A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p

C. COBELI, M. VÂJÂITU AND A. ZAHARESCU

ABSTRACT. Let p be a prime number, \mathcal{J} a set of consecutive integers, $\overline{\mathbf{F}}_p$ the algebraic closure of $\mathbf{F}_p = \mathbb{Z}/p\mathbb{Z}$ and \mathfrak{C} an irreducible curve in an affine space $\mathbb{A}^r(\overline{\mathbf{F}}_p)$, defined over \mathbf{F}_p . We provide a lower bound for the number of r-tuples $(x, y_1, \ldots, y_{r-1})$ with $x \in \mathcal{J}, y_1, \ldots, y_{r-1} \in \{0, 1, \cdots, p-1\}$ for which $(x, y_1^x, \ldots, y_{r-1}^x)$ (mod p) belongs to $\mathfrak{C}(\mathbf{F}_p)$.

1. INTRODUCTION

In Chapter F, section F9 of his well known book [4] on unsolved problems in number theory, Richard Guy collected some questions on primitive roots. One of them, attributed to Brizolis, asks if for a given prime p > 3, there is always a primitive root $g \mod p$, 0 < g < p, and an integer x, 0 < x < p such that $x \equiv q^x \pmod{p}$. This question was answered positively in [2], by showing that for any $\epsilon > 0$ there is a positive integer $p(\epsilon)$ such that for any prime $p > p(\epsilon)$ the number of pairs (x, y) of primitive roots mod p, 0 < x, y < p which are solutions of the congruence $x \equiv y^x \pmod{p}$, is at least $(1 - \epsilon)e^{-2\gamma} \frac{p}{(\log \log p)^2}$, where γ denotes Euler's constant. In the present paper we consider more general congruences, involving $x, y_1^x, \ldots, y_{r-1}^x$, and look for all the solutions, including those for which y_1, \ldots, y_{r-1} are not necessarily primitive roots mod p. We start with a large prime number p and a set \mathcal{J} of consecutive positive integers, of cardinality $|\mathcal{J}| \leq p$. Denote by $\overline{\mathbf{F}}_p$ the algebraic closure of the field $\mathbf{F}_p = \mathbb{Z}/p\mathbb{Z}$ and let \mathfrak{C} be an irreducible curve of degree D in an affine space $\mathbb{A}^r(\overline{\mathbf{F}}_p)$. We assume in the following that \mathfrak{C} is not contained in any hyperplane and that it is defined over \mathbf{F}_p . Denote as usually by $\mathfrak{C}(\mathbf{F}_p)$ the set of points $\mathbf{z} = (z_1, \ldots, z_r)$ on \mathfrak{C} with all the components z_1, \ldots, z_r in \mathbf{F}_p . The problem is to find integers $x \in \mathcal{J}$ and $y_1, \ldots, y_{r-1} \in \{0, 1, \cdots, p-1\}$ such that

(1)
$$(x, y_1^x, \dots, y_{r-1}^x) \pmod{p} \in \mathfrak{C}(\mathbf{F}_p).$$

The method employed in [2] may be adapted to the present context. The first idea is to look for points $(x, z_1, \ldots, z_{r-1})$ on the curve \mathfrak{C} for which x is relatively prime to p-1. For any such point $(x, z_1, \ldots, z_{r-1})$ we find a solution $(x, y_1, \ldots, y_{r-1})$ of (1) by arranging y_1, \ldots, y_{r-1} such that $y_j^x \equiv z_j \pmod{p}$,

Received September 29, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11T99.

 $1 \leq j \leq r-1$. To be precise, we choose a positive integer w such that $xw \equiv 1 \pmod{p-1}$, then set $y_j = z_j^w$ and from Fermat's Little Theorem one gets $y_j^x = z_j^{xw} \equiv z_j \mod p$. We combine this idea with a Fourier inversion technique, similar to that used in [3]. Consider the sets

$$\mathcal{A} = \left\{ (x, y_1, \dots, y_{r-1}) \in \mathcal{J} \times \mathbb{Z}^{r-1} \colon 0 \le y_1, \dots, y_{r-1} < p, \\ (x, y_1^x, \dots, y_{r-1}^x) \pmod{p} \in \mathfrak{C}(\mathbf{F}_p) \right\}$$

and

$$\mathcal{B} = \{ (x, z_1, \dots, z_{r-1}) \in \mathcal{J} \times \mathbb{Z}^{r-1} : 0 \le z_1, \dots, z_{r-1} < p, (x, p-1) = 1, \\ (x, z_1, \dots, z_{r-1}) \pmod{p} \in \mathfrak{C}(\mathbf{F}_p) \}.$$

Our goal is to obtain lower bounds for $|\mathcal{A}|$. By the above remark we know that $|\mathcal{A}| \geq |\mathcal{B}|$, thus it will be enough to find lower bounds for $|\mathcal{B}|$. We will actually obtain an asymptotical estimation for $|\mathcal{B}|$. The result is stated in the following theorem.

Theorem 1. Let p be a prime number, \mathcal{J} a set of consecutive positive integers and \mathfrak{C} an irreducible curve of degree D in $\mathbb{A}^r(\overline{\mathbf{F}}_p)$, defined over \mathbf{F}_p and not contained in any hyperplane. Then

$$|\mathcal{B}| = |\mathcal{J}|\frac{\varphi(p-1)}{p-1} + O_D\Big(\sigma_0(p-1)\sqrt{p}\log p\Big).$$

Here $\varphi(\cdot)$ is the Euler function and $\sigma_0(p-1)$ is the number of positive divisors of p-1. As a consequence of Theorem 1 we note the following corollary.

Corollary 1. Let $r \geq 2$ and $D \geq 1$ be integers and $\epsilon > 0$ a fixed real number. Then there is a positive integer $p(r, D, \epsilon)$ such that for any prime number $p > p(r, D, \epsilon)$ and any irreducible curve \mathfrak{C} of degree D in $\mathbb{A}^r(\overline{\mathbf{F}}_p)$, defined over \mathbf{F}_p and not contained in any hyperplane, the number of r-tuples $(x, y_1, \ldots, y_{r-1})$ with $0 < x, y_1, \ldots, y_{r-1} < p$, (x, p-1) = 1 and $(x, y_1^x, \ldots, y_{r-1}^x) \pmod{p} \in \mathfrak{C}(\mathbf{F}_p)$ is at least $(1 - \epsilon)e^{-2\gamma}\frac{p}{\log \log p}$.

2. Characteristic Functions and Exponential Sums

Our first step is to get an exact formula for $|\mathcal{B}|$ in terms of exponential sums. For this we introduce the following characteristic function:

$$\phi_{\mathcal{J}}(x) = \begin{cases} 1, & \text{if } x \in \mathcal{J} \text{ and } (x, p-1) = 1 \\ 0, & \text{else.} \end{cases}$$

Without any loss of generality, we may assume in the proof of Theorem 1 that the set of consecutive integers \mathcal{J} satisfies $\mathcal{J} \subset [1, p-1]$. Let \mathfrak{C} be as in the statement of the theorem. Then the number we are interested in, can be written as

(2)
$$|\mathcal{B}| = \sum_{(x,z_1,\dots,z_{r-1})\in\mathfrak{C}(\mathbf{F}_p)} \phi_{\mathcal{J}}(x) \,.$$

Next, using a finite Fourier transform modulo p we write the characteristic function defined above as

(3)
$$\phi_{\mathcal{J}}(x) = \sum_{u \in \mathbf{F}_p} \hat{\phi}_{\mathcal{J}}(u) e_p(ux)$$

where $e_p(t) = e^{\frac{2\pi i t}{p}}$ for any t. The Fourier coefficients $\hat{\phi}_{\mathcal{J}}(u)$ are given by

(4)
$$\hat{\phi}_{\mathcal{J}}(u) = \frac{1}{p} \sum_{x \in \mathbf{F}_p} \phi_{\mathcal{J}}(x) e_p(-ux).$$

We substitute the expression (3) in (2) to obtain

(5)
$$|\mathcal{B}| = \sum_{u \in \mathbf{F}_p} \hat{\phi}_{\mathcal{J}}(u) S_{\mathfrak{c}}(u) \, ,$$

in which

$$S_{\mathfrak{c}}(u) = \sum_{(x,z_1,\ldots,z_{r-1})\in\mathfrak{C}(\mathbf{F}_p)} e_p(ux) \,.$$

The expression (5) is the basic formula that will be used in the proof of Theorem 1. In order to complete the proof we first need estimates for $\hat{\phi}_{\mathcal{J}}(u)$.

3. Estimates for the Fourier coefficients

The Fourier coefficients given by (4) behave differently, depending on whether their argument is or is not zero modulo p. We have

(6)
$$\hat{\phi}_{\mathcal{J}}(u) = \begin{cases} \frac{|\mathcal{J}|\varphi(p-1)}{p^2} + O\left(\frac{\sigma_0(p-1)}{p}\right), & \text{if } u \equiv 0 \pmod{p} \\ O\left(\frac{1}{p}\sum_{d|(p-1)}\frac{1}{||ud/p||}\right), & \text{if } u \not\equiv 0 \pmod{p} \end{cases}$$

where $\|\cdot\|$ denotes the distance to the nearest integer.

In order to prove (6), we use well known properties of the Möbius function to write

$$\begin{split} \hat{\phi}_{\mathcal{J}}(u) &= \frac{1}{p} \sum_{\substack{x \in \mathcal{J} \\ (x,p-1)=1}} e_p(-ux) = \frac{1}{p} \sum_{x \in \mathcal{J}} e_p(-ux) \sum_{\substack{d \mid x \\ d \mid (p-1)}} \mu(d) \\ &= \frac{1}{p} \sum_{\substack{d \mid (p-1) \\ d \mid x}} \mu(d) \sum_{\substack{x \in \mathcal{J} \\ d \mid x}} e_p(-ux) \,. \end{split}$$

When u = 0 one has

$$\begin{split} \hat{\phi}_{\mathcal{J}}(0) &= \frac{1}{p} \sum_{d \mid (p-1)} \mu(d) | \{ x \in \mathcal{J}; d \text{ divides } x \} | = \frac{1}{p} \sum_{d \mid (p-1)} \mu(d) \left(\frac{|\mathcal{J}|}{d} + O(1) \right) \\ &= \frac{|\mathcal{J}|}{p} \sum_{d \mid (p-1)} \frac{\mu(d)}{d} + O\left(\frac{\sigma_{0}(p-1)}{p} \right) \,. \end{split}$$

Employing the equality $\sum_{d|(p-1)} \frac{\mu(d)}{d} = \frac{\varphi(p-1)}{p-1}$ (see for example [5]), the relation (6) is proved for u = 0. Let us assume now that $u \not\equiv 0 \pmod{p}$. The sum $\sum_{x \in \mathcal{J}, d|x} e_p(-ux)$ is a geometric progression of ratio $e_p(-ud)$. It follows easily that

(7)
$$\left|\sum_{x\in\mathcal{J},\,d|x}e_p(-ux)\right|\ll\frac{1}{\|ud/p\|}.$$

Using (7) for any divisor d of p-1, we find that

$$\hat{\phi}_{\mathcal{J}}(u) \ll \frac{1}{p} \sum_{d \mid (p-1)} \frac{1}{\|ud/p\|} \,,$$

which proves (6).

4. Proof of Theorem 1

We split the sum in the main formula (5) into two ranges according as to whether u = 0 or $u \neq 0$. We write

$$(8) \qquad \qquad |\mathcal{B}| = M + E\,,$$

where $M = \hat{\phi}_{\mathcal{J}}(0) |\mathfrak{C}(\mathbf{F}_p)|$ contains the principal contribution, giving the main term of the estimation for $|\mathcal{B}|$, while the remainder is

$$E = \sum_{0 \neq u \in \mathbf{F}_p} \hat{\phi}_{\mathcal{I}}(u) \sum_{(x, z_1, \dots, z_{r-1}) \in \mathfrak{C}(\mathbf{F}_p)} e_p(ux) \,.$$

We now turn our attention to the evaluation of M. By the Riemann Hypothesis for curves over finite fields (Weil [6]), we know that

$$\mathfrak{C}(\mathbf{F}_p)| = p + O_D\left(\sqrt{p}\right).$$

Then using (6), we obtains

$$M = |\mathcal{J}| \frac{\varphi(p-1)}{p} + O_D(\sqrt{p}).$$

Next, we estimate the remainder E. Since \mathfrak{C} is not contained in any hyperplane it follows for $u \neq 0$ that ux is nonconstant along the curve \mathfrak{C} . Then one may apply the Bombieri–Weil inequality (see [1], Theorem 6), which gives

$$|S_{\mathfrak{c}}(u)| \ll_D \sqrt{p}$$

for $u \neq 0$. Therefore, by (6) we see that

$$\begin{split} E &= \sum_{0 \neq u \in \mathbf{F}_p} \hat{\phi}_{\mathcal{I}}(u) S_{\mathfrak{c}}(u) \ll_D \left(\frac{1}{p} \sum_{d \mid (p-1)} \sum_{u=1}^{p-1} \frac{1}{\|ud/p\|} \right) \sqrt{p} \\ &\ll \sigma_0(p-1) \sqrt{p} \log p. \end{split}$$

This completes the proof of Theorem 1.

116

References

- 1. Bombieri E., On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71–105.
- Cobeli C. and Zaharescu A., An exponential congruence with solutions in primitive roots, Rev. Roumaine Math. Pures Appl. 44(1) (1999), 15–22.
- 3. _____, Generalization of a problem of Lehmer, Manuscripta Math. 104 (2001), 301–307.
- Guy R. K., Unsolved problems in Number Theory, Springer-Verlag, New York-Berlin, 1981, (second edition 1994).
- 5. Ram Murty M., Problems in Analytic Number Theory, Springer-Verlag, New York, 2001.
- Weil A., Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Hermann, 1948.

C. Cobeli, M. Vâjâitu, Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, 70700 Bucharest, Romania, *e-mail*: ccobeli@imar.ro, mvajaitu@imar.ro

A. Zaharescu, Department of Mathematics, University of Illinois at Urbana-Champaign, Altgeld Hall, 1409 W. Green St., Urbana, IL 61801, USA, *e-mail*: zaharesc@math.uiuc.edu