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COMPLETE SPACE-LIKE SUBMANIFOLDS IN DE SITTER
SPACE

X. LIU

Abstract. In this paper, we characterize the complete space-like submanifolds

with parallel mean curvature vector satisfying H2 =
4(n−1)c

n2 in the de Sitter space

completely.

1. Introduction

Let Mn+p
p (c) be an (n + p)-dimensional connected semi-Riemannian manifold of

constant curvature c whose index is p. It is called an indefinite space form of
index p and simply a space form when p = 0. If c > 0, we call it as a de Sitter
space of index p, denote it by Sn+p

p (c). The study of space-like hypersurfaces in
de Sitter space has been recently of substantial interest from both physics and
mathematical points of view. Akutagawa [1] and Ramanathan [10] investigated
space-like hypersurfaces in a de Sitter space and proved independently that a
complete space-like hypersurface in a de Sitter space with constant mean curvature
is totally umbilical if the mean curvature H satisfies H2 ≤ c when n = 2 and
n2H2 < 4(n− 1)c when n ≥ 3. Later, Cheng [3] generalized this result to general
submanifolds in a de Sitter space.

On the other hand, the well-known examples with H2 = 4(n−1)c
n2 when n > 2

are umbilical sphere Sn( (n−2)2

n2 c) and the hyperbolic cylinder H1(c1)× Sn−1(c2),
c1 = (2−n)c and c2 = n−2

n−1c. Hence it is natural to study if complete space-like hy-

persurfaces with H2 = 4(n−1)c
n2 (n > 2) are only the above examples. In [4], Cheng

gave an affirmative answer if Mn is compact and gave some characterizations when
Mn is complete and noncompact. In this paper, we consider the case of space-like
submanifolds with parallel mean curvature vector satisfying H2 = 4(n−1)c

n2 in the
de Sitter space and prove the following theorem

Theorem. Let Mn be an n-dimensional (n ≥ 3) complete space-like sub-
manifold in the de Sitter space Sn+p

p (c) with parallel mean curvature vector. If
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H2 = 4(n−1)
n2 c, then Mn is totally umbilical, or Mn is the hyperbolic cylinder

H1(c1) × Sn−1(c2) in Sn+1
1 (c), or Mn has unbounded volume and positive Ricci

curvature and
∫
Mn S

m dv = ∞ for any m, where S is the norm square of the
second fundamental form of Mn.

2. Preliminaries

Let Sn+p
p (c) be an (n + p)-dimensional de Sitter space of constant curvature c

whose index is p. Let Mn be an n-dimensional Riemannian manifold immersed
in Sn+p

p (c). As the semi-Riemannian metric of Sn+p
p (c) induces the Riemannian

metric of Mn, Mn is called a space-like submanifold. We choose a local field of
semi-Riemannian orthonormal frames e1, . . . , en+p in Sn+p

p (c) such that at each
point of Mn, e1, . . . , en span the tangent space of Mn and form an orthonormal
frame there. We use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ p; 1 ≤ i, j, k, . . . ≤ n; n+ 1 ≤ α, β, γ ≤ n+ p.

Let ω1, . . . , ωn+p be its dual frame field so that the semi-Riemannian metric of
Sn+p
p (c) is given by ds̄2 =

∑
i ω

2
i −
∑
α ω

2
α =

∑
A εAω

2
A, where εi = 1 and εα = −1.

Then the structure equations of Sn+p
p (c) are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0,(1)

dωAB =
∑
C

εCωAC ∧ ωCB −
1
2

∑
C,D

KABCDωC ∧ ωD,(2)

KABCD = c εAεB(δACδBD − δADδBC).(3)

Restrict these form to Mn, we have

ωα = 0, n+ 1 ≤ α ≤ n+ p,(4)

the Riemannian metric of Mn is written as ds2 =
∑
i ω

2
i . From Cartan’s lemma

we can write

ωαi =
∑
j

hαijωj , hαij = hαji.(5)

From these formulas, we obtain the structure equations of Mn:

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0,(6)

dωij =
∑
k

ωik ∧ ωkj −
1
2

∑
k,l

Rijklωk ∧ ωl,(7)

Rijkl = c(δikδjl − δilδjk)−
∑
α

(hαikh
α
jl − hαilhαjk),(8)
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where Rijkl are the components of the curvature tensor of Mn and

h =
∑
α

hαeα =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα(9)

is the second fundamental form of Mn.
For indefinite Riemannian manifolds in detail, refer to O’Neill [7].
Let S be the norm square of the second fundamental form of Mn, ξ denote the

mean curvature vector field of Mn and H the mean curvature of Mn, that is

ξ =
1
n

∑
α

(∑
i

hαii

)
eα, H = |ξ|, S =

∑
α,i,j

(hαij)
2.

Moreover, the normal curvature tensor {Rαβkl}, the Ricci curvature tensor
{Rik} and the scalar curvature R are expressed as

Rαβkl =
∑
m

(hαkmh
β
ml − h

α
lmh

β
mk),

Rik = (n− 1) c δik −
∑
α

(
∑
l

hαll)h
α
ik +

∑
α,j

hαijh
α
jk,(10)

R = n(n− 1)c+ (S − n2H2).(11)

Define the first and the second covariant derivatives of {hαij}, say {hαijk} and
{hαijkl} by ∑

k

hαijkωk = dhαij +
∑
k

hαkjωki +
∑
k

hαikωkj +
∑
β

hβijωβα,(12)

∑
l

hαijklωl = dhαijk +
∑
m

hαmjkωmi +
∑
m

hαimkωmj +
∑
m

hαijmωmk +
∑
β

hβijkωβα.

(13)

Then, by exterior differentiation of (5), we obtain the Codazzi equation

hαijk = hαikj .(14)

It follows that the Ricci identities hold

hαijkl − hαijlk =
∑
m

hαmjRmikl +
∑
m

hαimRmjkl +
∑
β

hβijRβαkl.(15)

The Laplacian ∆hαij of the fundamental form hαij is defined to be
∑
k h

α
ijkk, from

(15) we have

∆hαij =
∑
m,k

hαimRmkjk +
∑
m,k

hαmkRmijk +
∑
k

hαkkij .(16)

We need the following generalized maximum principle due to Omori [9] and
Yau [11]:
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Lemma 2.1. Let Mn be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below and F : Mn → R a smooth func-
tion bounded from below. Then there is a sequence of points {pk} in Mn such
that

lim
k→∞

F (pk) = inf(F ), lim
k→∞

|∇F (pk)| = 0, lim
k→∞

inf ∆F (pk) ≥ 0.

We also need the following algebraic lemma due to M. Okumura [8] (see also [2]).

Lemma 2.2. Let µi, i = 1, . . . , n, be real numbers such that
∑
i µi = 0 and∑

i µ
2
i = β2, where β = constant ≥ 0. Then

− n− 2√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤

n− 2√
n(n− 1)

β3,(17)

and the equality holds in (17) if and only if at least (n− 1) of the µi are equal.

Now we assume that the mean curvature vector ξ is parallel and H2 = 4(n−1)
n2 c.

We can choose en+1 = ξ/H. Then∑
k

kαkki = 0, ωα,n+1 = 0, HαHn+1 = Hn+1Hα,(18)

trHn+1 = nH, trHα = 0, α 6= n+ 1,(19)

where Hα denote the matrix (hαij).
Putting

µij = hn+1
ij −Hδij , ταij = hαij , α 6= n+ 1,(20)

we have

|µ|2 = tr(µ)2 =
∑

µ2
ij = tr(Hn+1)2 − nH2,(21)

|τ |2 =
∑

β 6=n+1

(hβij)
2,(22)

trµ = 0, tr(τβ) = 0, β 6= n+ 1,(23)

S = |µ|2 + |τ |2 + nH2.(24)

A submanifold Mn is said to be pseudo-umbilical if it is umbilical with re-
spect to the direction of the mean curvature vector ξ, i.e., hn+1

ij = Hδij . From
(21)-(24) we know that Mn is pseudo-umbilical if and only if |µ|2 = 0, Mn is
totally umbilical if and only if |µ|2 = 0 and |τ |2 = 0.

∆hn+1
ij = nchn+1

ij − nHcδij +
∑

hn+1
km hβmkh

β
ij −

∑
hn+1
km hβmjh

β
ik(25)

+
∑

hn+1
mi h

β
mkh

β
kj − nH

∑
hn+1
mi h

n+1
mj .

Thus
1
2

∆(|µ|2) =
∑

(hn+1
ijk )2 + nc

∑
(hn+1
ij )2 − n2cH2(26)

− nHtr(Hn+1)3 +
∑

β 6=n+1

tr(Hn+1Hβ)2 + [tr(Hn+1)2]2.
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On the other hand

tr(Hn+1)3 = trµ3 + 3H[tr(Hn+1)2 − nH2] + nH3.(27)

By using (23), (27) and Lemma 2.2, we have from (26)

1
2

∆(|µ|2) ≥ (|µ|2 + nH2)2 − nH[tr(µ)3 + 3H|µ|2 + nH3] + nc|µ|2(28)

= |µ|2(|µ|2 + nc− nH2)− nHtr(µ)3

≥ |µ|2
(
|µ|2 − n(n− 2)√

n(n− 1)
|H||µ|+ nc− nH2

)

= |µ|2
(
|µ| − (n− 2)√

n

√
c

)2

,

where we used H2 = 4(n−1)
n2 c.

Now consider the positive smooth function f on Mn defined by

f =
1√

1 + |µ|2
.

It is easy to check that

|∇f |2 =
1
4
|∇(|µ|2)|2

(1 + |µ|2)3
(29)

and that

f∆f = −1
2

∆(|µ|2)
(1 + |µ|2)2

+ 3|∇f |2.(30)

From (28) and (30), we have

f∆f ≤ −|µ|2(|µ| − (n− 2)
√
c/
√
n)2/(1 + |µ|2)2 + 3|∇f |2.(31)

From (10) and H2 = 4(n−1)
n2 c, we have

Ric(ei) ≥ (n− 1)c− nHhn+1
ii +

∑
k

(hn+1
ik )2 = (λi −

√
(n− 1)c) ≥ 0,(32)

where hn+1
ij = λiδij . So the Ricci curvature of Mn is non-negative, we may apply

Lemma 2.1 to the smooth function f . Then there is a sequence of points pk in Mn

such that

lim
k→∞

f(pk) = inf f, lim
k→∞

|∇f(pk)| = 0, lim
k→∞

inf ∆f(pk) ≥ 0.

From (31), we have inf(f) 6= 0, so limk→∞ |µ|2(pk) = sup |µ|2 < ∞. Ap-
proaching the limit of both sides of inequality (31), we obtain sup |µ|2 = 0, or
sup |µ|2 = (n−2)2

n c.
If |µ|2 reaches its supremum onMn, from (28) we know that |µ|2 is subharmonic.

Thus |µ|2 would be constant because of the maximum principle. So we have the
following proposition
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Proposition 2.1. Let Mn be an n-dimensional (n ≥ 3) complete space-like
submanifold in the de Sitter space Sn+p

p (c) with parallel mean curvature vector. If

H2 = 4(n−1)
n2 c, then either Mn is pseudo-umbilical or sup |µ|2 = (n−2)2

n c, and this

supremum is attained if and only if |µ|2 ≡ (n−2)2

n c.

3. The Proof of Theorem

By use of (18), we have from (16) for α 6= n+ 1

∆hαij = nchαij +
∑

hαkmh
β
mkh

β
ij − 2

∑
hαkmh

β
mjh

β
ik(33)

+
∑

hαmih
β
mkh

β
kj +

∑
hαjmh

β
mkh

β
ki − nH

∑
hαmih

n+1
mj .

Thus
1
2

∆(|τ |2) =
∑

α6=n+1

(hαijk)2 + nc|τ |2 +
∑

α6=n+1

hαkmh
β
mkh

β
ijh

α
ij(34)

− 2
∑

α6=n+1

hαkmh
β
mjh

β
ikh

α
ij +

∑
α6=n+1

hαmih
β
mkh

β
kjh

α
ij

+
∑

α6=n+1

hαjmh
β
mkh

β
kih

α
ij − nH

∑
α6=n+1

hαmih
α
ijh

n+1
mj .

By use of (18) and (19), we have from (34)

1
2

∆(|τ |2) =
∑

α6=n+1

(hαijk)2 + nc|τ |2 + I + II,(35)

where

I =
∑

α,β 6=n+1

[tr(HαHβ)]2 − 2
∑

α,β 6=n+1

hαkmh
β
mjh

β
ikh

α
ij(36)

+
∑

α,β 6=n+1

hαmih
β
mkh

β
kjh

α
ij +

∑
α,β 6=n+1

hαjmh
β
mkh

β
kih

α
ij ,

II =
∑

α6=n+1

hαkmh
n+1
mk h

n+1
ij hαij − 2

∑
α6=n+1

hαkmh
n+1
mj h

n+1
ik hαij(37)

+
∑

α6=n+1

hαmih
n+1
mk h

n+1
kj hαij +

∑
α6=n+1

hαjmh
n+1
mk h

n+1
ki hαij

− nH
∑

α6=n+1

hαmih
α
ijh

n+1
mj

=
∑

α6=n+1

hαkmh
n+1
mk h

n+1
ii hαij − nH

∑
α6=n+1

hαmih
α
ijh

n+1
mj .

We put Sαβ =
∑
hαijh

β
ij for α, β 6= n + 1, then (Sαβ) is a (p − 1) × (p − 1)

symmetric matrix. It can be assumed to be diagonal for a suitable choice of
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en+2, . . . , en+p. Set Sα = Sαα and we have |τ |2 =
∑
α6=n+1 Sα. In general, for a

matrix A = (aij), we put N(A) = tr(AtA). Now we have from (36),

I =
∑

α6=n+1

Sα +
∑

α,β 6=n+1

N(HαHβ −HβHα)(38)

≥
∑

α6=n+1

S2
α ≥

 ∑
α6=n+1

Sα

2

/(p− 1) = |τ |4/(p− 1).

By Proposition 2.1, we need to divide the proof of Theorem into the following
three cases.

Case (i): Mn is pseudo-umbilical, that is |µ|2 = 0 or hn+1
ij = Hδij on Mn,

from (37) we get

II = −nH2|τ |2.(39)

Thus, in this case, we have

1
2

∆(|τ |2) ≥ (nc− nH2)|τ |2 + |τ |4/(p− 1) =
(n− 2)2

n
|τ |2c+ |τ |4/(p− 1).(40)

Let f = 1/
√

1 + |τ |2, by use of the similar methods of proof of |µ|2 in section
2, we have |τ |2 = 0. Hence Mn is totally umbilical.

Case (ii): sup |µ|2 = (n−2)2

n c and supremum of |µ|2 is attained, then |µ|2 ≡
(n−2)2

n c. From Lemma 2.2, we have

λ1 =
√

(n− 1)c, λ2 = · · · = λn =
√
c√

n− 1
.(41)

For any fixed α 6= n + 1, let hαij = αiδij , noting α1 + · · · + αn = 0, by use of
(41), we have for any α 6= n+ 1

∑
hαkmh

n+1
mk h

n+1
ii hαij =

(∑
m

λmαm

)2

= c

(√
n− 1− 1√

n− 1

)2

α2
1.(42)

−nH
∑

hαmih
α
ijh

n+1
mj = −nH

∑
m

λmα
2
m(43)

= −nH
√
c[
√
n− 1α2

1 + (α2
2 + · · ·+ α2

n)/
√
n− 1]

≥ −2c(n− 1)α2
1 − 2c(α2

2 + · · ·+ α2
n)

= −2c(n− 1)(x+ (1− x))α2
1 − 2c(α2

2 + · · ·+ α2
n)

≥ −2c(n− 1)xα2
1 − 2c(n− 1)(1− x)(n− 1)(α2

2 + · · ·+ α2
n)

− 2c(α2
2 + · · ·+ α2

n)

= −2c(n− 1)xα2
1 − 2c[1 + (n− 1)2(1− x)](α2

2 + · · ·+ α2
n),

where x is a real number satisfying 0 ≤ x ≤ 1.
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Choosing x = 2n2−5n+4
2(n−1)2 , for fixed α 6= n+ 1, from (42) and (43) we have∑

hαkmh
n+1
mk h

n+1
ii hαij − nH

∑
hαmih

α
ijh

n+1
mj(44)

≥ [
(n− 2)2

n− 1
− 2(n− 1)x]cα2

1 − 2c[1 + (n− 1)2(1− x)](α2
2 + · · ·+ α2

n)

= −nc(α2
1 + · · ·+ α2

n) = −nc
∑
i,j

(hαij)
2.

From (37), (43) and (44) we have

II ≥ −nc
∑

i,j,α6=n+1

(hαij)
2 = −nc|τ |2.(45)

Combining (35) and (38) with (45), we get

1
2

∆(|τ |2) ≥ |τ |4

p− 1
.(46)

Let f = 1/
√

1 + |τ |2, by use of the similar methods of proof of |µ|2 in Section 2,
we have |τ |2 = 0. Hence Mn is a hyperbolic cylinder H1(c1)×Sn−1(c2) in Sn+1

1 (c).
Case (iii): sup |µ|2 = (n−2)2

n c and |µ|2 < (n−2)2

n c. By (32), we know that Mn

has non-negative Ricci curvature. If there is a point p in Mn and a unit vector
v ∈ TpM

n such that Ric(v, v)(p) = 0, then taking e1 = v, we obtain λi = nH
2 .

Hence

|µ|2 =
n2H2

4
+ λ2

2 + · · ·+ λ2
n − nH2 <

(n− 2)2

n
c,

namely

λ2
2 + · · ·+ λ2

n < c.

Since

(n− 1)c =
n2H2

4
= (λ2 + · · ·+ λn)2,

we get

(n− 1)c > (n− 1)(λ2
2 + · · ·+ λ2

n) ≥ (λ2 + · · ·+ λn)2 = (n− 1)c.

This is a contradiction. Hence the Ricci curvature is positive. From the result due
to Yau [12], we know that Mn has unbounded volume and

∫
Mn S

mdv = ∞ for
any m. This completes the proof of Theorem.
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