A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES MODULO p

C. COBELI, M. VÂJÂITU and A. ZAHARESCU

Abstract

Let p be a prime number, \mathcal{J} a set of consecutive integers, $\overline{\mathbf{F}}_{p}$ the algebraic closure of $\mathbf{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ and \mathfrak{C} an irreducible curve in an affine space $\mathbb{A}^{r}\left(\overline{\mathbf{F}}_{p}\right)$, defined over \mathbf{F}_{p}. We provide a lower bound for the number of r-tuples $\left(x, y_{1}, \ldots, y_{r-1}\right)$ with $x \in \mathcal{J}, y_{1}, \ldots, y_{r-1} \in\{0,1, \cdots, p-1\}$ for which $\left(x, y_{1}^{x}, \ldots\right.$, $\left.y_{r-1}^{x}\right)(\bmod p)$ belongs to $\mathfrak{C}\left(\mathbf{F}_{p}\right)$.

1. Introduction

In Chapter F, section F9 of his well known book [4] on unsolved problems in number theory, Richard Guy collected some questions on primitive roots. One of them, attributed to Brizolis, asks if for a given prime $p>3$, there is always a primitive root $g \bmod p, 0<g<p$, and an integer $x, 0<x<p$ such that $x \equiv g^{x}(\bmod p)$. This question was answered positively in $[\mathbf{2}]$, by showing that for any $\epsilon>0$ there is a positive integer $p(\epsilon)$ such that for any prime $p>p(\epsilon)$ the number of pairs (x, y) of primitive roots $\bmod p, 0<x, y<p$ which are solutions of the congruence $x \equiv y^{x}(\bmod p)$, is at least $(1-\epsilon) e^{-2 \gamma} \frac{p}{(\log \log p)^{2}}$, where γ denotes Euler's constant. In the present paper we consider more general congruences, involving $x, y_{1}^{x}, \ldots, y_{r-1}^{x}$, and look for all the solutions, including those for which y_{1}, \ldots, y_{r-1} are not necessarily primitive roots mod p. We start with a large prime number p and a set \mathcal{J} of consecutive positive integers, of cardinality $|\mathcal{J}| \leq p$. Denote by $\overline{\mathbf{F}}_{p}$ the algebraic closure of the field $\mathbf{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ and let \mathfrak{C} be an irreducible curve of degree D in an affine space $\mathbb{A}^{r}\left(\overline{\mathbf{F}}_{p}\right)$. We assume in the following that \mathfrak{C} is not contained in any hyperplane and that it is defined over \mathbf{F}_{p}. Denote as usually by $\mathfrak{C}\left(\mathbf{F}_{p}\right)$ the set of points $\mathbf{z}=\left(z_{1}, \ldots, z_{r}\right)$ on \mathfrak{C} with all the components z_{1}, \ldots, z_{r} in \mathbf{F}_{p}. The problem is to find integers $x \in \mathcal{J}$ and $y_{1}, \ldots, y_{r-1} \in\{0,1, \cdots, p-1\}$ such that

$$
\begin{equation*}
\left(x, y_{1}^{x}, \ldots, y_{r-1}^{x}\right) \quad(\bmod p) \in \mathfrak{C}\left(\mathbf{F}_{p}\right) . \tag{1}
\end{equation*}
$$

The method employed in [2] may be adapted to the present context. The first idea is to look for points $\left(x, z_{1}, \ldots, z_{r-1}\right)$ on the curve \mathfrak{C} for which x is relatively prime to $p-1$. For any such point $\left(x, z_{1}, \ldots, z_{r-1}\right)$ we find a solution $\left(x, y_{1}, \ldots, y_{r-1}\right)$ of (1) by arranging y_{1}, \ldots, y_{r-1} such that $y_{j}^{x} \equiv z_{j}(\bmod p)$,

[^0]$1 \leq j \leq r-1$. To be precise, we choose a positive integer w such that $x w \equiv 1$ $(\bmod p-1)$, then set $y_{j}=z_{j}^{w}$ and from Fermat's Little Theorem one gets $y_{j}^{x}=$ $z_{j}^{x w} \equiv z_{j} \bmod p$. We combine this idea with a Fourier inversion technique, similar to that used in [3]. Consider the sets
\[

$$
\begin{gathered}
\mathcal{A}=\left\{\left(x, y_{1}, \ldots, y_{r-1}\right) \in \mathcal{J} \times \mathbb{Z}^{r-1}: 0 \leq y_{1}, \ldots, y_{r-1}<p,\right. \\
\left.\left(x, y_{1}^{x}, \ldots, y_{r-1}^{x}\right) \quad(\bmod p) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)\right\}
\end{gathered}
$$
\]

and

$$
\begin{gathered}
\mathcal{B}=\left\{\left(x, z_{1}, \ldots, z_{r-1}\right) \in \mathcal{J} \times \mathbb{Z}^{r-1}: \quad 0 \leq z_{1}, \ldots, z_{r-1}<p,(x, p-1)=1,\right. \\
\left.\left(x, z_{1}, \ldots, z_{r-1}\right) \quad(\bmod p) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)\right\} .
\end{gathered}
$$

Our goal is to obtain lower bounds for $|\mathcal{A}|$. By the above remark we know that $|\mathcal{A}| \geq|\mathcal{B}|$, thus it will be enough to find lower bounds for $|\mathcal{B}|$. We will actually obtain an asymptotical estimation for $|\mathcal{B}|$. The result is stated in the following theorem.

Theorem 1. Let p be a prime number, \mathcal{J} a set of consecutive positive integers and \mathfrak{C} an irreducible curve of degree D in $\mathbb{A}^{r}\left(\overline{\mathbf{F}}_{p}\right)$, defined over \mathbf{F}_{p} and not contained in any hyperplane. Then

$$
|\mathcal{B}|=|\mathcal{J}| \frac{\varphi(p-1)}{p-1}+O_{D}\left(\sigma_{0}(p-1) \sqrt{p} \log p\right)
$$

Here $\varphi(\cdot)$ is the Euler function and $\sigma_{0}(p-1)$ is the number of positive divisors of $p-1$. As a consequence of Theorem 1 we note the following corollary.

Corollary 1. Let $r \geq 2$ and $D \geq 1$ be integers and $\epsilon>0$ a fixed real number. Then there is a positive integer $p(r, D, \epsilon)$ such that for any prime number $p>$ $p(r, D, \epsilon)$ and any irreducible curve \mathfrak{C} of degree D in $\mathbb{A}^{r}\left(\overline{\mathbf{F}}_{p}\right)$, defined over \mathbf{F}_{p} and not contained in any hyperplane, the number of r-tuples $\left(x, y_{1}, \ldots, y_{r-1}\right)$ with $0<x, y_{1}, \ldots, y_{r-1}<p,(x, p-1)=1$ and $\left(x, y_{1}^{x}, \ldots, y_{r-1}^{x}\right)(\bmod p) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)$ is at least $(1-\epsilon) e^{-2 \gamma} \frac{p}{\log \log p}$.

2. Characteristic Functions and Exponential Sums

Our first step is to get an exact formula for $|\mathcal{B}|$ in terms of exponential sums. For this we introduce the following characteristic function:

$$
\phi_{\mathcal{J}}(x)= \begin{cases}1, & \text { if } x \in \mathcal{J} \text { and }(x, p-1)=1 \\ 0, & \text { else }\end{cases}
$$

Without any loss of generality, we may assume in the proof of Theorem 1 that the set of consecutive integers \mathcal{J} satisfies $\mathcal{J} \subset[1, p-1]$. Let \mathfrak{C} be as in the statement of the theorem. Then the number we are interested in, can be written as

$$
\begin{equation*}
|\mathcal{B}|=\sum_{\left(x, z_{1}, \ldots, z_{r-1}\right) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)} \phi_{\mathcal{J}}(x) . \tag{2}
\end{equation*}
$$

Next, using a finite Fourier transform modulo p we write the characteristic function defined above as

$$
\begin{equation*}
\phi_{\mathcal{J}}(x)=\sum_{u \in \mathbf{F}_{p}} \hat{\phi}_{\mathcal{J}}(u) e_{p}(u x) \tag{3}
\end{equation*}
$$

where $e_{p}(t)=e^{\frac{2 \pi i t}{p}}$ for any t. The Fourier coefficients $\hat{\phi}_{\mathcal{J}}(u)$ are given by

$$
\begin{equation*}
\hat{\phi}_{\mathcal{J}}(u)=\frac{1}{p} \sum_{x \in \mathbf{F}_{p}} \phi_{\mathcal{J}}(x) e_{p}(-u x) \tag{4}
\end{equation*}
$$

We substitute the expression (3) in (2) to obtain

$$
\begin{equation*}
|\mathcal{B}|=\sum_{u \in \mathbf{F}_{p}} \hat{\phi}_{\mathcal{J}}(u) S_{\mathfrak{c}}(u), \tag{5}
\end{equation*}
$$

in which

$$
S_{\mathfrak{C}}(u)=\sum_{\left(x, z_{1}, \ldots, z_{r-1}\right) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)} e_{p}(u x)
$$

The expression (5) is the basic formula that will be used in the proof of Theorem 1. In order to complete the proof we first need estimates for $\hat{\phi}_{\mathcal{J}}(u)$.

3. Estimates for the Fourier coefficients

The Fourier coefficients given by (4) behave differently, depending on whether their argument is or is not zero modulo p. We have

$$
\hat{\phi}_{\mathcal{J}}(u)=\left\{\begin{array}{lll}
\frac{|\mathcal{J}| \varphi(p-1)}{p^{2}}+O\left(\frac{\sigma_{0}(p-1)}{p}\right), & \text { if } u \equiv 0 & (\bmod p) \tag{6}\\
O\left(\frac{1}{p} \sum_{d \mid(p-1)} \frac{1}{\|u d / p\|}\right), & \text { if } u \not \equiv 0 & (\bmod p)
\end{array}\right.
$$

where $\|\cdot\|$ denotes the distance to the nearest integer.
In order to prove (6), we use well known properties of the Möbius function to write

$$
\begin{aligned}
\hat{\phi}_{\mathcal{J}}(u) & =\frac{1}{p} \sum_{\substack{x \in \mathcal{J} \\
(x, p-1)=1}} e_{p}(-u x)=\frac{1}{p} \sum_{x \in \mathcal{J}} e_{p}(-u x) \sum_{\substack{d|x \\
d|(p-1)}} \mu(d) \\
& =\frac{1}{p} \sum_{d \mid(p-1)} \mu(d) \sum_{\substack{x \in \mathcal{J} \\
d \mid x}} e_{p}(-u x) .
\end{aligned}
$$

When $u=0$ one has

$$
\begin{aligned}
\hat{\phi}_{\mathcal{J}}(0) & \left.\left.=\frac{1}{p} \sum_{d \mid(p-1)} \mu(d) \right\rvert\,\{x \in \mathcal{J} ; d \text { divides } x\} \right\rvert\,=\frac{1}{p} \sum_{d \mid(p-1)} \mu(d)\left(\frac{|\mathcal{J}|}{d}+O(1)\right) \\
& =\frac{|\mathcal{J}|}{p} \sum_{d \mid(p-1)} \frac{\mu(d)}{d}+O\left(\frac{\sigma_{0}(p-1)}{p}\right)
\end{aligned}
$$

Employing the equality $\sum_{d \mid(p-1)} \frac{\mu(d)}{d}=\frac{\varphi(p-1)}{p-1}$ (see for example [5]), the relation (6) is proved for $u=0$. Let us assume now that $u \not \equiv 0(\bmod p)$. The sum $\sum_{x \in \mathcal{J}, d \mid x} e_{p}(-u x)$ is a geometric progression of ratio $e_{p}(-u d)$. It follows easily that

$$
\begin{equation*}
\left|\sum_{x \in \mathcal{J}, d \mid x} e_{p}(-u x)\right| \ll \frac{1}{\|u d / p\|} \tag{7}
\end{equation*}
$$

Using (7) for any divisor d of $p-1$, we find that

$$
\hat{\phi}_{\mathcal{J}}(u) \ll \frac{1}{p} \sum_{d \mid(p-1)} \frac{1}{\|u d / p\|}
$$

which proves (6).

4. Proof of Theorem 1

We split the sum in the main formula (5) into two ranges according as to whether $u=0$ or $u \neq 0$. We write

$$
\begin{equation*}
|\mathcal{B}|=M+E, \tag{8}
\end{equation*}
$$

where $M=\hat{\phi}_{\mathcal{J}}(0)\left|\mathfrak{C}\left(\mathbf{F}_{p}\right)\right|$ contains the principal contribution, giving the main term of the estimation for $|\mathcal{B}|$, while the remainder is

$$
E=\sum_{0 \neq u \in \mathbf{F}_{p}} \hat{\phi}_{\mathcal{J}}(u) \sum_{\left(x, z_{1}, \ldots, z_{r-1}\right) \in \mathfrak{C}\left(\mathbf{F}_{p}\right)} e_{p}(u x)
$$

We now turn our attention to the evaluation of M. By the Riemann Hypothesis for curves over finite fields (Weil [6]), we know that

$$
\left|\mathfrak{C}\left(\mathbf{F}_{p}\right)\right|=p+O_{D}(\sqrt{p})
$$

Then using (6), we obtains

$$
M=|\mathcal{J}| \frac{\varphi(p-1)}{p}+O_{D}(\sqrt{p})
$$

Next, we estimate the remainder E. Since \mathfrak{C} is not contained in any hyperplane it follows for $u \neq 0$ that $u x$ is nonconstant along the curve \mathfrak{C}. Then one may apply the Bombieri-Weil inequality (see [1], Theorem 6), which gives

$$
\left|S_{\mathfrak{c}}(u)\right|<_{D} \sqrt{p}
$$

for $u \neq 0$. Therefore, by (6) we see that

$$
\begin{aligned}
E & =\sum_{0 \neq u \in \mathbf{F}_{p}} \hat{\phi}_{\mathcal{J}}(u) S_{\mathfrak{c}}(u)<_{D}\left(\frac{1}{p} \sum_{d \mid(p-1)} \sum_{u=1}^{p-1} \frac{1}{\|u d / p\|}\right) \sqrt{p} \\
& \ll \sigma_{0}(p-1) \sqrt{p} \log p
\end{aligned}
$$

This completes the proof of Theorem 1.

References

1. Bombieri E., On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71-105.
2. Cobeli C. and Zaharescu A., An exponential congruence with solutions in primitive roots, Rev. Roumaine Math. Pures Appl. 44(1) (1999), 15-22.
3. \qquad , Generalization of a problem of Lehmer, Manuscripta Math. 104 (2001), 301-307.
4. Guy R. K., Unsolved problems in Number Theory, Springer-Verlag, New York-Berlin, 1981, (second edition 1994).
5. Ram Murty M., Problems in Analytic Number Theory, Springer-Verlag, New York, 2001.
6. Weil A., Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Hermann, 1948.
C. Cobeli, M. Vâjâitu, Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, 70700 Bucharest, Romania, e-mail: ccobeli@imar.ro, mvajaitu@imar.ro
A. Zaharescu, Department of Mathematics, University of Illinois at Urbana-Champaign, Altgeld Hall, 1409 W. Green St., Urbana, IL 61801, USA, e-mail: zaharesc@math.uiuc.edu

[^0]: Received September 29, 2001.
 2000 Mathematics Subject Classification. Primary 11T99.

