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MAXIMAL OPERATORS, LEBESGUE POINTS AND
QUASICONTINUITY IN STRONGLY NONLINEAR POTENTIAL

THEORY

N. AÏSSAOUI

Abstract. Many maximal functions defined on some Orlicz spaces LA are bounded

operators on LA if and only if they satisfy a capacitary weak inequality. We show
also that (m,A)−quasievery x is a Lebesgue point for f in LA sense and we give
an (m,A)− quasicontinuous representative for f when LA is reflexive.

1. Introduction

The first part of this paper describes the connection between some maximal oper-
ators defined in Orlicz spaces, and capacities in this spaces. Theorem 1 states that
maximal operators of strong type (A,A), satisfy a capacitary weak type inequality.
The converse is the main of Theorem 2. More precisely, for N-functions satisfying
the ∆2 condition, maximal operators verifying a capacitary weak type inequality
are of weak type (A,A). If in addition the conjugate N-function A∗ satisfies also
the ∆2 condition, then these operators are of strong type (A,A). Theorem 3 deals
with a limiting case which connects the capacity of compact set and its Lebesgue
measure.

All results in this part generalize those given in [1] for the case of Lebesgue
classes.

The second part is devoted to establish some results about Lebesgue points and
quasicontinuity for Orlicz spaces.

By a theorem of Lebesgue, almost every point is a Lebesgue point. And if
f ∈ Lp for some p, 1 ≤ p < ∞, then almost every x is a Lebesgue point in the
sense that

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|p dy = 0.

This result is generalized in [4] to Orlicz spaces LA for A satisfying the ∆2

condition. We give a new proof of this result and we improve it in the first part
of Theorem 4.
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36 N. AÏSSAOUI

On the other hand, Lars Hedberg proved the following result (see [2, Chapter
6, Th 6.2.1] or [14, Chapter 3, Th 3.10.2]): Let 1 < p < ∞ and m > 0 be such
that mp ≤ N . If f = Gm ∗ g, g ∈ Lp, then for every ε > 0 there is an open set U
with Bessel capacity less than ε, and such that

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|p dy = 0

uniformly on U c.
We generalize this result in the second part of Theorem 4 to reflexive Orlicz

spaces. The proof depends on a density argument (which needs that A verifies
the ∆2 condition) and on a weak type estimate involving the maximal Hardy-
Littlewood function (which needs that A∗ verifies the ∆2 condition).

2. Preliminaries

2.1. Orlicz spaces

Let A : R→ R+ be an N-function, i.e. A is continuous, convex, with A(t) > 0 for
t > 0, lim

t→0

A(t)
t = 0, lim A(t)

t
t→∞

= +∞ and A is even.

Equivalently, A admits the representation: A(t) =
|t|∫
0

a(x)dx, where a : R+ →

R+ is non-decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and
lim

t→+∞
a(t) = +∞.

The N-function A∗ conjugate to A is defined by A∗(t) =
|t|∫
0

a∗(x)dx, where a∗

is given by a∗(s) = sup{t : a(t) ≤ s}.
Let A be an N-function and let Ω be an open set in RN . We note LA(Ω) the

set, called an Orlicz class, of measurable functions f , on Ω, such that

ρ(f,A,Ω) =
∫

Ω

A(f(x))dx <∞.

Let A and A∗ be two conjugate N-functions and let f be a measurable function
defined almost everywhere in Ω. The Orlicz norm of f , ||f ||A,Ω or ||f ||A if there
is no confusion, is defined by

||f ||A = sup
{∫

Ω

|f(x)g(x)| dx : g ∈ LA∗(Ω) and ρ(g,A∗,Ω) ≤ 1
}
.

The set LA(Ω) of measurable functions f , such that ||f ||A < ∞ is called an
Orlicz space. When Ω = RN , we set LA in place of LA(RN ).

The Luxemburg norm |||f |||A,Ω or |||f |||A if there is no confusion, is defined in
LA(Ω) by

|||f |||A = inf
{
r > 0 :

∫
Ω

A

(
f(x)
r

)
dx ≤ 1

}
.
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Let A be an N-function. We say that A verifies the ∆2 condition if there exists
a constant C > 0 such that A(2t) ≤ CA(t) for all t ≥ 0.

We denote by C(A) the smallest constant C such that A(2t) ≤ CA(t) for all
t ≥ 0.

We recall the following results. Let A be an N-function and a its derivative.
Then

1. A verifies the ∆2 condition if and only if one of the following holds:
i) ∀r > 1,∃k = k(r) : (∀t ≥ 0, A(rt) ≤ kA(t)) ,
ii) ∃α > 1 : (∀t ≥ 0, ta(t) ≤ αA(t) ) ,
iii) ∃β > 1 : (∀t ≥ 0, ta∗(t) ≥ βA∗(t) ) ,

iv) ∃d > 0 :
(
∀t ≥ 0,

(
A∗(t)
t

)′
≥ da

∗(t)
t

)
.

Moreover, α in ii) and β in iii) can be chosen such that α−1 + β−1 = 1.
We note α(A) the smallest α such that ii) holds. By a simple computation
we have C(A) ≤ 2α. See [5].

2. If A verifies the ∆2 condition, then
i) ∀t ≥ 1, A(t) ≤ A(1)tα and ∀t ≤ 1, A(t) ≥ A(1)tα ,
ii) ∀t ≥ 1, A∗(t) ≥ A∗(1)tβ and ∀t ≤ 1, A∗(t) ≤ A∗(1)tβ .

See for instance [7, 9, 11]. For more details on the theory of Orlicz spaces, see [3,
9, 11].

2.2. Capacity and Bessel kernels

We define a capacity as a positive set function C given on a σ-additive class of
sets Γ, which contains compact sets and has the properties:

(i) C(∅) = 0.
(ii) If X and Y are in Γ and X ⊂ Y , then C(X) ≤ C(Y ).
(iii) If Xi, i = 1, 2, ... are in Γ, then C(

⋃
i≥1

Xi) ≤
∑
i≥1

C(Xi).

Let k be a positive and integrable function in RN and let A be an N-function.
For X ⊂ RN , we define

Ck,A(X) = inf{A(|||f |||A) : f ∈ L+
A and k ∗ f ≥ 1 on X}

C ′k,A(X) = inf{|||f |||A : f ∈ L+
A and k ∗ f ≥ 1 on X}

where k ∗ f is the usual convolution. The sign + deals with positive elements in
the considered space. From [6] C ′k,A is a capacity.

If a statement holds except on a set X where Ck,A(X) = 0, then we say that the
statement holds Ck,A − quasieverywhere (abbreviated Ck,A − q.e or (k,A) − q.e
if there is no confusion).

For m > 0, the Bessel kernel, Gm, is most easily defined through its Fourier
transform F(Gm) as:

[F(Gm)] (x) = (2π)−
N
2

(
1 + |x|2

)−m2
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where [F(f)] (x) = (2π)−
N
2
∫
f(y)e−ixydy for f ∈ L1. Gm is positive, in L1 and

verifies the equality: Gr+s = Gr ∗ Gs.
In the sequel, we put Bm,A = CGm,A and B′m,A = C ′Gm,A. We write (m,A)−q.e.

in place of Bm,A− q.e. We denote Im(x) = |x|m−N the Riesz kernel. We have (see
for instance [2])

(2.1) Gm(x) ∼ Im(x),when |x| → 0, with 0 < m < N,

On the other hand, for every c < 1,

(2.2) Gm(x) = O(e−c|x|),when |x| → ∞, with 0 < m.

Another inequality which serves in this paper is

(2.3) Gm(x) ≤ CGm(x+ y), |x| ≥ 2, |y| ≤ 1 .

3. Maximal operators and capacity.

For i, j ∈ N, let θi,j be a complex valued function defined on RN and such that
θi,j ∈ LB for all N-functions B.

Let the sequence (θj)j be such that

1. θi,j ∗ f → θj ∗ f in LB for all f ∈ LB
2. θj ∗ fn → θj ∗ f in LB if fn → f in LB .

Define the maximal operator M

(3.1) M(f) = sup
j
|θj ∗ f |

and assume that M(f) is Lebesgue measurable on RN .
An operator H : LA → LA is of weak type (A,A) if

∀f ∈ LA,∀t > 0, m ({x : |H(f)(x)| > t}) ≤ 1

A
(

Ct
|||f |||A

)
where C is a constant dependent only on A, and m is the Lebesgue measure on RN .
H is of strong type (A,A) if

∀f ∈ LA, |||H(f)|||A ≤ C|||f |||A

where C is a constant dependent only on A. For more details, see [13].

Theorem 1. Let A be an N-function and M the maximal operator defined by
(3.1). Suppose M is of strong type (A,A). Then

∀f ∈ LA,∀t > 0, Ck,A ({x :M(k ∗ f)(x) > t}) ≤ A
(
CA
|||f |||A
t

)
.

CA is the constant in the strong type.
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Proof. It is easy to see that if θj ∈ LB for all B, then

θj ∗ (k ∗ f) = k ∗ (θj ∗ f).

In general case, if θi,j ∗ f → θj ∗ f in LA, then by [6, Théorème 4], there is a
subsequence (θ′i,j)i such that

θ′i,j ∗ (k ∗ f) = k ∗ (θ′i,j ∗ f)→ k ∗ (θj ∗ f) Ck,A − q.e.

Since k ∗ f ∈ LA, we get

k ∗ (θ′i,j ∗ f) = θ′i,j ∗ (k ∗ f)→ θj ∗ (k ∗ f) in LA .

Hence
θj ∗ (k ∗ f) = k ∗ (θj ∗ f) Ck,A − q.e.

There exists Xj such that Ck,A(Xj) = 0 and for all x /∈ Xj ,

θj ∗ (k ∗ f)(x) = k ∗ (θj ∗ f)(x) .

We get for x /∈ Xj ,

|θj ∗ (k ∗ f)(x)| = |k ∗ (θj ∗ f)(x)| ≤ k ∗ |θj ∗ f | (x).

Put X =
⋃
j

Xj . Then Ck,A(X) = 0 and

M(k ∗ f)(x) ≤ k ∗M(f)(x) Ck,A − q.e.

It follows that for all t > 0,

Ck,A ({x :M(k ∗ f)(x) > t}) ≤ Ck,A {x : k ∗M(f)(x) > t} .

From [6, Théorème 3], we deduce for all t > 0,

Ck,A ({x :M(k ∗ f)(x) > t}) ≤ A
(
CA
|||f |||A
t

)
.

This completes the proof. �

Remark 1. If we suppose in addition that A verifies the ∆2 condition, then
there exists a constant C ′ dependent only on A, such that for all t > 0,

Ck,A ({x :M(k ∗ f)(x) > t}) ≤ C ′A
(
|||f |||A
t

)
.

Lemma 1. Let f ∈ LA. Then there exists λ > 0 such that∫
A

(
Gm ∗ f − f

λ

)
dx→ 0 as m→ 0.

Proof. We have Gm ∗ f → f a.e. as m → 0. On the other hand, there is a

constant γ > 0 such that
f

γ
∈ LA. Let λ = 2γ. Then

A

(
Gm ∗ f − f

λ

)
≤ 2−1A

(
2Gm ∗ f

λ

)
+ 2−1A

(
2f
λ

)
.
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Jensen’s inequality gives

A

(
2Gm ∗ f

λ

)
≤ A

(
2f
λ

)
∗ Gm.

The desired result follows by Vitali’s Theorem. �

Theorem 2. Let A be an N-function satisfying the ∆2 condition, and let M
be the maximal operator defined by (3.1). Choose k = Gm with m > 0. Let C be a
constant dependent only on A and such that for all t > 0 and all f ∈ LA,

Ck,A ({x :M(Gm ∗ f)(x) > t}) ≤ CA
(
|||f |||A
t

)
.

Then M is of weak type (A,A).

Proof. Let X be a set and f ∈ L+
A such that Gm ∗ f ≥ 1 on X. Then

m(X) ≤
∫
X

(Gm ∗ f)dx ≤ |||Gm ∗ f |||A ‖χX‖A∗

where χX is the characteristic function of X.
The identity ‖χX‖A∗ = m(X)A−1

(
1

m(X)

)
gives

1

A−1
(

1
m(X)

) ≤ C ′Gm,A(X).

This implies

m ({x :M(Gm ∗ f)(x) > t}) ≤ 1

A
(

Ct
|||f |||A

) .
Note that if s = inf(m, b), then

Gm ∗ f − Gb ∗ f = Gs ∗ (Gm−s ∗ f − Gb−s ∗ f).

This implies

m ({x :M(Gm ∗ f − Gb ∗ f)(x) > t}) ≤ 1

A
(

Ct
|||Gm−s∗f−Gb−s∗f |||A

) .
By the previous Lemma, Gm ∗ f → f in LA as m → 0, since A verifies the

∆2 condition. By the sublinearity of M, (M(Gm ∗ f))m is Cauchy in measure as
m→ 0. Thus (M(Gm ∗ f))m converges in measure to a function h, as m→ 0. This
implies

m ({x : |h(x)| > t}) ≤ 1

A
(

Ct
2|||f |||A

) .
There exists a subsequence (M(Gm′ ∗ f))m′ of the sequence (M(Gm ∗ f))m such

that M(Gm′ ∗ f)→ h a.e. And there exists a subsequence (M(Gm” ∗ f))m” of the
sequence (M(Gm′ ∗ f))m′ such that

θj ∗ (Gm” ∗ f)→ θj ∗ f a.e.
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Hence there exists Xj such that m(Xj) = 0 and θj ∗f(x) ≤ h(x) for x /∈ Xj . Thus
M(f)(x) ≤ h(x) a.e. This gives

m ({x : |M(f)(x)| > t}) ≤ 1

A
(

Ct
2|||f |||A

) .
Then M is of weak type (A,A). �

Corollary 1. If in addition to hypothesis of Theorem 2 we suppose that A∗

verifies the ∆2 condition, then M is of strong type (A,A).

Proof. From Theorem 2, M is of weak type (A,A) for all A satisfying the ∆2

condition. M is then of weak type (p, p) for all 1 < p < ∞. The Marcinkiewicz
interpolation Theorem shows that M is of strong type (p, p) for all 1 < p < ∞.
By [7] and [13] M is of strong type (A,A). �

Theorem 3. Let (ki)i be a sequence of positive integrable functions on RN such
that

1.
∫
ki(x)dx→ 1, as i→∞

2.
∫
{|x|≥δ} ki(x)dx→ 0, as i→∞.

Then for any compact K in RN , lim
i→∞

Cki,A(K) = A

 1

A−1
(

1
m(K)

)
 .

Proof. Let f ∈ L+
A such that ki ∗ f ≥ 1 on K. Then

m(K) ≤
∫
K

(ki ∗ f)dx ≤ |||ki ∗ f |||A ‖χK‖A∗

where χK is the characteristic function of K.
But ‖χK‖A∗ = m(K)A−1

(
1

m(K)

)
, and by [10] (see also [7] for a simple proof)

|||ki ∗ f |||A ≤ ‖ki‖1 |||f |||A .

Hence
1

A−1
(

1
m(K)

) ≤ ‖ki‖1 |||f |||A .
This implies

1

A−1
(

1
m(K)

) ≤ ‖ki‖1 C ′ki,A(K) .

Thus
1

A−1
(

1
m(K)

) ≤ lim inf
i→∞

C ′ki,A(K).

On the other hand, let O be a bounded open set such that K ⊂ O and let ε be
such that 0 < ε < 1. Then there is i0 such that for i ≥ i0, we have ki ∗ χO ≥ 1− ε
on K.
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Since χO ∈ LA, we deduce that C ′ki,A(K) ≤ |||χO|||A
1− ε

. From the identity

|||χO|||A =
1

A−1
(

1
m(O)

) , we have

lim sup
i→∞

C ′ki,A(K) ≤ (1− ε)−1 1

A−1
(

1
m(O)

) .
This implies lim sup

i→∞
C ′ki,A(K) ≤ 1

A−1
(

1
m(K)

) . Thus

lim
i→∞

C ′ki,A(K) =
1

A−1
(

1
m(K)

) .
The proof is complete. �

4. Lebesgue point and quasicontinuity

Recall that if f ∈ L1
loc, a point x ∈ RN is called a Lebesgue point for f if

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy = 0.

Here |B(x, r)| is the Lebesgue measure of B(x, r) on RN .
By a theorem of Lebesgue, almost every point is a Lebesgue point. On the

other hand, if f ∈ Lp for some p, 1 ≤ p < ∞, then almost every x is a Lebesgue
point in the sense that

lim
r→0

1
|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|p dy = 0.

See [12, Section I.5.7].
This result is generalized in [4] to Orlicz spaces LA for A satisfying the ∆2

condition. More precisely

Lemma 2. [4] Let A be an N-function verifying the ∆2 condition and α = α(A).
Then

lim
r→0

r
−N
α |||fx|||A,B(x,r) = 0 a.e. on RN .

Here fx is defined by fx(y) = f(y)− f(x).

We shall give a new proof of this result.

Lemma 3. Let A be an N-function verifying the ∆2 condition and α = α(A).
Then, for all t ≥ 0 and all 0 < s ≤ 1,

A(s
−1
α t) ≤ C(A)s−1A(t).
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Proof. If s = 1, the result is obvious.
Let s < 1, and q be the smallest positive integer such that s

−1
α ≤ 2q. Then

q ≥ Log(s
−1
α )

Log2
and q − 1 ≤ Log(s

−1
α )

Log2
= K(s, α).

Since 2α ≥ C(A), we get

C(A)q ≤ C(A).C(A)K(s,α) ≤ C(A).e(αLog2).K(s,α) = C(A)s−1,

and
A(s

−1
α t) ≤ A(2qt) ≤ C(A)qA(t) ≤ C(A)s−1A(t).

The proof is finished. �

Now we give a new proof of Lemma 2.
New Proof of Lemma 2. Since the function A ◦ fx is locally integrable, by [13,

Section I.5.7] we have

lim
r→0

r−N
∫
B(x,r)

(A ◦ fx)(y)dy = 0 a.e. on RN .

Lemma 3 implies∫
B(x,r)

A(r
−N
α fx)(y)dy ≤ C(A)r−N

∫
B(x,r)

(A ◦ fx)(y)dy.

Hence

lim
r→0

∫
B(x,r)

A(r
−N
α fx)(y)dy = 0 a.e. on RN .

The result follows since A verifies the ∆2 condition.

Lemma 4. Let A be an N-function satisfying the ∆2 condition. Then there is
a constant C such that ∀u ≥ 1, u

1
α ≤ CA−1(u).

Proof. Let u ≥ 1. Then
A(u

1
α ) ≤ A(1)u.

This implies
u

1
α ≤ A−1 [A(1)u] ≤ A−1(βu),

where β = sup(1, A(1)).
From the inequality βA(t) ≤ A(βt), valid for all t, we get

A−1 [βA(t)] ≤ βt.

Hence
A−1(βu) ≤ βA−1(u).

So
u

1
α ≤ βA−1(u).

The proof is finished. �
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Recall that the Hardy-Littlewood maximal function of a locally integrable func-
tion f is

M(f)(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy.

Lemma 5. Let A be an N-function such that A∗ satisfies the ∆2 condition. Let
m be a positive number and f = Gm ∗ g, g ∈ L+

A. Let Es = {x : M (f)(x) > s}.
Then there exists a constant C independent of f such that

B′m,A(Es) ≤
C

s
|||g|||A.

Proof. Let χ be the normalized characteristic function of the unit ball, and for
r > 0, define χr by χr(x) = rNχ(xr ). Then

χr ∗ f(x) = χr ∗ Gm ∗ g(x) ≤ Gm ∗Mg(x).

Thus
M(f)(x) = sup

r>0
χr ∗ f(x) ≤ Gm ∗Mg(x).

This implies
{x : M(f)(x) > s} ⊂ {x : Gm ∗Mg(x) > s}.

We get by the definition of B′m,A, B′m,A(Es) ≤
1
s
|||Mg|||A.

Since A∗ satisfies the ∆2 condition, there is a constant C such that |||Mg|||A ≤
C|||g|||A. (See for instance [8]). The Lemma follows. �

Remark 2. We can also derive quickly the Lemma from Theorem 1. In fact, we
are in the conditions of this theorem because M is of strong type since A∗ satisfies
the ∆2 condition.

Lemma 6. Let A be an N-function such that A and A∗ satisfy the ∆2 condition.
Let m be a positive number such that 0 < αm ≤ N , and f = Gm ∗ g, g ∈ L+

A.

Let Es =
{
x : sup

r>0
|B(x, r)|

−1
α |||f |||A,B(x,r) > s

}
. Then there exists a constant C

independent of f such that

B′m,A(Es) ≤
C

s
|||g|||A

for all s ≥ |||g|||A.

Proof. Let s ≥ |||g|||A and x0 ∈ Es. Then there exists r such that

|B(x0, r)|
−1
α |||f |||A,B(x0,r) > s.

Now the inequality
|||f |||A ≤ ||Gm||1|||g|||A

implies ||| fs |||A ≤ 1, since ||Gm||1 = 1. Hence

|B(x0, r)| < 1.
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We set g = g1 + g2, where g1(x) = 0 for |x− x0| > 2r, and g1(x) = g(x) for
|x− x0| ≤ 2r. Then

s < |B(x0, r)|
−1
α
[
|||g1 ∗ Gm|||A,B(x0,r) + |||g2 ∗ Gm|||A,B(x0,r)

]
.

So that either

(4.1) s < 2 |B(x0, r)|
−1
α |||g1 ∗ Gm|||A,B(x0,r)

or

(4.2) s < 2 |B(x0, r)|
−1
α |||g2 ∗ Gm|||A,B(x0,r).

On the other hand, by [2, Lemma 3.1.1], for any x ∈ B(x0, r),

g1 ∗ Gm(x)
s

≤ 1
s

∫
B(x,3r)

Gm(x− y)g1(y)dy ≤ KM
(
g1(x)
s

)
rm.

If the inequality (4.1) holds, we get

r
N
α <

K

s
|||g1 ∗ Gm|||A,B(x0,r) ≤

K ′′

s
rm|||Mg1|||A,B(x0,r) ≤

K ′′′

s
rm|||g1|||A,B(x0,2r).

So

(4.3) r
N
α −m <

K ′′′

s
|||g|||A,B(x0,2r).

Remark that when N = mα, then (4.3) cannot occur if s ≥ K ′′′|||g|||A since always

|||g|||A,B(x0,r) ≤ |||g|||A.

If the inequality (4.2) holds, then we claim that

(4.4) Cg ∗ Gm(x) > s.

In fact, if x1, x2 ∈ B(x, r) and y outside of B(x0, 2r), then

|x2 − y|
3

≤ |x1 − y| ≤ 3 |x2 − y| ,

and
|x2 − y| − 2r ≤ |x1 − y| ≤ |x2 − y|+ 2r.

By the estimates (2.1) and (2.3) for Bessel kernels, we have

Gm(x1 − y) ≤ CGm(x2 − y).

So for any x1 ∈ B(x, r)

g2 ∗ Gm(x1) ≤ C inf
x∈B(x0,r)

g2 ∗ Gm(x) ≤ C inf
x∈B(x0,r)

g ∗ Gm(x).

Hence
s < 2C |B(x0, r)|

−1
α inf
x∈B(x0,r)

g ∗ Gm(x)|||1|||A,B(x0,r).

But

|||1|||A,B(x0,r) =
1

A−1
(
|B(x0, r)|−1

) .
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So

s < 2C
|B(x0, r)|

−1
α

A−1
(
|B(x0, r)|−1

) inf
x∈B(x0,r)

g ∗ Gm(x).

By Lemma 4 we have
s < K1 inf

x∈B(x0,r)
g ∗ Gm(x).

This implies the claim. Let U be the set of all x ∈ Es and satisfying (4.3). Then
by (4.4),

Cg ∗ Gm(x) > s on Es \ U.
So

B′m,A(Es \ U) ≤ C

s
|||g|||A.

By the simple covering Vitali lemma, see [2, Theorem 1.4.1], there are disjoint
balls {B(xi, 2ri)}∞1 such that

r
N
α −m
i <

K

s
|||g|||A,B(xi,2ri),

and

U ⊂
∞⋃
1

B(xi, 10ri).

We may take 10ri < 1, for all i. We have, by the subadditivity of B′m,A (see [6])

B′m,A(U) ≤
∞∑
1

B′m,A (B(xi, 10ri)) .

By [5, Lemma 2] we get

B′m,A (B(xi, 10ri)) ≤ Cr−mi 2−qi .

Here qi is the greatest positive integer such that qi ≤
Log(r−Ni )
Log(C(A))

.

A simple computation shows that 2−qi ≤ 2r
N
α
i . This implies

B′m,A(U) ≤ C
∞∑
1

r
N
α −m
i ≤

∞∑
1

K ′

s
|||g|||A,B(xi,2ri).

From the definition of the Orlicz norm we get easily
∞∑
1

||g||A,B(xi,2ri) ≤ ||g||A.

The equivalence
|||g|||A,Ω ≤ ||g||A,Ω ≤ 2|||g|||A,Ω,

valid for all Ω, implies

B′m,A(U) ≤ K

s
|||g|||A.

Since B′m,A(Es) ≤ B′m,A(Es \ U) +B′m,A(U), the lemma follows. �
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Recall the definition of quasicontinuity.

Definition 1. Let C be a capacity on RN and let f be a function defined
C−quasieverywhere on RN or on some open subset of RN . Then f is said to be
C−quasicontinuous if for every ε > 0, there is an open set O such that C(O) < ε
and f |Oc∈ C(Oc).

In other words, the restriction of f to the complement of O is continuous in the
induced topology.

We write (m,A)−quasicontinuous in place of B′m,A−quasicontinuous.
Let A be an N-function and m > 0. We define the space of Bessel potentials

Lm,A by
Lm,A = {ψ = Gm ∗ f : f ∈ LA},

and a norm on Lm,A by |||ψ|||m,A = |||f |||A if ψ = Gm ∗ f.

Theorem 4. Let A be an N-function such that A and A∗ satisfy the ∆2 con-
dition and let α = α(A). Let m be a positive number and f = Gm ∗ g ∈ Lm,A,
0 < mα < N. Then (m,A)−quasievery x is a Lebesgue point for f in LA−sense,
i.e.

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y)dy = f̃(x) exists,

and
lim
r→0

r
−N
α |||fx|||A,B(x,r) = 0 ,

where fx is defined as fx(y) = f(y)− f̃(x).
Moreover, the convergence is uniform outside an open set of arbitrarily small

(m,A)−capacity, f̃ is an (m,A)−quasicontinuous representative for f , and

f̃(x) = Gm ∗ g (m,A)− q.e.

Proof. Let f = Gm ∗ g ∈ Lm,A and define χr as in the proof of Lemma 5.
We denote by S the Schwartz class of rapidly decreasing infinitely differentiable
functions on RN . For ε > 0, there exists g0 ∈ S such that |||g − g0|||A < ε, since
A verifies the ∆2 condition. Then f0 = Gm ∗ g0 ∈ S and lim

r→0
χr ∗ f0 = f0.

Let δ > 0 and define

Ωδf(x) = sup
0<r<δ

(χr ∗ f)(x)− inf
0<r<δ

(χr ∗ f)(x).

We have
Ωδf(x) ≤ Ωδ(f − f0)(x) + Ωδf0(x).

By uniform continuity we can choose δ such that Ωδf0(x) < ε, for all x.
On the other hand

|χr ∗ (f − f0)(x)| ≤M(f − f0)(x),

so
Ωδf(x) ≤ 2M(f − f0)(x) + ε.
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Let ε < s
2 . Then

{x : Ωδf(x) > s} ⊂
{
x : 2M(f − f0)(x) >

s

2

}
.

Lemma 5 implies

(4.5) B′m,A ({x : Ωδf(x) > s}) ≤ C

s
|||g − g0|||A ≤

Cε

s
.

Choose s = 2−n, and ε = 4−n for n = 1, 2, ..., and denote the corresponding δ by
δn. Set

Dn =
{
x : Ωδnf(x) > 2−n

}
.

Then
B′m,A(Dn) ≤ C2−n.

If we set Fp =
∞⋃
n=p

Dn, we get

B′m,A(Fp) ≤ C
∞∑
n=p

2−n,

which tends to 0 as p tends to ∞. Whence

B′m,A

( ∞⋂
p=1

Fp

)
= 0.

If x /∈ Fp, then Ωδf(x) ≤ 2−n for δ ≤ δn and all n ≥ p. This implies that
lim
r→0

χr ∗ f(x) = f̃(x) exists if x /∈
⋂∞
p=1 Fp and uniformly outside Fp for any p.

This proves the first part of the theorem.
To prove the second part, we define

ΩA,δ
(
f − f̃(x)

)
(x) = sup

0<r≤δ
|B(x, r)|

−1
α |||fx|||A,B(x,r),

where fx is defined as fx(y) = f(y) − f̃(x). We choose ε > 0, g0, and f0 =
Gm ∗ g0 as before. Then f̃0 = f0 and as before we can choose δ so small that
ΩA,δ

(
f0 − f̃0(x)

)
(x) < ε for all x. We have

ΩA,δ
(
f − f̃(x)

)
(x) ≤ ΩA,δ

(
f − f0 − (f̃(x)− f0(x))

)
(x)

+ΩA,δ
(
f0 − f̃0(x)

)
(x)

≤ sup
0<r≤δ

|B(x, r)|
−1
α |||f − f0|||A,B(x,r)

+ sup
0<r≤δ

|B(x, r)|
−1
α

∣∣∣f̃(x)− f0(x)
∣∣∣ |||1|||A,B(x,r) + ε .

We know that
|||1|||A,B(x,r) =

1

A−1
(

1
|B(x,r)|

) .
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From Lemma 4, there is a constant Q such that

|B(x, r)|
−1
α

A−1
(

1
|B(x,r)|

) ≤ Q .
Whence

ΩA,δ
(
f − f̃(x)

)
(x) ≤ sup

r>0
|B(x, r)|

−1
α |||f − f0|||A,B(x,r) +Q

∣∣∣f̃(x)− f0(x)
∣∣∣+ ε.

If ε < s
3 , then {

x : ΩA,δ
(
f − f̃(x)

)
(x) > s

}
⊂
{
x : sup

r>0
|B(x, r)|

−1
α |||f − f0|||A,B(x,r) >

s

3

}
∪
{
x :
∣∣∣f̃(x)− f0(x)

∣∣∣ > s

3Q

}
.

We know that ∣∣∣f̃(x)− f0(x)
∣∣∣ ≤ Gm ∗ |g − g0| (x) (m,A)− q.e.

So by the definition of capacity we get

B′m,A

({
x :
∣∣∣f̃(x)− f0(x)

∣∣∣ > s

3Q

})
≤ 3Q

s
|||g − g0|||A.

Lemma 6 applied to Gm ∗ |g − g0| gives

B′m,A

({
x : sup

r>0
|B(x, r)|

−1
α |||f − f0|||A,B(x,r) >

s

3

})
≤ 3C

s
|||g − g0|||A.

Hence

(4.6) B′m,A

({
x : ΩA,δ

(
f − f̃(x)

)
(x) > s

})
≤ C ′ε

s
.

The estimate (4.6) gives the conclusion as the estimate (4.5) for the first part. �
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50 N. AÏSSAOUI

12. Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ.

Press, 1970.

13. Torchinsky A., Interpolation of operations and Orlicz classes, Studia Math., 59 (1976),
177–207.

14. Ziemer W.P., Weakly Differentiable Functions, Springer Verlag, New-York, 1989.
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