
Acta Math. Univ. Comenianae

Vol. LXXI, 1(2002), pp. 113–117

113

A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES
MODULO p

C. COBELI, M. VÂJÂITU and A. ZAHARESCU

Abstract. Let p be a prime number, J a set of consecutive integers, Fp the

algebraic closure of Fp = Z/pZ and C an irreducible curve in an affine space

A
r(Fp), defined over Fp. We provide a lower bound for the number of r−tuples

(x, y1, . . . , yr−1) with x ∈ J , y1, . . . , yr−1 ∈ {0, 1, · · · , p − 1} for which (x, yx1 , . . . ,
yxr−1) (mod p) belongs to C(Fp).

1. Introduction

In Chapter F, section F9 of his well known book [4] on unsolved problems in
number theory, Richard Guy collected some questions on primitive roots. One
of them, attributed to Brizolis, asks if for a given prime p > 3, there is always
a primitive root g mod p, 0 < g < p, and an integer x, 0 < x < p such that
x ≡ gx ( mod p). This question was answered positively in [2], by showing that
for any ε > 0 there is a positive integer p(ε) such that for any prime p > p(ε)
the number of pairs (x, y) of primitive roots mod p, 0 < x, y < p which are
solutions of the congruence x ≡ yx (mod p), is at least (1 − ε)e−2γ p

(log log p)2 ,

where γ denotes Euler’s constant. In the present paper we consider more general
congruences, involving x, yx1 , . . . , y

x
r−1, and look for all the solutions, including

those for which y1, . . . , yr−1 are not necessarily primitive roots mod p. We start
with a large prime number p and a set J of consecutive positive integers, of
cardinality |J | ≤ p. Denote by Fp the algebraic closure of the field Fp = Z/pZ

and let C be an irreducible curve of degree D in an affine space Ar(Fp). We assume
in the following that C is not contained in any hyperplane and that it is defined
over Fp. Denote as usually by C(Fp) the set of points z = (z1, . . . , zr) on C with
all the components z1, . . . , zr in Fp. The problem is to find integers x ∈ J and
y1, . . . , yr−1 ∈ {0, 1, · · · , p− 1} such that

(1) (x, yx1 , . . . , y
x
r−1) (mod p) ∈ C(Fp) .

The method employed in [2] may be adapted to the present context. The
first idea is to look for points (x, z1, . . . , zr−1) on the curve C for which x is
relatively prime to p − 1. For any such point (x, z1, . . . , zr−1) we find a solu-
tion (x, y1, . . . , yr−1) of (1) by arranging y1, . . . , yr−1 such that yxj ≡ zj (mod p),

Received September 29, 2001.
2000 Mathematics Subject Classification. Primary 11T99.
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1 ≤ j ≤ r − 1. To be precise, we choose a positive integer w such that xw ≡ 1
(mod p − 1), then set yj = zwj and from Fermat’s Little Theorem one gets yxj =
zxwj ≡ zj mod p. We combine this idea with a Fourier inversion technique, similar
to that used in [3]. Consider the sets

A =
{

(x, y1, . . . , yr−1) ∈ J × Zr−1 : 0 ≤ y1, . . . , yr−1 < p,

(x, yx1 , . . . , y
x
r−1) (mod p) ∈ C(Fp)

}
and

B =
{

(x, z1, . . . , zr−1) ∈ J × Zr−1 : 0 ≤ z1, . . . , zr−1 < p, (x, p− 1) = 1,

(x, z1, . . . , zr−1) (mod p) ∈ C(Fp)
}
.

Our goal is to obtain lower bounds for |A|. By the above remark we know that
|A| ≥ |B|, thus it will be enough to find lower bounds for |B|. We will actually
obtain an asymptotical estimation for |B|. The result is stated in the following
theorem.

Theorem 1. Let p be a prime number, J a set of consecutive positive inte-
gers and C an irreducible curve of degree D in Ar(Fp), defined over Fp and not
contained in any hyperplane. Then

|B| = |J |ϕ(p− 1)
p− 1

+OD

(
σ0(p− 1)

√
p log p

)
.

Here ϕ(·) is the Euler function and σ0(p− 1) is the number of positive divisors
of p− 1. As a consequence of Theorem 1 we note the following corollary.

Corollary 1. Let r ≥ 2 and D ≥ 1 be integers and ε > 0 a fixed real number.
Then there is a positive integer p(r,D, ε) such that for any prime number p >
p(r,D, ε) and any irreducible curve C of degree D in Ar(Fp), defined over Fp and
not contained in any hyperplane, the number of r−tuples (x, y1, . . . , yr−1) with
0 < x, y1, . . . , yr−1 < p, (x, p− 1) = 1 and (x, yx1 , . . . , y

x
r−1) (mod p) ∈ C(Fp) is at

least (1− ε)e−2γ p
log log p .

2. Characteristic Functions and Exponential Sums

Our first step is to get an exact formula for |B| in terms of exponential sums. For
this we introduce the following characteristic function:

φJ (x) =

{
1, if x ∈ J and (x, p− 1) = 1
0, else .

Without any loss of generality, we may assume in the proof of Theorem 1 that
the set of consecutive integers J satisfies J ⊂ [1, p−1]. Let C be as in the statement
of the theorem. Then the number we are interested in, can be written as

(2) |B| =
∑

(x,z1,...,zr−1)∈C(Fp)

φJ (x) .
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Next, using a finite Fourier transform modulo p we write the characteristic function
defined above as

(3) φJ (x) =
∑
u∈Fp

φ̂J (u)ep(ux)

where ep(t) = e
2πit
p for any t. The Fourier coefficients φ̂J (u) are given by

(4) φ̂J (u) =
1
p

∑
x∈Fp

φJ (x)ep(−ux).

We substitute the expression (3) in (2) to obtain

(5) |B| =
∑
u∈Fp

φ̂J (u)S
C

(u) ,

in which
S

C
(u) =

∑
(x,z1,...,zr−1)∈C(Fp)

ep(ux) .

The expression (5) is the basic formula that will be used in the proof of Theorem
1. In order to complete the proof we first need estimates for φ̂J (u).

3. Estimates for the Fourier coefficients

The Fourier coefficients given by (4) behave differently, depending on whether
their argument is or is not zero modulo p. We have

(6) φ̂J (u) =


|J |ϕ(p−1)

p2 +O
(
σ0 (p−1)

p

)
, if u ≡ 0 (mod p)

O
(

1
p

∑
d|(p−1)

1
||ud/p||

)
, if u 6≡ 0 (mod p)

where ||·|| denotes the distance to the nearest integer.
In order to prove (6), we use well known properties of the Möbius function to

write

φ̂J (u) =
1
p

∑
x∈J

(x,p−1)=1

ep(−ux) =
1
p

∑
x∈J

ep(−ux)
∑
d|x

d|(p−1)

µ(d)

=
1
p

∑
d|(p−1)

µ(d)
∑
x∈J
d|x

ep(−ux) .

When u = 0 one has

φ̂J (0) =
1
p

∑
d|(p−1)

µ(d)|{x ∈ J ; d divides x}| = 1
p

∑
d|(p−1)

µ(d)
(
|J |
d

+O(1)
)

=
|J |
p

∑
d|(p−1)

µ(d)
d

+O

(
σ0(p− 1)

p

)
.
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Employing the equality
∑
d|(p−1)

µ(d)
d = ϕ(p−1)

p−1 (see for example [5]), the relation
(6) is proved for u = 0. Let us assume now that u 6≡ 0 (mod p). The sum∑
x∈J , d|x ep(−ux) is a geometric progression of ratio ep(−ud). It follows easily

that

(7)

∣∣∣∣∣ ∑
x∈J , d|x

ep(−ux)

∣∣∣∣∣� 1
||ud/p||

.

Using (7) for any divisor d of p− 1, we find that

φ̂J (u)� 1
p

∑
d|(p−1)

1
||ud/p||

,

which proves (6).

4. Proof of Theorem 1

We split the sum in the main formula (5) into two ranges according as to whether
u = 0 or u 6= 0. We write

(8) |B| = M + E ,

where M = φ̂J (0)|C(Fp)| contains the principal contribution, giving the main term
of the estimation for |B|, while the remainder is

E =
∑

0 6=u∈Fp

φ̂J (u)
∑

(x,z1,...,zr−1)∈C(Fp)

ep(ux) .

We now turn our attention to the evaluation of M . By the Riemann Hypothesis
for curves over finite fields (Weil [6]), we know that

|C(Fp)| = p+OD (
√
p).

Then using (6), we obtains

M = |J | ϕ(p− 1)
p

+OD (
√
p).

Next, we estimate the remainder E. Since C is not contained in any hyperplane
it follows for u 6= 0 that ux is nonconstant along the curve C. Then one may apply
the Bombieri–Weil inequality (see [1], Theorem 6), which gives

|S
C

(u)| �D
√
p

for u 6= 0. Therefore, by (6) we see that

E =
∑

0 6=u∈Fp

φ̂J (u)S
C

(u)�D

1
p

∑
d|(p−1)

p−1∑
u=1

1
||ud/p||

 √p
�σ0(p− 1)

√
p log p.

This completes the proof of Theorem 1.
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