− =

= x∗−(t, x) ∈ [x − (1 − ε
2 )Mt, x − ε

2Mt], x∗±(t, x) ∈ σ(By(s) : y ∈ Z, |y − x| ≤
≤Mt, s ≤ t) such that

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗+

(X(t))] ≥ e(λ1(κ)−c1ε)t) ≥ 1− ε49

and

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗−

(X(t))] ≥ e(λ1(κ)−c1ε)t) ≥ 1− ε49.

Proof. By symmetry, we only need to argue the first case. By Corollary 2.6, with
probability at least 1− ε50, there is an x∗+(t(1− ε)) ∈ [x, x+ (1− ε)Mt] such that

Ex[e
∫ t(1−ε)
0 dBX(s)(s)1[0,Mt(1−ε)](N(X, (t(1− ε))))1x∗+(t(1−ε))(X(t(1− ε)))]

≥ e(λ1(κ)− ε
99 )(t−ε).

If x∗+(t(1−ε)) ∈ [x+ ε
2Mt, x+(1− ε

2 )Mt], we consider the constant path identically
equal to x∗+(t(1−ε)) over the interval [t(1−ε), t]. Then Px∗+(t(1−ε))(N(X, εt) = 0) =

= e−κεt and Q(e
∫ t

t(1−ε) dBx∗+(t(1−ε))(s) ≥ e−ε 1
2 t) ≥ 1−e−εct. Thus, in the case, we can

paste the piece of path from 0 to x∗+(t(1−ε)) > x+ εMt
2 on [0, t(1−ε)] to a constant

path on [t(1−ε), t] and by setting x∗+(t) = x∗+(t(1−ε)) ∈ [x+ ε
2Mt, x+(1− ε

2 )Mt],
we get

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗+(t)(X(t))] ≥ e(λ1(κ)− ε

99−ε 1
2 t) ≥ 1−ε50−e−εct .

This gives the result if x∗+(t(1−ε)) ∈ [x+ ε
2Mt, x+(1− ε

2 )Mt]. On the other hand,

if first x < x∗+(t(1− ε)) < x+ ε
2Mt, we consider paths in Γ

x∗+(t(1−ε))

[t(1−ε),t],εMt for which
all jumps are to the right. Call this set Γright. Then, for some c > 0 it follows that
for all γ ∈ Γright

Q(e
∫ t

t(1−ε) dBγ(s)(s) ≥ e−ε 1
2 t) ≥ 1− e−εct.

Also, for K1 = 2M log 2M
eκ , Px∗+(t(1−ε))(X(· − t(1 − ε)) ∈ Γright) ≥ e−εK1t. Thus,

using the Markov property and the above estimates, we have

Q(Ex[e
∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗+(t(1−ε))+εMt(X(t))] ≥ e(λ1(κ)− ε

99−ε( 1
2+K1))t)

≥ 1− ε50 − e−εct

which implies the existence of x∗+ ∈ [x+ ε
2Mt, x+(1− ε

2 )Mt] and c1 satisfying the
lemma. When x∗+(t(1− ε)) > x+ (1− ε

2 )Mt, we use an analogous argument with
Γleft. The measurability claim is an easy consequence of Corollary 2.6 and the use
of paths in Γright. �

We now establish a block argument, a la percolation theory, starting with
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Lemma 2.8. Let x∗±(ε, t, x) be the points given by Lemma 2.7 when using the
Brownian fields {By(s), y ∈ Z, ε2t ≤ s ≤ t}. Then,

x∗+(ε, t, x) ∈ [x+
ε

2
Mt(1− ε2), x+ (1− ε

2
)Mt(1− ε2)] ⊂ [x+

ε

4
Mt, x+ (1− ε

4
)Mt]

and

x∗−(ε, t, x) ∈ [x− (1− ε

2
)Mt(1− ε2), x− ε

2
Mt(1− ε2)] ⊂ [x− (1− ε

4
)Mt, x− ε

4
Mt].

and
Q(∀x ∈ {−Mt, (−M + ε2)t, (−M + 2ε2)t, . . . , (M − ε2)t,Mt},

Ex[e
∫ t

ε2t
dBX(s−ε2t)(s)1[0,Mt(1−ε2)](N(X, (1− ε2)t)1x∗+(ε,t,x)(X(t))] ≥

≥ e(λ1(κ)−c1ε)t(1−ε2)) ≥ 1− ε46

and
Q(∀x ∈ {−Mt, (−M + ε2)t, (−M + 2ε2)t, . . . , (M − ε2)t,Mt},

Ex[e
∫ t

ε2t
dBX(s−ε2t)(s)1[0,Mt(1−ε2)](N(X, (1− ε2)t)))1x∗−(ε,t,x)(X(t))] ≥

≥ e(λ1(κ)−c1ε)t(1−ε2)) ≥ 1− ε46

provided ε is sufficiently small.

Proof. Since there are 2M
ε2 points x in question, this follows easily from

Lemma 2.7, if ε is sufficently small. �

As the next step we establish the previous result for all x ∈ {−Mt,−Mt+1, . . .
. . . Mt− 1,Mt}.

Lemma 2.9. For each x ∈ [−Mt,Mt] ∩ Z, there are points x∗±(t, x) lying in
[x + ε

4Mt, x + (1 − ε
4 )Mt], [x − (1 − ε

4 )Mt, x − ε
4Mt], respectively, with x∗±(t, x)

measurable with respect to σ(By(s) : y ∈ Z, |y−x| ≤Mt, s ≤ t) such that for some
c = c(κ,M)

Q(∀x ∈ {−Mt,−Mt+ 1, . . . Mt− 1,Mt},
Ex[e

∫ t
0 dBX(s)(s)1[0,Mt](N(X, t))1x∗+(t,x)(X(t))] ≥ e(λ1(κ)−cε)t) ≥ 1− ε46,

with the analogous statement holding for x∗−(t, x). Thus the probability of the in-
tersection of the events for x∗+(t, x) and x∗−(t, x) is at least 1− ε45.

Proof. Start by observing that to each x ∈ {−Mt,−Mt + 1, . . . Mt − 1,Mt},
we can associate a y ∈ {−Mt, (−M + ε2)t, (−M + 2ε2)t, . . . , (M − ε2)t,Mt} such
that |x − y| ≤ ε2

2 t and Px(N(X, ε2t) = |x − y|, X(ε2t) = y) ≥ e−K3ε2t, with K3

independent of ε and t. Also, for some K4,K5 independent of ε and t we have by
Theorem 1.1

Q( inf
γ∈Γx

[0,ε2t],|x−y|:γ(ε2t)=x

∫ ε2t

0

dBγ(s)(s) ≥ −K4ε
2t) ≥ 1− e−K5ε2t.

Put x∗+(t, x) = x∗+(ε, t, y) and x∗−(t, x) = x∗−(ε, t, y) where the latter are given by
Lemma 2.8. Then, piecing together paths on [0, ε2t] which connect x to y and on
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[ε2t,Mt] linking y to x∗±(ε, t, y), and using the fact that there are 2Mt+ 1 points
in {−Mt,−Mt+ 1, . . . Mt− 1,Mt}, we have the result. �

We next iterate so we can set up a percolation scheme.

Lemma 2.10. For i ∈ {0, 1, . . . , ( 8
ε − 1)}, and x ∈ [−Mt + iε

4Mt,Mt + iε
4Mt],

x′ ∈ [−Mt − iε
4Mt,Mt − iε

4Mt] there exist x∗+(i, x) ∈ [−Mt + (i+1)ε
4 Mt,Mt+

+ (i+1)ε
4 Mt], x∗−(i, x′) ∈ [−Mt− (i+1)ε

4 Mt,Mt− (i+1)ε
4 Mt], measurable with respect

to the Brownian fields {By(s+ it) : 0 ≤ s ≤ t}, such that the events

A(i) = {∀x ∈ [−Mt+
iεt

4
Mt,Mt+

iεt

4
Mt],

Ex[e
∫ t
0 dBX(s)(it+s)1x∗+(i,x)(X(t))1[0,Mt](N(X, t))] ≥ e(λ1(κ)−ε)t}

and

B(i) = {∀x ∈ [−Mt− iεt

4
Mt,Mt− iεt

4
Mt],

Ex[e
∫ t
0 dBX(s)(it+s)1x∗−(i,x)(X(t))1[0,Mt](N(X, t))] ≥ e(λ1(κ)−cε)t}

satisfy, for ε sufficiently small (depending only on M)

Q(∩
8
ε−1
i=0 A(i)) ≥ 1− ε44

and
Q(∩

8
ε−1
i=0 B(i)) ≥ 1− ε44.

Proof. We can apply Lemma 2.9. If x ∈ [−Mt+ iε
4Mt,Mt+ iε

4Mt], we consider
the two cases x ∈ [−Mt+ iε

4Mt, ε
4Mt+ iε

4Mt] and x ∈ ( ε
4Mt+ iε

4Mt,Mt+ iε
4Mt].

In the first case, take x∗+(i, x) = x∗+(t, x) from Lemma 2.9, using the Brownian
fields {By(s+ ti) : 0 ≤ s ≤ t, |y − x| ≤Mt}. Then we will have

x∗+(i, x) ∈[−Mt+
(i+ 1)ε

4
Mt,

ε

4
Mt+

iε

4
Mt+ (1− ε

4
)Mt] ⊂

⊂ [−Mt+
(i+ 1)ε

4
Mt,Mt+

(i+ 1)ε
4

Mt].

In the second case, take x∗+(i, x) = x∗−(t, x) from Lemma 2.9, using the Brownian
fields {By(s+ ti) : 0 ≤ s ≤ t, |y − x| ≤Mt}. Then we will have

x∗+(i, x) ∈ [x− (1− ε

4
)Mt, x− ε

4
Mt] ⊂ [−Mt+

(i+ 1)ε
4

Mt,Mt+
(i+ 1)ε

4
Mt].

An analogous argument handles the selection of the points x∗−(i, x′). Notice that
1 − 8M

ε ε46 ≥ 1 − ε44 for ε sufficiently small (depending only on M) to get the
probability estimates. �

Proof. We now prove Theorem 2.2, namely that

λ(κ) = lim
t→∞

1
t

logEx[e
∫ t
0 dBX(s)(s)].



LYAPUNOV EXPONENTS 175

It is clear that we need only do this for x = 0. Since

λ(κ) = lim
t→∞

1
t

log v(t, 0) ≤ lim
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(s)]

and both limits exist Qa.s. we only need show that

Q( lim
t→∞

1
t

log v(t, 0) ≥ lim
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(s)]) ≥ 1

4
.

Using Lemma 2.10, we can conclude that with Q-probability at least 1−ε43, corre-
sponding to the starting point 0 there exist sequences, {x∗+(i, 0)}

8
ε
i=0, {x∗−(i, 0)}

8
ε
i=0,

such that x±(0, 0) = 0 with x∗+(i, 0) ∈ [−Mt + iε
4Mt,Mt + iε

4Mt], x∗−(i, 0) ∈
∈ [−Mt− iε

4Mt,Mt− iε
4Mt], and for 0 ≤ i ≤ 8

ε − 1,

Ex∗+(i,0)[e
∫ t
0 dBX(s)(s+it)1x∗+(i+1,0)(X(t))1[0,Mt](N(X, t))] ≥ e(λ1(κ)−cε)t

and

Ex∗−(i,0)[e
∫ t
0 dBX(s)(s+it)1x∗−(i+1,0)(X(t))1[0,Mt](N(X, t))] ≥ e(λ1(κ)−cε)t.

Thus, by the Markov property

E0[e
∫ 8

ε
t

0 dBX(s)(s)1x±( 8
ε ,0)(X(

8
ε
t))1[0,M 8

ε t](N(X,
8
ε
t))] ≥ e(λ1(κ)−cε) 8t

ε .

This induces the following percolation system:

{ψ(l, n), n ≥ 0, l ∈ Z, l + n ≡ 0 mod 2}.

We say that (l, n) → (l+ 1, n+ 1) if ∀x ∈ [(2l− 1)Mt, (2l+ 1)Mt],∃x0, . . . , x 8
ε−1,

with x0 = x, such that xi ∈ [(2l − 1)Mt+ iε
4Mt, (2l + 1)Mt+ iε

4Mt], and

Exi [e
∫ t
0 dBX(s)(

8nt
ε +it+s)1[0,Mt](N(X(t)))1xi+1(X(t))] ≥ e(λ1(κ)−cε)t.

And we make an analogous definition for (l, n) → (l−1, n+1). By the measurability
claim in Lemma2.10, this is a 2-dependent percolation scheme with Q-probability
of an open bond at least 1 − ε43. Thus, by Durrett [6] we have for any n, with
Q-probability at least 1

2 that there is a path (0, 0) → (l1, 1) → · · · → (0, 2n). Thus,
for some x∗ ∈ [−Mt,Mt],

E0[e
∫ 8

ε
t2n

0 dBX(s)(s)1x∗(X(
8
ε
t2n))] ≥ e(λ1(κ)−cε) 8

ε t2n.

But, for some h > 0, independent of t, n, ε, x∗ with Q-probability at least 1
2 ,

Ex∗ [e
∫ 16t

ε
0 dBX(s)(s+

8
ε t2n)10(X(

16
ε
t))] ≥ e−h 16t

ε .

Thus, with Q-probability at least 1
4 we have

E0[e
∫ 8

ε
t2(n+1)

0 dBX(s)(s)10(X(
8
ε
t2(n+ 1)))] ≥ e(λ1(κ)−2cε) 8

ε t2(n+1).

T his proves the theorem. �

The next result will lead to the existence of limt→∞
1
t log u(t, x).
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Theorem 2.11. Given ε > 0 there is a positive constant c such that

Q(E0[e
∫ t
0 dBX(s)(s)] ≥ e(λ1(κ)+ε)t) ≤ e−ct.

Before proving this Theorem we derive the following consequence,

Corollary 2.12.

lim sup
t→∞

1
t

logE0[e
∫ t
0 dBX(s)(t−s)] ≤ λ1(κ).

Proof. Since the distribution of E0[e
∫ t
0 dBX(s)(t−s)] and E0[e

∫ t
0 dBX(s)(s)] are iden-

tical, we can apply Theorem 2.11 and Borel-Cantelli to get the result. �

Corollary 2.13. For u0 positive, strictly positive somewhere and bounded,

lim
t→∞

1
t

log u(t, x) = λ(κ).

Proof. Without loss of generality we take u0 bounded by 1 and strictly positive
at the origin. By Carmona and Molchanov, [4], lim inft→∞

1
t log u(t, x) ≥ λ(κ).

By Corollary 2.12 however

lim sup
t→∞

1
t

log u(t, x) ≤ lim sup
t→∞

1
t

logE[e
∫ t
0 dBX(t−s)(s)] = λ1(κ) = λ(κ).

�

We now state our result on the asymptotics of of λ(κ).

Theorem 2.14.

lim
κ↓0

λ(κ) log
1
κ

=
α2

4

The proof of Theorem 2.14 will be given in the next section. Some of the results
needed for the proof of Theorem 2.14 will be used in the proof of Theorem 2.11,
which is given in the final section.

3. Asymptotics of the Lyapunov exponent

The proof of Theorem 2.14 is based on Borell’s inequality and Fernique-Tala-
grand’s theorem for Gaussian random fields together with a classical large devia-
tion result for Poisson processes.

Recall from Theorem 1.1, that α > 0 satisfies α = supn
1
nEQ[ ~A[0,n],n] ≤ C.

Lemma 3.1. Let any a > 0 be fixed. For every ε > 0

Q
(
∃n0(ω) : (α− ε)

√
mn ≤ ~A[0,n],m ≤ (α+ ε)

√
nm ,∀m ≥ an, ∀n ≥ n0

)
= 1.

Proof. Applying Theorem 1.1, we have

Q(| ~A0
[0,n],n − EQ[ ~A0

[0,n],n]| > εn

2
) ≤ 2e−ε2n/8.
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Since EQ[ ~A0
[0,n],n] ∼ αn by Liggett [9], it holds that for large n

Q(| ~A0
[0,n],n − αn| > εn) ≤ 2e−ε2n/8,

which becomes

Q(| ~A0
[0,n],m − α

√
nm| > ε

√
nm) ≤ 2e−ε2m/8,

by the Browinian scaling invariance;

~A[0,n],m
L=
√
n

m
~A[0,m],m.

Finally use the Borel-Cantelli lemma to complete the proof of Lemma 3.1. �

Lemma 3.2. (i) Let F : [0,∞) 7→ R be a continuous function satisfying

lim sup
x→∞

F (x)
x log x

< 1.

Then

lim
n→∞

1
n

logE0[enF (
N(X,n)

n )] = sup
x≥0

{F (x)− x log
x

κ
+ x− κ}.

(ii) For 0 ≤ a < b ≤ ∞

lim
n→∞

1
n

logE0[e
(

α
√

nN(X,n)−βN(X,n)
)

: an ≤ N(X,n) ≤ bn]

= sup
a≤x≤b

{α
√
x− βx− x log

x

κ
+ x− κ}.

Proof. Since N(X,n) has a Poisson distribution with mean κn, it follows from
a large deviation theorem by Cramer that for any bounded continuous function
F : [0,∞) 7→ R

lim
n→∞

1
n

logE0[enF (
N(X,n)

n )] = sup
x≥0

{F (x)− x log
x

κ
+ x− κ}.

Furthermore it is easy to extend it for any F satisfying the assumption. (ii) follows
from (i) immediately. �

Lemma 3.3. (i) For θ > 0,

sup
x≥0

{θ
√
x− x log

x

κ
+ x− κ} ∼ θ2

4 log 1
κ

(κ ↓ 0).

(ii) For c > 0, θ > 0, 0 < q < 1 and κ > 0,

sup
κq≤x≤b

(
θ
√
x+ (log cκq)x− x log

x

κ
+ x− κ

)
∼ θ2

4(1 + q)
1

log 1
κ

(κ ↓ 0).



178 M. CRANSTON, T. S. MOUNTFORD and T. SHIGA

Proof. For (ii) let

f(x) = θ
√
x+ (log cκq)x− x log

x

κ
+ x− κ.

Then,

f ′(x) =
θ

2
√
x

+ (log cκq)− log
x

κ

is a decreasing function and f ′(κq) > 0 and f ′(b) < 0 for a sufficiently small κ > 0,
so that f has a unique maximum at x(κ) ∈ (κq, b) such that

θ

2
√
x(κ)

+ (log cκq)− log
x(κ)
κ

= 0.

This implies
θ

2
√
x(κ)

∼ (1 + q) log
1
κ

(κ ↓ 0).

Hence

sup
κq≤x≤b

f(x) = f(x(κ)) ∼ θ2

4(1 + q)
1

log 1
κ

.

�

Proof of the upper bound

By Lemma 3.1, we can suppose that for a > 0 and ε > 0,

~A[0,n],m ≤ (α+ ε)
√
mn (∀m ≥ an) Q− a.s..

Then

E0[e
∫ n
0 dBX(s)(s) : N(X,n) ≥ an] ≤

∞∑
j=an

e
~A[0,n],jP0(N(X,n) = j)(3.1)

≤
∞∑

j=an

e(α+ε)
√

jnP0(N(X,n) = j)

≤ E0[e(α+ε)
√

nN(X,n)].

Noting that ~A[0,n],m is increasing in m we have

E0[e
∫ n
0 dBX(s)(s) : N(X,n) ≤ an] ≤ e

~A[0,n],an ≤ e(α+ε)
√

an.

Combining ([13]), ([7]) together with Lemma 3.2, we have

λ(κ) ≤ sup{(α+ ε)
√
x− x log

x

κ
− x+ κ}+ (α+ ε)

√
a.

Choosing a suitable a = a(κ), by using Lemma 3.3 (i) we obtain

lim sup
κ↘0

λ(κ) log
1
κ
≤ (α+ ε)2

4
,

which gives the upper bound of Theorem 2.14.
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Proof of the lower bound
For γ ∈ Γε

[0,n],m let t1 < t2 < · · · < tm < n, be the jump times of γ during [0, n],

and let Iγ
i be the interval [ jiε

3 ,
(ji+1)ε

3 ] with ji ∈ Z, including ti. If η ∈ Γε
[0,n],m has

s1 < · · · < sm < n as its jump times during [0, n], Iη
i = Iγ

i and γ(ti) = η(si) for
every 1 ≤ i ≤ m, we denote η ∼ γ. Then it is easy to see that if η, γ ∈ Γε

[0,n],m

satisfy η ∼ γ,

|
∫ n

0

dBγ(s)(s)−
∫ n

0

dBη(s)(s)| < ω(γ),

where

ω(γ) =
m∑

i=1

(
ω(Bγ(ti) : Ii) + ω(Bγ(ti−1) : Ii)

)
,

ω(Bx : I) = sup
t,s∈I

|Bx(t)−Bx(s)|.

Lemma 3.4. For any δ > 0, a > 0 and b > a there exists ε0 > 0 such that for
all 0 < ε < ε0 and for all an ≤ m ≤ bn,
(i) there is a K > 0 such that

Q(ω(γ) > cn) ≤ Kme
− cn√

ε for all γ ∈ Γε
[0,n],m.

(ii)
Q

(
sup

γ∈Γε
[0,n],m

ω(γ) ≥ δ
√
nm

)
≤ ce−n.

(iii) Moreover,

Q

(
∃n0(ω) : sup

γ∈Γε
[0,n],m

ω(γ) ≤ δ
√
nm ,∀m ∈ [an, bn], ∀n ≥ n0

)
= 1 .

Proof. We first count the number of increasing sequences j1 < j2 < · · · < jm of
integers which determine the intervals Iε

i . We must have jm < 3n
2ε . Thus, there are

fewer than ( 3n
2ε

m

)
≤ c1

( 3n
2ε )

3n
2ε + 1

2

mm+ 1
2 (n( 3

2ε −
m
n ))n( 3

ε−1)+ 1
2

≤ c1(
c2
ε

)m,

where c1, c2 are positive constants. For each such sequence, j1 < j2 < · · · < jm,
there are 2n possible sequences of sites visited. This means there are C1( 2c2

ε )m

possible variables 2(ω(Bγ(ti), I
ε
i ) + ω(Bγ(ti−1), I

ε
i−1)) to consider. For each such

sequence,

ω(γ) L=
√
ε

m∑
i=1

Yi

where Yi are i.i.d. random variables satisfying

EQ[eYi ] = K <∞.
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Then for fixed γ ∈ Γ0,ε
[0,n],m,

Q(ω(γ) > cn) ≤ Kme
− cn√

ε ,

which proves (i). Therefore,

Q( sup
γ∈Γ0,ε

[0,n],n

ω(γ) > c
√
nm) ≤ c1(

c2
ε

)mKme
− c

√
nm√
ε

≤ c1e
−cn,

provided ε is sufficiently small. The third statement follows easily from the second.
�

Lemma 3.5. For any δ > 0, and all a > 0 and b > a there exists ε0 > 0 such
that for 0 < ε < ε0

Q
(
∃n0(ω) : |Aε

[0,n],m − α
√
nm| ≤ δ

√
nm ,∀m ∈ [an, bn], ∀n ≥ n0

)
= 1.

Proof. By Borell’s inequality,

Q

(
| ~Aε

[0,n],m − EQ[ ~Aε
[0,n],m]| ≥ δ

√
nm

2

)
≤ 2e−δ2m/8.

Since

EQ[ ~Aε
[0,n],m] =

√
n

m
EQ[ ~Aε

[0,m],m] ∼
√
nmα

uniformly in m ∈ [an, bn] as n→∞, we have

Q
(
| ~Aε

[0,n],m − α
√
nm| ≥ δ

√
nm
)
≤ 2e−δ2m/8.

�

By Lemmas 3.6 and 3.7 we can assume that the Brownian motions {Bx(t)}
satisfy the following two conditions:
For every δ > 0, a > 0 and b > a, there exists ε0 > 0 such that if 0 < ε < ε0,

∃n0 such that sup
γ∈Γε

[0,n],m

ω(γ) ≤ δ
√
nm for allm ∈ [an, bn], for alln ≥ n0,

and

∃n0 such that | ~Aε
[0,n],m − α

√
nm| ≤ δ

√
nm for allm ∈ [an, bn], for alln ≥ n0.

Then,

E0[e
∫ n
0 dBX(s)(s)]

≥
bn∑

m=an

E0[e
∫ n
0 dBX(s)(s) : N(X,n) = m]

=
bn∑

m=an

eAε
[0,n],mE0[e(

∫ n
0 dBX(s)(s)−

∫ n
0 dBγn,m(s)(s)) : N(X,n) = m]

≡ (∗)
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where γn,m ∈ Γε
[0,n],m is defined by

~Aε
[0,n],m =

∫ n

0

dBγn,m(s)(s).

Thus,

(∗) ≥
bn∑

m=an

e(
~Aε
[0,n],m−ω(γn,m))P0 (X ∼ γn,m, N(X,n) = m)

≥
bn∑

m=an

e(α−2δ)
√

nmP0 (X ∼ γn,m, N(X,n) = m) .

Since
P0 (X ∼ γn,m|N(X,n) = m) =

m!
nm

( ε
6

)m

,

supposing a = κq with 0 < q < 1, we have some c > 0 satisfying

P0 (X ∼ γn,m|N(X,n) = m) ≥ (cεκq)m,

so that

E0[e
∫ n
0 dBX(s)(s)]

≥ E0

[
e

(
(α−2δ)

√
nN(X,n)+log(cεκq)N(X,n)

)
κqn ≤ N(X,n) ≤ bn

]
.

Hence by Lemma 3.3 (ii), we obtain that for every δ > 0 and 0 < q < 1

lim inf
κ↓0

λ(κ) log
1
κ
≥ (α− 2δ)2

4(1 + q)
,

which gives the lower bound of the Theorem 2.14, letting q ↘ 0 and κ↘ 0.

4. Proof of Theorem2.11

Before making the next definition we remark that by Lemma 3.2 with a = M ,
b = ∞, α replaced by α+ ε, β = 0 then if M is sufficiently large,

Ex[e
∫ N0
0 dBX(s)(s)1[MN0,∞)(N(X,N0))] ≤

∞∑
m=MN0

e
~A[0,N0],mP (N(X,N0) = m)

≤
∞∑

m=MN0

e(α+ε)
√

mN0P (N(X,N0) = m)

= Ex[E(α+ε)
√

mN0 : MN0 ≤ N(X,N0)]

≤ e(1+δ)N0((α+ε)
√

M−M log M
κ +M−κ)

≤ e−cMN0 , for some positive c.

For the remainder of the section, we assume that the value of M is large enough
to make the above estimate valid. This means that we no longer need to worry
about the random walk paths that make too many jumps (i.e. more than MN0
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in time N0,) their contribution to the expectation is negligible. We introduce a
notation for the time-shifted Brownian motion field by setting

Bj
x(t) = Bx(t+ j).

Definition 4.1. Break up space-time into disjoint blocks of the form
((i− 1)MN0, (i+ 1)MN0]× [(j− 1)N0, jN0] where i ∈ Z, j ∈ Z+. satisfy i+ j ≡ 0
mod 2. Label the block ((i− 1)MN0, (i+ 1)MN0]× [(j − 1)N0, jN0] by (i, j). We
say (i, j) is a good block (denoted (i, j) ∈ G) if ∀x ∈ ((i− 1)MN0, (i+ 1)MN0],

Ex[e
∫ N0
0 dBj

X(s)(s)I[0,MN0](N(X,N0))] ≤ e(λ1(κ)+ ε
3 )N0 .

Next we introduce a discretization scheme for paths in Γ0
[0,t],Mt which will allow

us via simple counting arguments to derive some estimates on our basic functionals
of {Bx}. For a path γ ∈ Γ0

[0,t],Mt we say that its N0-skeleton (or skeleton since the
value N0 will be ’understood’) is the sequence λ(0), γ(N0), γ(2N0), . . . , γ(t), where
we assume without loss of generality that t is a multiple of N0. We claim

Lemma 4.2. Given ε > 0 there is an N so that for N0 > N, the number of
distinct skeletons corresponding to paths in Γ0

[0,t],Mt is bounded by e
εt

106 .

Proof. Each skeleton determines a sequence {ij : j = 0, . . . , t
N0
} with ij + j ≡ 0

mod 2 such that γ(jN0) ∈ [(ij−1)MN0, (ij +1)MN0] for each j. We shall call the
sequence {ij : j = 0, . . . , t

N0
} the trace of γ. Letting A(i1, i2, . . . , i t

N0
) denote the

set of skeletons of elements of Γ0
[0,t],Mt with trace {ij : j = 0, . . . , t

N0
}, it is easy to

see that if N0 is sufficiently large,

|A(i1, i2, . . . , i t
N0

)| ≤ (2MN0)
t

N0 .

Furthermore the number of traces of elements of Γ0
[0,t],Mt is constrained by the

requirement that the corresponding path have no more than Mt jumps. In terms
of the trace, this translates into the bound∑

j

(|ij − i(j−1)| − 1)+ ≤ t

N0
.

There are at most 23 t
N0 such sequences. Thus, the total number of skeletons of

elements of Γ0
[0,t],Mt is bounded by

(2MN0)
t

N0 23 t
106 ≤ e

εt
N0 ,

provided N0 is chosen sufficiently large. �

Lemma 4.3. For any δ > 0,and M < ∞ as above, there is an N1 so that for
N0 ≥ N1, we have

Q((i, j) ∈ G) ≥ 1− δ.
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Proof. Without loss of generality we may treat the case j = 0. Fix an η with
0 < η << ε

M . Then, ∀x ∈ (−MN0,MN0] ∩ Z,

Ex[e
∫ N0
0 dBX(s)(s)1[0,MN0](N(X,N0))] ≤

≤
2MN0∑

l=−2MN0

Ex[e
∫ ηN0
0 dBX(s)(s)]El[e

∫ (1−η)N0
0 dB

ηN0
X(s)(s)].

An easy argument using Chebychev’s inequality and the fact that

EQEx[e
∫ ηN0
0 dBX(s)(s)] = ExEQ[e

∫ ηN0
0 dBX(s)(s)] = e

ηN0
2 ,

shows that the event

C(N0) = ∩MN0
x=−MN0

{Ex[e
∫ ηN0
0 dBX(s)(s)] ≤ e

εN0
12

4MN0
}

has limN0→∞Q(C(N0)) = 1. Moreover, on the event C(N0), we have

sup
x∈[−MN0,MN0]

Ex[e
∫ N0
0 dBX(s)(s)1[0,MN0](N(X,N0))]

≤ e
εN0
12 sup

l∈[−2MN0,2MN0]

El[e
∫ (1−η)N0
0 dB

ηN0
X(s)(s)].

The right hand side in this inequality can be bounded by a supremum over a
finite number of terms, where that finite number is independent of N0. To do this,
take points x1, x2, . . . , xR in [−2MN0, 2MN0], separated by ηεN0

2 so that R ∼= 8M
ηε .

For a fixed xi and any l with |xi − l| ≤ ηεN0
2 ,

Exi
[e

∫ N0
0 dBX(s)(s)] ≥ Exi

[e
∫ ηN0
0 dBX(s)(s)1l(X(ηN0))]El[e

∫ (1−η)N0
0 dB

ηN0
X(s)(s)].

Now we claim

lim
N0→∞

Q( inf
|l−xi|≤ ηεN0

2

Exi [e
∫ ηN0
0 dBX(s)(s)1l(X(ηN0))] ≥ e−

εN0
12 ) = 1.

Before proving this claim we proceed to show how it proves the lemma. Assuming
the claim,

lim
N0→∞

Q( sup
1≤i≤R

Exi
[e

∫ N0
0 dBX(s)(s)] ≥

≥ e−
εN0
12 sup

l∈[−2MN0,2MN0]

El[e
∫ (1−η)N0
0 dB

ηN0
X(s)(s)]) = 1.
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Thus, with Q probability approaching 1 as N0 → ∞ we have for all x ∈
∈ [−MN0,MN0],

Ex[e
∫ N0
0 dBX(s)(s)1[0,MN0](N(X,N0))] ≤

≤ e
εN0
12 sup

l∈[−2MN0,2MN0]

El[e
∫ (1−η)N0
0 dB

ηN0
X(s)(s)]

≤ e
εN0
6 sup

1≤i≤R
Exi [e

∫ N0
0 dBX(s)(s)]

≤ e
εN0
6 e(λ(κ)+ ε

6 )N0 , R independent of N0,

= e(λ(κ)+ ε
3 )N0 , as desired.

Now back to the proof of the claim. First, given l with |xi − l| ≤ ηεN0
2 , take an

xi − to − l path γ taking exactly |xi − l| steps and evenly spaced jump times.
Using the notation of the previous section (see material preceding Lemma 3.6,)
then making sure ε is taken so that κε < 1, we have

Pxi(X ∼ γ) = 2−|xi−l| (ληN0)|xi−l|

|xi − l|!
e−ληN0 |xi − l|!(ηN0)−|xi−l|(ε)|xi−l|

≥ 2−
ηεN0

2 (λε)
ηεN0

2 e−ληN0

≥ e−cηN0 , for some positive c.

Then using Lemma 3.6, we have for some c > 0,

Q(Exi [e
∫ ηN0
0 dBX(s)(s)1l(X(s))] ≤ e−

εN0
12 )

≤ Q(Exi
[e

∫ ηN0
0 dBX(s)(s);X ∼ γ] ≤ e−

εN0
12 )

≤ Q(e
∫ ηN0
0 dBλ(s)(s)+ω(γ)Pxi

(X ∼ γ) ≤ e−
εN0
12 )

≤ Q(e
∫ ηN0
0 dBγ(s)(s)+cηN0Pxi(X ∼ γ) ≤ e−

εN0
12 ) + e−cηN0

≤ Q(e
∫ ηN0
0 dBγ(s)(s) ≤ e−

εN0
12 −cηN0) + e−cηN0

= Q(B0(ηN0) ≤ −εN0

12
− cηN0) + e−cηN0 ,

which clearly tends to 0 as N0 tends to ∞. This is enough to establish the claim
and that finishes the proof of the lemma. �

With this lemma we can now conclude that

Lemma 4.4. For any η > 0, there is an N1 such that ∀N0 > N1,

Q(sup

t
N0
−1∑

j=0

1Gc(ij , j) ≥ ηt/N0) ≤ e−
8t
N0 .

where the sup is taken over all traces compatible with paths starting at zero and
having less than Mt jumps in time interval [0, t].
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Proof. This follows from elementary large deviations for the binomial random
variables and Lemma4.2. �

The next lemma says that the contribution of any collection of a restricted
number of blocks can not be very big with high probability.

Lemma 4.5. Given ε > 0 and η > 0 as in Lemma 4.2, for all N0 sufficiently
large,

Q(∃(xi1 , xi2 , . . . , xi t
N0

) compatible with ≤Mt jumps, J ⊂ {1, 2, . . . , t

N0
}

with |J | ≤ ηt

N0
, :∏

J

Exij
[e

∫ N0
0 dB

jN0
X(s)(s)] ≥ e

εt
10 ) ≤ e−cεt.

Proof. First fix a skeleton (xi1 , xi2 , . . . , xi t
N0

). For a given subset J ⊂ {1, 2, . . . ,

. . . , t
N0
} with |J | ≤ ηt

N0
and skeleton (xi1 , xi2 , . . . , xi t

N0

), we have by Chebychev’s

inequality,

Q(
∏
J

Exij
[e

∫ N0
0 dB

jN0
X(s)(s)] ≥ e

εt
10 ) ≤ e|J|/2e−εt/10.

We now complete the proof by first summing over the set of possible J and then
the set of possible skeletons (xi1 , xi2 , . . . , xi t

N0

), using Lemma 4.1. �

In the same way we have,

Lemma 4.6. Given ε > 0 as in Lemma 4.2, for all N0 sufficiently large,

Q(∃(xi1 , xi2 , . . . , xi t
N0

) compatible with ≤Mt jumps, any J ⊂ {1, 2, . . . , t

N0
}∏

J

Exj
[e

∫ N0
0 dB

jN0
X(s)(s)I[MN0,∞)(N(X,N0))] ≥ e

εt
10 ) ≤ e−cεt.

We can now give the proof of Theorem 2.11.

Proof. (of Theorem 2.11) For a given skeleton (x0, x1, . . . , x t
N0
−1), compatible

with a path starting at zero with no more than Mt jumps, we have that

E0[e
∫ t
0 dBX(s)(s)

t
N0
−1∏

j=0

1xij
(X(jN0))] ≤

t
N0
−1∏

j=0

Exj
[e

∫ t
0 dB

jN0
X(s)(s)]

=
∏
B

Exj
[e

∫ t
0 dB

jN0
X(s)(s)]

∏
G

Exj
[e

∫ t
0 dB

jN0
X(s)(s)],

where G is the set of j so that block (ij , j) is a good block, B is the set of j
where this condition fails. By Lemma 4.3 we have that outside of probability
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e−8t/N0 that for every possible skeleton |B| < ηt/N0. By Lemma 4.4 ( outside of
probability e−cεt ) we have for all skeletons and all choices of B, with |B| < η

N0
t,∏

B

Exj
[e

∫ t
0 dB

jN0
X(s)(s)] < eεt/10.

Moreover we can split up
∏

GExj
[e

∫ t
0 dB

jN0
X(s)(s)] as∏

G

(Exj
[e

∫ t
0 dB

jN0
X(s)(s)1(MN0,∞)(N(X,N0))] + Exj

[e
∫ t
0 dB

jN0
X(s)(s)1[0,MN0](N(X,N0))])

=
∑
I⊂G

∏
j∈I

Exj
[e

∫ t
0 dB

jN0
X(s)(s)1[0,MN0](N(X,N0))]×

×
∏
j /∈I

Exj
[e

∫ t
0 dB

jN0
X(s)(s)1(MN0,∞)(N(X,N0))].

By Lemma 4. 5, (outside of probability e−cεt) for all skeletons and subsets I,

simultaneously, the term
∏

j /∈I Exj [e
∫ t
0 dB

jN0
X(s)(s)1(MN0,∞)(N(X,N0))] < eεt/10. So

with large probability,∏
G

Exj
[e

∫ t
0 dB

jN0
X(s)(s)] ≤ eεt/10

∑
I⊂G

∏
j∈I

Exj
[e

∫ t
0 dB

jN0
X(s)(s)1[0,MN0](N(X,N0))]

≤ eεt/102t/N0et(λ(κ)+ε/3)

by definition of a good block. That is we have shown that provided N0 was fixed
sufficiently large, then outside probability e−εct + e−t/N0 for every compatible
skeleton

E0[e
∫ t
0 dBX(s)(s)

t
N0
−1∏

j=0

1xij
(X(jN0)))] ≤ eεt/10eεt/102t/N0et(λ(κ)+ε/3).

By Lemma 4. 1, the number of skeletons compatible with no more than Mt jumps
is bounded by eεt/106

. Thus we have outside the above probability

E[e
∫ t
0 dBX(s)(s)I[0,Mt](N(X, t))] ≤ et(λ(κ)+2ε/3).

The Theorem now follows from the estimate

E[e
∫ t
0 dBX(s)(s)I(Mt,∞)(N(X, t))] ≤ e−cMt.

�

5. Moment Lyapunov exponents

In this section we outline a relation between moment and sample Lyapunov expo-
nents. Let

u(t, x) = Ex[e
∫ t
0 dBX(t−s)(s)]

as before. For p ∈ R, set
Mp(t) = EQ[up(t, x)],
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which is finite for any p ∈ R. Using Jensen’s inequality, one can easily see that for
p ∈ [0, 1]

Mp(t+ s) ≥Mp(t)Mp(s) (t, s ≥ 0),
and for p ∈ R \ [0, 1],

Mp(t+ s) ≤Mp(t)Mp(s) (t, s ≥ 0).

Thus, there exists a moment Lyapunov exponent Λ(p) as defined by

Λ(p) = lim
t→∞

1
t

logMp(t) = sup
t>0

1
t

logMp(t) (p ∈ [0, 1]),

and
Λ(p) = lim

t→∞

1
t

logMp(t) = inf
t>0

1
t

logMp(t) (p ∈ R \ [0, 1]).

Recall that λ(κ) = λ1(κ) denotes the sample Lyapunov exponent, and by
Theorem 2.11, given ε > 0 there is a positive constant c(ε) such that

Q(u(t, x) ≥ e(λ(κ)+ε)t) ≤ e−c(ε)t.

Applying Theorem 2.11 and the results of section three of [7] we obtain the fol-
lowing result.

Theorem 5.1. Λ(p) is differentiable at p = 0 and

λ(κ) = Λ′(0).

Proof. For the proof we summarize several facts about Λ(p) from [7].
Fact 1. Λ(p) is concave for p ∈ [0, 1] and convex for p ∈ R \ [0, 1] with Λ(0) = 0.
Thus, for every p, the right derivative Λ′(p+) and the left derivative Λ′(p−) exist.
Moreover it holds that

Λ′(0+) ≥ Λ′(0−).
Fact 2.

lim
t→∞

EQ[|1
t

log u(t, x)− Λ′(0−)|] = 0.

Combining Fact 2 and Corollary 2.13 we have
Fact 3. λ(κ) = Λ′(0−).

Applying Theorem 2.11 and the Schwarz inequality we see that for p > 0

Mp(t) = EQ[up(t, x) : u(t, x) < e(λ(κ)+ε)t]

+EQ[up(t, x) : u(t, x) ≥ e(λ(κ)+ε)t]

≤ ep(λ(κ)+ε)t +M2p(t)1/2Q(u(t, x) ≥ e(λ(κ)+ε)t)1/2

≤ ep(λ(κ)+ε)t +M2p(t)1/2e−c(ε)t/2,

from which it follows that

Λ(p) ≤ max{p(λ(κ) + ε),
1
2
(Λ(2p)− c(ε))}.

Dividing both sides by p > 0, and letting p↘ 0, we have that for every ε > 0

Λ′(0+) ≤ lim
p↘0

max{λ(κ) + ε,
1
2p

(Λ(2p)− c(ε))} = λ(κ) + ε.
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Therefore
Λ′(0+) ≤ λ(κ) = Λ′(0−),

which completes the proof of the theorem. �
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