RESTRICTED CONGRUENCE REGULARITY OF ALGEBRAS

I. CHAJDA AND H. LÄNGER

ABSTRACT. An algebra \mathcal{A} is called restricted regular with respect to a subset M of its base set if every single class of some congruence Θ on \mathcal{A} determines $\Theta|M$. A variety is called restricted regular with respect to a unary term t if every of its members (A, F) is restricted regular with respect to t(A). The well-known results on (weak) regularity are generalized to the "restricted case".

Definition 1. Let $\mathcal{A} = (A, F)$ be an algebra and $M \subseteq A$. \mathcal{A} is called **re**stricted regular with respect to M if for all $a \in A$ and $\Theta, \Phi \in \text{Con}\mathcal{A}$ the following holds: If $[a]\Theta = [a]\Phi$ then $\Theta|M = \Phi|M$. For an arbitrary set M let ω_M denote the least equivalence relation on M.

Remark 1. The case M = A yields the concept of a regular algebra (see [2],[5] and [7]). Every algebra is restricted regular with respect to every at most oneelement subset of its base set.

Lemma 1. If $\mathcal{A} = (A, F)$ is an algebra, $M \subseteq A$, \mathcal{A} is restricted regular with respect to M and Θ is a congruence on \mathcal{A} having a singleton class then $\Theta|M = \omega_M$.

Proof. If $[a]\Theta = \{a\}$ for some $a \in A$ then $[a]\Theta = [a]\omega_A$ and hence $\Theta|M = \omega_A|M = \omega_M$.

Definition 2. Let \mathcal{V} be a variety and t a unary term of \mathcal{V} . \mathcal{V} is called **restricted** regular with respect to t if every member (A, F) of \mathcal{V} is restricted regular with respect to t(A).

Remark 2. The case t(x) = x yields the concept of a regular variety (see [2],[5] and [7]). Every variety \mathcal{V} is restricted regular with respect to every constant unary term of \mathcal{V} .

Theorem 1. Let \mathcal{V} be a variety and t a unary term of \mathcal{V} . Then \mathcal{V} is restricted regular with respect to t if and only if for each member $\mathcal{A} = (A, F)$ of \mathcal{V} and each congruence Θ on \mathcal{A} having a singleton class it holds $\Theta|t(A) = \omega_{t(A)}$.

Received January 3, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 08A30; Secondary 08B05.

Key words and phrases. (weakly) restricted regular algebra, (weakly) restricted regular variety, Mal'cev type characterization.

This paper is a result of the collaboration of the authors within the framework of the "Aktion Österreich – Tschechische Republik" (grant No. 30p4 "Dependence and algebraic properties of congruence classes").

Proof. If \mathcal{V} satisfies the condition of the theorem, $\mathcal{A} = (A, F) \in \mathcal{V}$, $a \in A$, $\Theta, \Phi \in \text{Con}\mathcal{A}$ and $[a]\Theta = [a]\Phi$ then

$$|[[a](\Theta \cap \Phi)](\Theta/(\Theta \cap \Phi))| = |[[a](\Theta \cap \Phi)](\Phi/(\Theta \cap \Phi))| = 1$$

and hence

$$(\Theta/(\Theta \cap \Phi))|t(A/(\Theta \cap \Phi)) = (\Phi/(\Theta \cap \Phi))|t(A/(\Theta \cap \Phi))$$

which implies $\Theta|t(A) = \Phi|t(A)$. The rest of the proof follows from Lemma 1. \Box

Theorem 2. For an algebra $\mathcal{A} = (A, F)$, $a, b \in A$ and $M \subseteq A^2$ the following conditions are equivalent:

- (i) $(a,b) \in \Theta(M)$.
- (ii) There exists a positive integer $n, a_0, \ldots, a_n \in A$, $(b_1, c_1), \ldots, (b_n, c_n) \in M$ and unary polynomial functions p_1, \ldots, p_n over \mathcal{A} with $a_0 = a$, $\{a_{i-1}, a_i\} = \{p_i(b_i), p_i(c_i)\}$ for $i = 1, \ldots, n$ and $a_n = b$.
- (iii) There exists a positive integer n, $(b_1, c_1), \ldots, (b_n, c_n) \in M$ and binary polynomial functions q_1, \ldots, q_n over \mathcal{A} with $q_1(b_1, c_1) = a$, $q_i(c_i, b_i) = q_{i+1}(b_{i+1}, c_{i+1})$ for $i = 1, \ldots, n-1$ and $q_n(c_n, b_n) = b$.

Proof. (i) \Rightarrow (ii):

See [4] (p. 55) or [6] (Theorem 4.19).

(ii) \Rightarrow (iii):

For i = 1, ..., n define $q_i(x, y) := p_i(x)$ if $p_i(b_i) = a_{i-1}$ and $q_i(x, y) := p_i(y)$ otherwise. Then $q_1, ..., q_n$ are binary polynomial functions over \mathcal{A} and for i = 1, ..., n-1 it holds:

$$q_{1}(b_{1}, c_{1}) = p_{1}(b_{1}) = a_{0} = a \text{ if } p_{1}(b_{1}) = a_{0},$$

$$q_{1}(b_{1}, c_{1}) = p_{1}(c_{1}) = a_{0} = a \text{ otherwise},$$

$$q_{i}(c_{i}, b_{i}) = p_{i}(c_{i}) = a_{i} \text{ if } p_{i}(b_{i}) = a_{i-1},$$

$$q_{i}(c_{i}, b_{i}) = p_{i}(b_{i}) = a_{i} \text{ otherwise},$$

$$q_{i+1}(b_{i+1}, c_{i+1}) = p_{i+1}(b_{i+1}) = a_{i} \text{ if } p_{i+1}(b_{i+1}) = a_{i},$$

$$q_{i+1}(b_{i+1}, c_{i+1}) = p_{i+1}(c_{i+1}) = a_{i} \text{ otherwise},$$

$$q_{n}(c_{n}, b_{n}) = p_{n}(c_{n}) = a_{n} = b \text{ if } p_{n}(b_{n}) = a_{n-1} \text{ and}$$

$$q_{n}(c_{n}, b_{n}) = p_{n}(b_{n}) = a_{n} = b \text{ otherwise}.$$

(iii)
$$\Rightarrow$$
 (i):
 $a = q_1(b_1, c_1) \Theta(M) q_1(c_1, b_1) = q_2(b_2, c_2) \Theta(M) \dots \Theta(M) q_n(c_n, b_n) = b.$

Theorem 3. For a variety \mathcal{V} and a unary term t of \mathcal{V} the following conditions are equivalent:

- (i) \mathcal{V} is restricted regular with respect to t.
- (ii) There exists a positive integer n, ternary terms t_1, \ldots, t_n and 5-ary terms s_1, \ldots, s_n satisfying the following conditions:
 - t(x) = t(y) implies $t_1(x, y, z) = \cdots = t_n(x, y, z) = z$, $s_1(t_1(x, y, z), z, x, y, z) = t(x)$,

 $s_i(z, t_i(x, y, z), x, y, z) = s_{i+1}(t_{i+1}(x, y, z), z, x, y, z)$ for i = 1, ..., n-1and $s_n(z, t_n(x, y, z), x, y, z) = t(y)$.

(iii) There exists a positive integer n and ternary terms t_1, \ldots, t_n such that $t_1(x, y, z) = \cdots = t_n(x, y, z) = z$ is equivalent to t(x) = t(y).

Proof. (i) \Rightarrow (ii):

Consider the free algebra $F_{\mathcal{V}}(x, y, z)$ of \mathcal{V} generated by the free generators x, y, z. Then

$$[z]\Theta(t(x), t(y)) = [z]\Theta(\{z\} \times [z]\Theta(t(x), t(y)))$$

implies, according to (i),

$$(t(x),t(y)) \in \Theta(t(x),t(y)) | t(F_{\mathcal{V}}(x,y,z)) = \Theta(\{z\} \times [z]\Theta(t(x),t(y))) | t(F_{\mathcal{V}}(x,y,z)).$$

In virtue of Theorem 2, there exists a positive integer $n, t_1, \ldots, t_n \in [z]\Theta(t(x), t(y))$ and binary polynomial functions q_1, \ldots, q_n over $F_{\mathcal{V}}(x, y, z)$ with $q_1(z, t_1) = t(x)$, $q_i(t_i, z) = q_{i+1}(z, t_{i+1})$ for $i = 1, \ldots, n-1$ and $q_n(t_n, z) = t(y)$.

Now there exist 5-ary terms s_1, \ldots, s_n with $s_i(u, v, x, y, z) = q_i(v, u)$ for $i = 1, \ldots, n$ and the elements t_1, \ldots, t_n of $[z]\Theta(t(x), t(y))$ can be considered as ternary terms $t_1(x, y, z), \ldots, t_n(x, y, z)$. These terms satisfy the identities of (ii). Since $t_1, \ldots, t_n \in [z]\Theta(t(x), t(y))$ one obtains $t_1(x, y, z) = \cdots = t_n(x, y, z) = z$ provided t(x) = t(y).

(ii) \Rightarrow (iii): $t_1(x, y, z) = \dots = t_n(x, y, z) = z$ implies $t(x) = s_1(z, z, x, y, z) = \dots = s_n(z, z, x, y, z) = t(y).$ (iii) \Rightarrow (i): If $\mathcal{A} = (A, F) \in \mathcal{V}$, $a, b, c \in A$, $\Theta \in \text{Con}\mathcal{A}$, $[a]\Theta = \{a\}$ and $(t(b), t(c)) \in \Theta$ then $t_i(b, c, a) \in [t_i(b, c, a)]\Theta = t_i([b]\Theta, [c]\Theta, [a]\Theta) = [a]\Theta = \{a\}$

for all i = 1, ..., n according to (iii) whence t(b) = t(c) again by (iii) which shows $\Theta|t(A) = \omega_{t(A)}$. In virtue of Theorem 1, \mathcal{V} is restricted regular with respect to t.

Example 1. The variety \mathcal{V} of pseudocomplemented lattices $(L, \lor, \land, *)$ is restricted regular with respect to * but not regular (cf. [1]). This can be seen as follows: The terms

$$\begin{split} t_1(x, y, z) &:= (x^* \wedge y)^* \wedge z, \\ t_2(x, y, z) &:= (x^* \wedge y) \vee z, \\ t_3(x, y, z) &:= (x \wedge y^*)^* \wedge z \text{ and } \\ t_4(x, y, z) &:= (x \wedge y^*) \vee z \end{split}$$

satisfy condition (iii) of Theorem 3: If $t_1(x, y, z) = \cdots = t_4(x, y, z) = z$ then

$$x^* \wedge y \leq z \leq (x^* \wedge y)^*$$
 and $x \wedge y^* \leq z \leq (x \wedge y^*)^*$

which implies

$$x^* \wedge y \leq (x^* \wedge y) \wedge (x^* \wedge y)^* = 0$$
 and $x \wedge y^* \leq (x \wedge y^*) \wedge (x \wedge y^*)^* = 0$.

From this it follows $x^* \leq y^*$ and $y^* \leq x^*$ and therefore $x^* = y^*$. If, conversely, $x^* = y^*$ then

$$t_1(x, y, z) = (y^* \land y)^* \land z = z, t_2(x, y, z) = (y^* \land y) \lor z = z, t_3(x, y, z) = (x \land x^*)^* \land z = z \text{ and} t_4(x, y, z) = (x \land x^*) \lor z = z.$$

That \mathcal{V} is not regular can be seen from the following example: The equivalence relation on N_5

having the classes $\{0\}$, $\{a, a^{**}\}$, $\{a^*\}$ and $\{1\}$ is a congruence on the pseudocomplemented lattice \mathcal{N}_5 which has three classes in common with ω_{N_5} , but is different from ω_{N_5} .

Definition 3. An algebra with 0 is an algebra with a distinguished element 0 of its base set. A variety with 0 is a variety with a constant unary term 0.

Definition 4. Let $\mathcal{A} = (A, F)$ be an algebra with 0 and $M \subseteq A$. \mathcal{A} is called **restricted weakly regular with respect to** M if for all $\Theta, \Phi \in \text{Con}\mathcal{A}, [0]\Theta = [0]\Phi$ implies $\Theta|M = \Phi|M$.

Remark 3. The case M = A yields the concept of a weakly regular algebra with 0 (see [3]). Every algebra with 0 is restricted weakly regular with respect to every at most one-element subset of its base set.

Lemma 2. If $\mathcal{A} = (A, F)$ is an algebra with 0, $M \subseteq A$, \mathcal{A} is restricted weakly regular with respect to M and Θ is a congruence on \mathcal{A} with $[0]\Theta = \{0\}$ then $\Theta|M = \omega_M$.

Proof. $[0]\Theta = \{0\} = [0]\omega_A$ implies $\Theta|M = \omega_A|M = \omega_M$.

Definition 5. Let \mathcal{V} be a variety with 0 and t a unary term of \mathcal{V} . \mathcal{V} is called **restricted weakly regular with respect to** t if every member (A, F) of \mathcal{V} is restricted weakly regular with respect to t(A).

Remark 4. The case t(x) = x yields the concept of a weakly regular variety with 0 (see [3]). Every variety \mathcal{V} with 0 is restricted weakly regular with respect to every constant unary term of \mathcal{V} .

Theorem 4. A variety \mathcal{V} with 0 and with unary term t is restricted weakly regular with respect to t if and only if for each member $\mathcal{A} = (A, F)$ of \mathcal{V} and each $\Theta \in \text{Con}\mathcal{A}$ with $[0]\Theta = \{0\}$ it holds $\Theta|t(A) = \omega_{t(A)}$. *Proof.* If \mathcal{V} satisfies the condition of the theorem, $\mathcal{A} = (A, F) \in \mathcal{V}$; $\Theta, \Phi \in \text{Con}\mathcal{A}$ and $[0]\Theta = [0]\Phi$ then

$$|[[0](\Theta \cap \Phi)](\Theta/(\Theta \cap \Phi))| = |[[0](\Theta \cap \Phi)](\Phi/(\Theta \cap \Phi))| = 1$$

and hence

$$(\Theta/(\Theta \cap \Phi))|t(A/(\Theta \cap \Phi)) = (\Phi/(\Theta \cap \Phi))|t(A/(\Theta \cap \Phi))$$

which implies $\Theta|t(A) = \Phi|t(A)$. The rest of the proof follows from Lemma 2. \Box

Theorem 5. For a variety \mathcal{V} with 0 and a unary term t of \mathcal{V} the following conditions are equivalent:

- (i) \mathcal{V} is restricted weakly regular with respect to t.
- (ii) There exists a positive integer n, binary terms d_1, \ldots, d_n and 4-ary terms s_1, \ldots, s_n satisfying the following conditions: t(x) = t(y) implies $d_1(x, y) = \cdots = d_n(x, y) = 0$, $s_1(d_1(x, y), 0, x, y) = t(x)$, $s_i(0, d_i(x, y), x, y) = s_{i+1}(d_{i+1}(x, y), 0, x, y)$ for $i = 1, \ldots, n-1$ and $s_n(0, d_n(x, y), x, y) = t(y)$.
- (iii) There exists a positive integer n and binary terms d_1, \ldots, d_n such that $d_1(x, y) = \cdots = d_n(x, y) = 0$ is equivalent to t(x) = t(y).

Proof. (i) \Rightarrow (ii):

Consider the free algebra $F_{\mathcal{V}}(x, y)$ of \mathcal{V} generated by the free generators x, y. Then $[0]\Theta(t(x), t(y)) = [0]\Theta(\{0\} \times [0]\Theta(t(x), t(y)))$

implies, according to (i),

$$(t(x), t(y)) \in \Theta(t(x), t(y)) | t(F_{\mathcal{V}}(x, y)) = \Theta(\{0\} \times [0] \Theta(t(x), t(y))) | t(F_{\mathcal{V}}(x, y)).$$

In virtue of Theorem 2, there exists an integer $n \ge 1, d_1, \ldots, d_n \in [0]\Theta(t(x), t(y))$ and binary polynomial functions q_1, \ldots, q_n over $F_{\mathcal{V}}(x, y)$ with

$$q_1(0, d_1) = t(x),$$

 $q_i(d_i, 0) = q_{i+1}(0, d_{i+1})$ for $i = 1, ..., n-1$ and $q_n(d_n, 0) = t(y).$

Now there exist 4-ary terms s_1, \ldots, s_n with $s_i(u, v, x, y) = q_i(v, u)$ for $i = 1, \ldots, n$ and the elements d_1, \ldots, d_n of $[0]\Theta(t(x), t(y))$ can be considered as binary terms $d_1(x, y), \ldots, d_n(x, y)$. These terms satisfy the identities of (ii). Since $d_1, \ldots, d_n \in$ $[0]\Theta(t(x), t(y))$ one obtains $d_1(x, y) = \cdots = d_n(x, y) = 0$ provided t(x) = t(y). (ii) \Rightarrow (iii): $d_1(x, y) = \cdots = d_n(x, y) = 0$ implies $t(x) = s_1(0, 0, x, y) = \cdots = s_n(0, 0, x, y) =$ t(y). (iii) \Rightarrow (i):

If
$$\mathcal{A} = (A, F) \in \mathcal{V}$$
, $a, b \in A$, $\Theta \in \text{Con}\mathcal{A}$, $[0]\Theta = \{0\}$ and $(t(a), t(b)) \in \Theta$ then
 $d_i(a, b) \in [d_i(a, b)]\Theta = d_i([a]\Theta, [b]\Theta) = [0]\Theta = \{0\}$

for all i = 1, ..., n according to (iii) whence t(a) = t(b) again by (iii) which shows $\Theta|t(A) = \omega_{t(A)}$. In virtue of Theorem 4, \mathcal{V} is restricted weakly regular with respect to t.

I. CHAJDA AND H. LÄNGER

Example 2. The variety \mathcal{V} of pseudocomplemented semilattices $(S, \wedge, ^*)$ is restricted weakly regular with respect to * but not weakly regular (cf. [1]). This can be seen as follows: The terms $d_1(x, y) := x^* \wedge y$ and $d_2(x, y) := x \wedge y^*$ satisfy condition (iii) of Theorem 5: If $d_1(x, y) = d_2(x, y) = 0$ then $x^* \leq y^*$ and $y^* \leq x^*$ which yields $x^* = y^*$. If, conversely, $x^* = y^*$ then $d_1(x, y) = y^* \wedge y = 0$ and $d_2(x, y) = x \wedge x^* = 0$. That \mathcal{V} is not weakly regular can be seen from the example mentioned in Example 1.

Remark 5. The results obtained in this paper are natural generalizations of the corresponding results on (weak) regularity (see [2], [3], [5] and [7]).

References

- Chajda I. and Eigenthaler G., A remark on congruence kernels in complemented lattices and pseudocomplemented semilattices, Contr. General Algebra 11 (1999), 55 – 58.
- Csákány B., Characterizations of regular varieties, Acta Sci. Math. (Szeged) 31 (1970), 187
 – 189.
- Fichtner K., Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsber. DAW 12 (1970), 21 – 25.
- 4. Grätzer G., Universal algebra, Van Nostrand, Princeton, New Jersey 1968.
- Grätzer G., Two Mal'cev-type theorems in universal algebra, J. Comb. Th. 8 (1970), 334 342.
- McKenzie R. N., McNulty G. F. and Taylor W. F., Algebras, lattices, varieties I, Wadsworth, Monterey, California 1987.
- 7. Wille R., Kongruenzklassengeometrien, Springer Lect. Notes Math. 113, Berlin 1970.

I. Chajda, Palacký University Olomouc, Department of Algebra and Geometry, Tomkova 40, CZ – 77900 Olomouc, *e-mail*: chajd@risc.upol.cz

H. Länger, Technische Universität Wien, Institut für Algebra und Computermathematik, Wiedner Hauptstraße 8 – 10, A – 1040 Wien, *e-mail*: h.laenger@tuwien.ac.at

8