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MAXIMAL OPERATORS, LEBESGUE POINTS AND
QUASICONTINUITY IN STRONGLY NONLINEAR POTENTIAL
THEORY

N. AISSAOUI

ABSTRACT. Many maximal functions defined on some Orlicz spaces L 4 are bounded
operators on L 4 if and only if they satisfy a capacitary weak inequality. We show
also that (m, A)—quasievery x is a Lebesgue point for f in L4 sense and we give
an (m, A)— quasicontinuous representative for f when L4 is reflexive.

1. INTRODUCTION

The first part of this paper describes the connection between some maximal oper-
ators defined in Orlicz spaces, and capacities in this spaces. Theorem 1 states that
maximal operators of strong type (4, A), satisfy a capacitary weak type inequality.
The converse is the main of Theorem 2. More precisely, for N-functions satisfying
the As condition, maximal operators verifying a capacitary weak type inequality
are of weak type (4, A). If in addition the conjugate N-function A* satisfies also
the Ao condition, then these operators are of strong type (A, A). Theorem 3 deals
with a limiting case which connects the capacity of compact set and its Lebesgue
measure.

All results in this part generalize those given in [1] for the case of Lebesgue
classes.

The second part is devoted to establish some results about Lebesgue points and
quasicontinuity for Orlicz spaces.

By a theorem of Lebesgue, almost every point is a Lebesgue point. And if
f € LP for some p, 1 < p < oo, then almost every x is a Lebesgue point in the
sense that

1 Pdy =0.
rli%|er|/wT — f@)Fdy =0

This result is generalized in [4] to Orlicz spaces Ly for A satisfying the Aj
condition. We give a new proof of this result and we improve it in the first part
of Theorem 4.
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On the other hand, Lars Hedberg proved the following result (see [2, Chapter
6, Th 6.2.1] or [14, Chapter 3, Th 3.10.2]): Let 1 < p < oo and m > 0 be such
that mp < N. If f = G,,xg, g € LP, then for every ¢ > 0 there is an open set U
with Bessel capacity less than €, and such that

Pdy=0
THO|B£ET |/ mr) (x)| Y
uniformly on U°.

We generalize this result in the second part of Theorem 4 to reflexive Orlicz
spaces. The proof depends on a density argument (which needs that A verifies
the Ay condition) and on a weak type estimate involving the maximal Hardy-
Littlewood function (which needs that A* verifies the A condition).

2. PRELIMINARIES

2.1. Orlicz spaces

Let A: R — R™ be an N-function, i.e. A is continuous, convex, with A(¢) > 0 for
t > O,}in%@ = O,Iim@ = 400 and A is even.

t—o0

t|
Equivalently, A admits the representation: A(t) = [ a(x)dz, where a : RT —
0
=0

R™ is non-decreasing, right continuous, with a(0) ,a(t) > 0 for t > 0 and
lim a(t) = 4o0.
t—+o0
[¢]
The N-function A* conjugate to A is defined by A*(t) = [ a*(x)dz, where a*
0
is given by a*(s) = sup{t : a(t) < s}.
Let A be an N-function and let © be an open set in RY. We note £4() the
set, called an Orlicz class, of measurable functions f, on €2, such that

p(f, A Q) = ; A(f(z))dz < oo.
Let A and A* be two conjugate N-functions and let f be a measurable function

is no confusion, is defined by

||f||A—sup{/ |f(x)g(z)|dx - g € La-(Q) and p(g7A*,Q)§1}.

The set L4(Q) of measurable functions f, such that ||f]||4 < oo is called an
Orlicz space. When Q = RY | we set L in place of Ls(RY).

||f|||A=inf{r>o:/§2A(@)dwg1}.

La(2) by
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Let A be an N-function. We say that A verifies the Ao condition if there exists
a constant C' > 0 such that A(2t) < CA(t) for all t > 0.
We denote by C(A) the smallest constant C' such that A(2t) < C'A(t) for all
t>0.
We recall the following results. Let A be an N-function and a its derivative.
Then
1. Averifies the Ay condition if and only if one of the following holds:
) Vr > 1,3k =k(r) : (Vt >0, A(rt) < kA(t)),
i) Ja>1:(Vt >0, ta(t) < aA(t)),
) 3 >1:(Vt >0, ta*(t) > BA*(t)),
)

* / *
3d>0: (\ﬁ>o,(*“+t>) >d“—<“>

t

Moreover, « in 4i) and (3 in iii) can be chosen such that a=! + 87! = 1.
We note a(A) the smallest o such that i7) holds. By a simple computation
we have C'(A4) < 2°. See [5].
2. If A verifies the As condition, then
) VE>1,A>) < A(D)t* and vVt < 1, A(t) > A(1)t*,
i) Vt > 1, A*(t) > A*(1)t? and Vt < 1, A*(t) < A*(1)t5.
See for instance [7, 9, 11]. For more details on the theory of Orlicz spaces, see [3,
9, 11].

2.2. Capacity and Bessel kernels

We define a capacity as a positive set function C' given on a c-additive class of
sets I', which contains compact sets and has the properties:

(i) C) =o.

(ii) If X and Yare in I" and X C Y, then C(X) < C(Y).

(i) If X;,i=1,2,...arein T, then C(|J X;) < > C(X;).

i>1 i>1

Let k be a positive and integrable function in RV and let A be an N-function.

For X ¢ RN, we define

Cra(X) =inf{A(|||f|]|a) : f €LY and kx* f>1on X}
Cra(X) =if{|||f[|la: feL}and kxf>1on X}

where k * f is the usual convolution. The sign + deals with positive elements in
the considered space. From [6] C} , is a capacity.

If a statement holds except on a set X where Cj_4(X) = 0, then we say that the
statement holds Cj 4 — quasieverywhere (abbreviated Cy 4 — g.e or (k,A) — g.e
if there is no confusion).

For m > 0, the Bessel kernel, G,,, is most easily defined through its Fourier
transform §(G,,) as:

m
2

[§(Gm)] (z) = (27‘[')_% (1 + |1:|2)_



38 N. AISSAOUI

where [§(f)] (z) = (27?)_% [ fly)e ™¥dy for f € L. G, is positive, in L' and
verifies the equality: G, s = G, % G,.
In the sequel, we put By, 4 = Cg,, a and B, 4, = C; 4. We write (m, A) —q.e.

in place of By, 4 —¢.e. We denote Z,,(z) = || the Riesz kernel. We have (see
for instance [2])

(2.1) Gm(x) ~ Ly (x), when |z| — 0, with 0 <m < N,

On the other hand, for every ¢ < 1,

(2.2) G () = O(e™®) when || — oo, with 0 < m.
Another inequality which serves in this paper is

(2.3) Gm(2) < CGn(z+y), |2|>2, [y[<1.
3. MAXIMAL OPERATORS AND CAPACITY.

For 4,7 € N, let 0; ; be a complex valued function defined on RN and such that
0;; € Lp for all N-functions B.
Let the sequence (6;); be such that

1. 0;;«f—06;«f inLgforall f€Lg
2. 0% fn, — 0; % f inLpif f,, — f in Lp.

Define the mazimal operator M
(3.1) M(f) =suplf; * f|
J

and assume that M(f) is Lebesgue measurable on R .

An operator H : Ly — Ly is of weak type (A,A4) if
-

ct

A (i)
where C is a constant dependent only on A, and m is the Lebesgue measure on R

H is of strong type (4,A) if

VfeLa, [IH(f)lIla < CllIfllla

where C' is a constant dependent only on A. For more details, see [13].

VieLa,Vt >0 m{x: |H(f)(z)| >t}) <

Theorem 1. Let A be an N-function and M the mazximal operator defined by
(3.1). Suppose M is of strong type (A,A). Then

VfeLa,Vt>0,Cpa{z: MEx*f)z)>t}) <A (CAIHftHA) .

C4 is the constant in the strong type.
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Proof. 1t is easy to see that if §; € Lp for all B, then
0% (kxf)=Fkx*(0;*f).

In general case, if 6, ;  f — 6;  f in L4, then by [6, Théoreme 4], there is a
subsequence (6; ;); such that

HQJ. w (k* f) =k =x (9£)j x f) = k*x(0;%f) Cra—qe.
Since k x f € L4, we get
k(07 ;% f)=0; j+(kxf)— 05 (kxf)inLga.
Hence
Ojx(kxf)=k*(0;+f) Cra—q.e.
There exists X such that Cy 4(X;) =0 and for all = ¢ X},
0 % (kx f)(@) = k= (0; % f)(x) .
We get for « ¢ X,
105 % (k x f)(@)] = [k (0; % f)(@)] < k*[0; * f| (x).
Put X =JX;. Then Cj 4(X) =0 and
J

Mk = f)(z) <kx M(f)(z) Cka—q.e.
It follows that for all ¢t > 0,
Cia({x: Mk = f)(z) > t}) < Cpa{z: kx M(f)(z) > t}.

From [6, Théoréme 3], we deduce for all ¢ > 0,

it Mt ) > ) < 4 (U018

This completes the proof. O

Remark 1. If we suppose in addition that A wverifies the Ay condition, then
there exists a constant C' dependent only on A, such that for all t > 0,

Croa ({a s Mk f)(@) > t}) < C'A (@) ,

Lemma 1. Let f € Ly. Then there exists A > 0 such that

/A(W)dxﬁOasmHO.

Proof. We have G,, x f — f a.e. as m — 0. On the other hand, there is a
constant v > 0 such that % € L4. Let A =2~. Then

gm*f_f — zgm*f _ 2
NCRSI PRERTIPSNED)
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Jensen’s inequality gives

2G * f 2
(550)<a ()

The desired result follows by Vitali’s Theorem. (|

Theorem 2. Let A be an N-function satisfying the Ag condition, and let M
be the maximal operator defined by (3.1). Choose k = G,,, with m > 0. Let C be a
constant dependent only on A and such that for allt > 0 and all f € L4,

Cioa ({2 : M(G x f)(x) > t}) < CA (W) .

Then M is of weak type (A, A).
Proof. Let X be a set and f € LX such that G, * f > 1 on X. Then

A*

m(X) < /memdxs 1Gm * Fllla lxx]

where yx is the characteristic function of X.

The identity |[x x| 4. = m(X)A™! (m(lx)) gives

This implies
m ({z : M(G, * f)(z) > t}) <

Note that if s = inf(m, b), then
gm*f_gb*f:gs*(gm—s*f_gb—s*f)'
This implies

m ({z: M(Gr x [ — Gy * f)(z) > t}) < 1

Ct '
A (ngmfs*f_gbfs*flllA )

By the previous Lemma, G, * f — f in L4 as m — 0, since A verifies the
A, condition. By the sublinearity of M, (M(G,, * f)),,, is Cauchy in measure as
m — 0. Thus (M(G,, * f)),, converges in measure to a function h, as m — 0. This
implies

1

ct \’
A (%)
There exists a subsequence (M (G, * f)),., of the sequence (M(G,, * f)),,, such

that M(G,,s * f) — h a.e. And there exists a subsequence (M(Gp» * f)),,» of the
sequence (M(G,, * f)),,, such that

0; % (Gm» x f) — 05 % f a.e.

m ({z : |h(x)] > t}) <
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Hence there exists X; such that m(X;) = 0 and 0; x f(z) < h(z) for 2 ¢ X;. Thus
M(f)(z) < h(x)a.e. This gives

m ({x MU (@) > 1)) € —
A(

Then M is of weak type (4, A). O

Corollary 1. If in addition to hypothesis of Theorem 2 we suppose that A*
verifies the Ay condition, then M is of strong type (A, A).

Proof. From Theorem 2, M is of weak type (A, A) for all A satisfying the A,
condition. M is then of weak type (p,p) for all 1 < p < co. The Marcinkiewicz
interpolation Theorem shows that M is of strong type (p,p) for all 1 < p < 0.
By [7] and [13] M is of strong type (A, A). O

Theorem 3. Let (k;); be a sequence of positive integrable functions on RN such
that

L. sz(x)dx — 1, as1— o0
2. f{|a:|>6} ki(z)dx — 0, as i — oc.

1
Then for any compact K in RN, lim Cy, 4(K) = A -
i—00 —1
A7 (it
Proof. Let f € ng such that k; * f > 1 on K. Then
m(K) < [ (s o < [k fllla Tl

where x g is the characteristic function of K.
But ||xxll4- = m(K)A™! (le)), and by [10] (see also [7] for a simple proof)

& * Fllla < Nkilly 111

Hence 1
— < < &l 1111 A -
A ()
This implies
1
——— < [[kill, G, A(K).
A-1 (#)
m(K)
Thus
————— < liminfCj, 4(K).
A-1 ( 1 ) i—00 v
m(K)

On the other hand, let O be a bounded open set such that K C O and let € be
such that 0 < e < 1. Then there is ig such that for ¢ > iy, we have k; *x xo > 1 —¢
on K.
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Since xo € La, we deduce that Cj 4(K) < H\fﬂ' From the identity
i) e
1
lIxollla = PRV we have
B (—mw))
1
limsupC), 4(K)< (1 —¢e) ' —mb—.
i—o00 v A-1 ( 1 )
m(O)
e 1
This implies limsup C;, 4 (K) < . Thus

The proof is complete. O

4. LEBESGUE POINT AND QUASICONTINUITY

Recall that if f € L}, ., a point « € RY is called a Lebesgue point for f if
1

}%W ) |f(y) — f(z)|dy = 0.

Here |B(z,7)| is the Lebesgue measure of B(x,r) on RY.

By a theorem of Lebesgue, almost every point is a Lebesgue point. On the
other hand, if f € LP for some p, 1 < p < oo, then almost every = is a Lebesgue
point in the sense that

1
lim ———— — f(@)|P dy = 0.
M B B(myr)lf(y) f@)Pdy =0

See [12, Section 1.5.7].
This result is generalized in [4] to Orlicz spaces Ly for A satisfying the Aj
condition. More precisely

Lemma 2. [4] Let A be an N-function verifying the Ay condition and a = a(A).
Then

lin%)r%|||fx|||A,B(x,r) =0 a.e on R".
Here f; is defined by f.(y) = f(y) — f().
We shall give a new proof of this result.

Lemma 3. Let A be an N-function verifying the As condition and o = a(A).
Then, for allt > 0 and all 0 < s <1,

A(s=t) < C(A)s A1)
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Proof. If s =1, the result is obvious.
-1
Let s < 1, and ¢ be the smallest positive integer such that s& < 29. Then

Log(s=) Log(s=)
—_— d ¢g—1<——2—~
Log2 and g —  Log2
Since 2¢ > C(A), we get

C(A)T < C(A).C(A)KE < C(A).elalesd)-Ks) — 0(A)s1,

= K(s,a).

and
A(s= t) < A(2%) < C(A)1A(t) < C(A)s T A(t).
The proof is finished. O

Now we give a new proof of Lemma 2.
New Proof of Lemma 2. Since the function A o f, is locally integrable, by [13,
Section 1.5.7] we have

r—0

limr_N/ (Ao f.)(y)dy =0 a.e. on RY.
B(z,r)

Lemma 3 implies

/ A(r= f)(y)dy < C(A)r*N/ (Ao fu)(y)dy.
B(z,r)

B(z,r)
Hence

lim A(r%fm)(y)dy =0 a.c. on RV.
r—0 B(z,r)

The result follows since A verifies the Ay condition.

Lemma 4. Let A be an N-function satisfying the Ao condition. Then there is
a constant C such that Vu > 1, us < CA™1(u).

Proof. Let u > 1. Then
A(u=) < A(1)u.
This implies

Q=

u

< AT A()u) < A7H(Bw),
where 5 = sup(1, A(1)).
From the inequality SA(t) < A(St), valid for all ¢, we get
AN [BA(1)] < Bt
Hence
AN (Bu) < BAH (u).
So

Q=

u

< BATH(u).
The proof is finished. i
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Recall that the Hardy-Littlewood maximal function of a locally integrable func-
tion f is

1
M) = suprprs; B(a.r)

£ (y)] dy.

Lemma 5. Let A be an N-function such that A* satisfies the Ay condition. Let
m be a positive number and f = G, * g, g € L. Let Es = {x : M(f)(z) > s}.
Then there exists a constant C' independent of f such that

C
a(Es) < gl

Proof. Let x be the normalized characteristic function of the unit ball, and for
r > 0, define x, by x,(z) = rVx(%£). Then
Xr * f(2) = Xr % G % () < G x Mg(2).
Thus

M(f)(z) = SUpX; + f(x) < Gm x Mg(x).

This implies
{z: M(f)(x)>s} C{x:Gn*xMg(x) > s}

1
We get by the definition of B}, 4, By, 4(Es) < ;|||Mg|||A

Since A* satisfies the Ay condition, there is a constant C' such that |||Mg]||a <
C|llgll|a- (See for instance [8]). The Lemma follows. O

Remark 2. We can also derive quickly the Lemma from Theorem 1. In fact, we
are in the conditions of this theorem because M is of strong type since A* satisfies
the Ao condition.

Lemma 6. Let A be an N-function such that A and A* satisfy the Ao condition.
Let m be a positive number such that 0 < am < N, and f = G, xg, g € ng.

Let E; = {J: : sup |B(x,r)|771 Ha,Br > s} Then there exists a constant C
r>0
independent of f such that
C
m.a(Es) < ~ Nl
for all s = |[|g]l|a-

Proof. Let s > |||g|||a and z¢ € Es. Then there exists r such that

|B(zo, )| = |||/

A,B(zo,r) =~ S-

Now the inequality
A4 < 1Gml11llgll]a

implies |||£]|4 < 1, since ||G,||; = 1. Hence

|B(xo,7)| < 1.
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We set g = g1 + g2, where ¢g1(z) = 0 for |z — x| > 2r, and gi(x) = g(z) for
|z — xo| < 2r. Then

s < |B(@o, 7)™ [|llg1 * Gl 4,80, + 11192 * Ginll| 4,820, ] -
So that either
(4.1) s < 2|B(wo,7)| ™ |llg1 % Gmll| 4, B0,
or

—1
(4.2) s <2|B(zo,7)| ™ [llg2 * Gmll|4,B(z0,r)-
On the other hand, by [2, Lemma 3.1.1], for any x € B(zg,r),
* G ( 1 T m
220 L G- pmtar < ko (280 )
S 8 B(x,3r) S

If the inequality (4.1) holds, we get
N K K// n
re < —lllgy* Gmlllap@or < " IMaillla,Beory < ——"91lll4, B0 2r)-

So

"
N

(4.3) re” "<

s \HQH\A,B(zO,zr)-

Remark that when N = ma, then (4.3) cannot occur if s > K"|||g||| 4 since always
911l 4,B0,r) < lllgll]a-
If the inequality (4.2) holds, then we claim that
(4.4) Cg*Gn(z) > s.
In fact, if 1,22 € B(z,r) and y outside of B(zg, 2r), then

-
28 < oy gl <312

and
|2 =yl = 2r < |o1 —y| < fz2 —y| + 2
By the estimates (2.1) and (2.3) for Bessel kernels, we have
Gm(z1 —y) < OGm(z2 —y).
So for any z; € B(x,r)

G2 %Gm(r1) <C inf goxGp(z) <C inf gx*Gp(z).
S

B(zo,r) z€B(z0,r)
Hence -
5 <2C|B(zo,r)| > inf  g* Gu(2)|||1l||4,B(wo,r)-
z€B(xo,r)
But
1
114,80,y =

P CE



46 N. AISSAOUI

So
s < 2C

-1
B 3
|B(zo, )| inf g% Gp(x).
A7 (|Bao, )| 1) wEB o
By Lemma 4 we have

s< K inf * G ().
1:E€B(wo,r)g ( )

This implies the claim. Let U be the set of all x € F; and satisfying (4.3). Then
by (4.4),
Cg*Gm(z) >son E;\U.
So o
a B\ D) < gl

By the simple covering Vitali lemma, see [2, Theorem 1.4.1], there are disjoint
balls {B(x;,2r;)}]" such that

wm K
re < —|llgll
s

K3

A,B(]ﬁi ,21”7‘,) b)
and

U c | JB(wi,10r;).
1

We may take 10r; < 1, for all i. We have, by the subadditivity of By, 4 (see [6])

ma(U) = Z By, 4 (B(x,10r)).
1
By [5, Lemma 2] we get
;n,A (B(z4,10r;)) < Cr;m27%,

Log(r;N)
Log(C(A))
. This implies

Here ¢; is the greatest positive integer such that ¢; <

Rl

A simple computation shows that 27% < 2r

i
;n,A(U) <C E T " < E :?|||Q|HA,B(%2H)-
1 1

From the definition of the Orlicz norm we get easily

oo
D lglla,e2r < llglla-
1

The equivalence
glllae < llglla,e < 2[llg]l|a,0:
valid for all €, implies
K
a(U) < ?|||9H|A
Since By, 4(Es) < By, 4(Es \U) + By, 4(U), the lemma follows. O
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Recall the definition of quasicontinuity.

Definition 1. Let C be a capacity on RY and let f be a function defined
C—quasieverywhere on RY or on some open subset of RV. Then f is said to be
C—quasicontinuous if for every € > 0, there is an open set O such that C(O) < ¢
and f |pc€ C(O°).

In other words, the restriction of f to the complement of O is continuous in the
induced topology.

We write (m, A)—quasicontinuous in place of B, ,—quasicontinuous.
Let A be an N-function and m > 0. We define the space of Bessel potentials
Lm,A by

Lm,AZ{w:Gm*f:fELA},
and a norm on Ly, 4 by [|[|¥||lm.a = [||fllla if ¥ =Gy * f.
Theorem 4. Let A be an N-function such that A and A* satisfy the Ao con-

dition and let o = a(A). Let m be a positive number and f = G % g € Ly 4,
0 < ma < N. Then (m, A)—quasievery x is a Lebesque point for f in L s—sense,

i.€e.
7’4’0|Bx71|/17,) y)dy = f(z) exists,

and
N
limr =[] fol[| 4,52y = 0,

where f, is defined as f.(y) = f(y) — f(x)

Moreover, the convergence is uniform outside an open set of arbitrarily small
(m, A)—capacity, [ is an (m, A)—quasicontinuous representative for f, and

F(2) = Gm g (m, A) — qe.

Proof. Let f = G, x g € Ly, 4 and define x, as in the proof of Lemma 5.
We denote by S the Schwartz class of rapidly decreasing infinitely differentiable
functions on RY. For € > 0, there exists go € S such that |||g — go|||a < €, since
A verifies the Ay condition. Then fy = G, x go € S and }ii%xr * fo = fo.

Let § > 0 and define
Qsf(z) = sup (xr * f)(2) — inf (xr* f)(2).

0<r<é 0<r
We have
Qs f(x) < Qs(f — fo)(w) + Qs fo(x).

By uniform continuity we can choose § such that Qs fo(z) < ¢, for all z.
On the other hand

X (f = fo) ()] < M(f — fo) (=),

Qs f(x) < 2M(f — fo)(x) + <.
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Let € < % Then
s

{z:Qsf(x) > s} C {m:2M(f—f0)(:r) > 5}.

Lemma 5 implies

(4.5) moa ({21 Qs f(x) > s}) <

Choose s =27", and e = 47" for n = 1,2, ..., and denote the corresponding § by
On. Set

| Q

Ce
llg — gollla < —.
s s

Dy ={z:Qs, f(x) >27"}.
Then
:n,A(Dn) < 2.

oo
If we set F, = |J D, we get
n=p

;n,A(F:D) <C Z 2—n’
n=p

which tends to 0 as p tends to co. Whence

(oo}
’:n,A (ﬂ F p) =0.
p=1
If © ¢ F,, then Qsf(x) < 27" for 6 < §, and all n > p. This implies that
}iir(ljxr x f(z) = f(x) exists if z ¢ ﬂ;ozl F, and uniformly outside Fj, for any p.
This proves the first part of the theorem.
To prove the second part, we define

Qs (£ = T@)) @) = sup [B@.n)= [Ifalllanen:
0<r<d

where f, is defined as f,(y) = f(y) — f(z). We choose ¢ > 0, gog, and fy =

Gm * go as before. Then fy = fy and as before we can choose § so small that
Qas (fo - ﬁ)(x)) (z) < € for all z. We have

Qs (1= F@) @) < Qa5 (f=fo— (@) - fole)) (@)
+25 (fo = Fol@)) (@)

1
< sup [B(z, )= [|[f = foll
0<r<é

A,B(z,r)

F(@) = fol@)| UL, mar) + €

=1
+ sup |B(z,r)|™
0<r<é

We know that .

1 S —
Milasen = L
[B(z,m)]
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From Lemma 4, there is a constant ¢ such that

=
|B(z,7)|®

A (me)

<Q.

Whence
Qa5 (= @) @) < s0p B = |IF = folllasen +Q|F() — fole)| + ¢

If e < 3, then

(o1 (-0} 1}

e o suplBE ) 11 = Alllann > 3 0 {o:[Fo) - n@)]> 51

3 3Q

We know that

[7) = fo(a)| < G lg = g0l (2) (m, 4) = ge.

So by the definition of capacity we get

o ({2 7@ = @] > 55 1) = 221lo - sl

Lemma 6 applied to G, * |g — go| gives

=1 s 3C
o ({50 1B 11 = flllanen > 5 1) < *Cllo = il
>0 S

Hence

(16) s ({2045 (5= F)) (@) > s}) < &

S

The estimate (4.6) gives the conclusion as the estimate (4.5) for the first part. O

10.
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