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COMPLETE SPACE-LIKE SUBMANIFOLDS IN DE SITTER
SPACE

X. LIU

ABSTRACT. In this paper, we characterize the complete space-like submanifolds

with parallel mean curvature vector satisfying H? = % in the de Sitter space

completely.

1. INTRODUCTION

Let M}*?(c) be an (n 4 p)-dimensional connected semi-Riemannian manifold of
constant curvature ¢ whose index is p. It is called an indefinite space form of
index p and simply a space form when p = 0. If ¢ > 0, we call it as a de Sitter
space of index p, denote it by S;L"”’ (¢). The study of space-like hypersurfaces in
de Sitter space has been recently of substantial interest from both physics and
mathematical points of view. Akutagawa [1] and Ramanathan [10] investigated
space-like hypersurfaces in a de Sitter space and proved independently that a
complete space-like hypersurface in a de Sitter space with constant mean curvature
is totally umbilical if the mean curvature H satisfies H?> < ¢ when n = 2 and
n?H? < 4(n — 1)c when n > 3. Later, Cheng [3] generalized this result to general
submanifolds in a de Sitter space.

On the other hand, the well-known examples with H? =
are umbilical sphere S”(—(";Zg)2 ¢) and the hyperbolic cylinder H(c;) x S""!(ca),

c1=(2-n)cand c3 = Z—:%c. Hence it is natural to study if complete space-like hy-
4(n—1)c
712

thenn>2

persurfaces with H? = (n > 2) are only the above examples. In [4], Cheng
gave an affirmative answer if M™ is compact and gave some characterizations when
M™ is complete and noncompact. In this paper, we consider the case of space-like
submanifolds with parallel mean curvature vector satisfying H? = W in the
de Sitter space and prove the following theorem

Theorem. Let M"™ be an n-dimensional (n > 3) complete space-like sub-
manifold in the de Sitter space Sg+p(c) with parallel mean curvature vector. If
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H? = %c, then M™ is totally umbilical, or M™ is the hyperbolic cylinder
H'(c1) x 8" (ca) in S (c), or M™ has unbounded volume and positive Ricci
curvature and an S™dv = oo for any m, where S is the norm square of the
second fundamental form of M™.

2. PRELIMINARIES

Let Sp*P(c) be an (n + p)-dimensional de Sitter space of constant curvature c
whose index is p. Let M™ be an n-dimensional Riemannian manifold immersed
in S)*?(c). As the semi-Riemannian metric of S*?(c) induces the Riemannian
metric of M™, M™ is called a space-like submanifold. We choose a local field of
semi-Riemannian orthonormal frames ey, ... ,eny, in Sp7P(c) such that at each
point of M™, eq,...,e, span the tangent space of M"™ and form an orthonormal
frame there. We use the following convention on the range of indices:

1<ABC,...<n+p; 1<i,jk,...<n; n+1<a,B,v<n+p.

Let wi,...,wn4p be its dual frame field so that the semi-Riemannian metric of
SptP(c) is given by ds® = Y, w? — > w2 = 3 4 €awy, where ¢, = 1 and €, = —1.
Then the structure equations of Sg*p(c) are given by

(1) dwy = ZwaAB ANwp, wap+wpa =0,
B
1
(2) dwap =Y €cwac Nwep — 3 > Kapcpwe Awp,
c C.D
(3) Kapcp = cea€p(6acdpp — 0apdBC).

Restrict these form to M™, we have
(4) wWe=0, n+l<a<<n+p,

the Riemannian metric of M™ is written as ds? = >, w?. From Cartan’s lemma
we can write

(5) wai = Y hw;, g = hS;.
J

From these formulas, we obtain the structure equations of M™:
(6) dw; = Zwij Nwj, wij +wj; = 0,

J

1

(7) dwij = Zwik A Wkj — 5 ZRijklwk A wi,

k Kl

(8) Rijir = c(0indji — 6ubjn) — Y _ (h§phS — hGhsy,),

[e%
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where R;ji; are the components of the curvature tensor of M" and
(9) h:Zhaea: Zh%wi(@wj@ea
a 15,0
is the second fundamental form of M™.
For indefinite Riemannian manifolds in detail, refer to O'Neill [7].

Let S be the norm square of the second fundamental form of M™, ¢ denote the
mean curvature vector field of M™ and H the mean curvature of M™, that is

= S (Soh)ea H=lel 5= ()
[ % 0%,

Moreover, the normal curvature tensor {R,gr}, the Ricci curvature tensor
{Rir} and the scalar curvature R are expressed as

Rogia = (il = sl

(10) Rig = (n=1) b = Y (D hihiy + Y hishis,
[e% l a,j
(11) R=n(n—1)c+ (S —n?H?).

Define the first and the second covariant derivatives of {h{;}, say {hf;,} and
{h%kl} by

(12) S b = dhS + Y hiwn + > hwis + > hwsa,
k k k B

(13)
D hgwr = dhSy + > e wmi + > S wmi Y A wmk + Y b W
l m m m 8

Then, by exterior differentiation of (5), we obtain the Codazzi equation

(14) ik = hikj-

It follows that the Ricci identities hold

(15) WS — he = > b Ronikt + Y W Renjir + > iy Rgant.
m m Jé]

The Laplacian Ahg; of the fundamental form Af; is defined to be >k he g from
(15) we have

(16) AR = W Rk + Y B Rmijie + > Wit
m,k m,k k

We need the following generalized maximum principle due to Omori [9] and
Yau [11]:
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Lemma 2.1. Let M™ be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below and F: M™ — R a smooth func-
tion bounded from below. Then there is a sequence of points {px} in M™ such
that

lim F(py) = inf(F), klim IVE(pr)| =0, klim inf AF(p) > 0.

k— o0

We also need the following algebraic lemma due to M. Okumura [8] (see also [2]).

Lemma 2.2. Let p;, i = 1,...,n, be real numbers such that Y, u; = 0 and

> 12 = 3%, where 3 = constant > 0. Then
n—2

17 — P —p,
(a7) \/nn—l ZM vn(n—1)
and the equality holds in (17) if and Only if at least (n — 1) of the u; are equal.

Now we assume that the mean curvature vector £ is parallel and H? = %
We can choose e, 11 = &/H. Then

(18) > ki =0, Wanir =0, H*H"' = H"" H,
k
(19) tr H"W =nH, trH*=0, a#n+1,
where H® denote the matrix (hg}).
Putting
20 i =hit = Hoy, 75 =h;, a#n+1,
H J J 1] 17
we have
(21) uf* = te()® = > uiy = te(H")? —nH?,
(22) 2= > (h)
B#n+1
(23) tru=0, tr(r7) =0, B#n+1,
(24) S = |uf* +|71* +nH>.

A submanifold M™ is said to be pseudo-umbilical if it is umbilical with re-
spect to the direction of the mean curvature vector &, i.e., h:-?'l = Hé;;. From
(21)-(24) we know that M™ is pseudo-umbilical if and only if |u[? = 0, M™ is
totally umbilical if and only if |u|> = 0 and |7|*> = 0.

(25)  ARETY =nehli™ —nHed; + > hIRD R = TRt RD bl
+ > RS B —nH Y R AL
Thus
1 n n
(2600 SA(nP) = D (R ey (hith)? —nPeH?

—nHtr(H")? + Y tr(H" T HO)? 4 [tr(H")?),
B#n+1
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On the other hand
(27) tr(H™ )3 = trp® + 3H[tr(H" )2 — nH?] + nH>.
By using (23), (27) and Lemma 2.2, we have from (26)
1
(98)  SAQuP) > (P +nH)P — nHliw(n? + H|f> + nH) + nelul
— (1l + ne — nH?) — nHbx()®

> |ul? <M|2 - %IHW +ne— nH2>

P (Iul - ("\/‘ﬁ” f)

4(n—1
where we used H? = %c.

Now consider the positive smooth function f on M™ defined by

1
f=—
V1+|ul
It is easy to check that
L V(PP
(29) Vi =5
41+ |ul?)?
and that
1 A(lul?) 2
30 Af=———"—"—"—+3|Vf~
(30) FAf = 5 e + 3]

From (28) and (30), we have
(31) FAF < —[uP(Jul = (n = 2)V/e/Vn)? /(L + |ul*)? + 3|V f|*.
From (10) and H? = Mc we have

(32) Ric(e;) > (n—1)e — nHRALT + Z hH1)? (n—1)c) >0,

where h?jﬂ = Aid;5. So the Ricci curvature of M™ is non-negative, we may apply
Lemma 2.1 to the smooth function f. Then there is a sequence of points pi in M™
such that

lim f(pr) =inf f, lm |Vf(pr)| =0, lim inf Af(px) > 0.
k—o0 k—o0 k—o0

From (31), we have inf(f) # 0, so limg_ oo |u|>(pr) = sup|u|?* < oo. Ap-

proaching the limit of both sides of inequality (31), we obtain sup |u|?> = 0, or

sup ul? = =2

If |u|? reaches its supremum on M™, from (28) we know that |z|? is subharmonic.
Thus |p|? would be constant because of the maximum principle. So we have the
following proposition
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Proposition 2.1. Let M™ be an n-dimensional (n > 3) complete space-like
submanifold in the de Sitter space Sg“’(c) with parallel mean curvature vector. If

_ (n=2)?

—=—c, and this

H? = %c, then either M™ is pseudo-umbilical or sup |u|?
supremum is attained if and only if |p|* = %c.
3. THE PROOF OF THEOREM
By use of (18), we have from (16) for a« #n +1
(33) AR =nchfs + > hit b bl — 2> " bt bl Bl

+ Z h?m'h?nkhgj + Z h?mhfzkhgi —nH Z hf‘mh?n?l-

Thus
1
(34) SAUTP) = D0 (W) +nelrP+ D0 B b hhg
a#n+1 a#n+1
B 18 B 1.8
=2 ) hmhghihd Y il ki hd
a#n+1 a#n+1
+ > R hD kS —nH > ho AR
a#n+1 a#n+1

By use of (18) and (19), we have from (34)

1
(35) 5A(|T|2) = Z (h$5)* + ne|r|> + 1+ 11,
a#n+1
where
(36) I= Y [(HH)? =2 Y hg,hb h RS
a,B#n+1 a,B#n+1
a 18 1B o a 18 18 1o
D D A A o Y S N
a,B#n+1 a,B#n+1
(37) IT= " b het it hg —2 Y~ hg bR he,
a#n+1 a#n+1
D IR Sy e iy S N Y ey ey
a#n+1 a#n+1
«a a n+1
—nH Z hmihijhnbj
a#n+1
= Y g hRRETIRG —nH > b he R
a#n+1 a#n+1
We put Sop = Zh%hg for a, 8 # n+ 1, then (Sap) isa (p—1) x (p — 1)

symmetric matrix. It can be assumed to be diagonal for a suitable choice of
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€nt2s- -+ sCnip Set Sq = Saq and we have |7]? = E(#nﬂ S,. In general, for a
matrix A = (a;;), we put N(A) = tr(A*A). Now we have from (36),
(38) I= > Sa+ > N(H"H’-HH)

a#n+1 a,B#n+1

2

> 3 S22 D) Sa| /=D =|"(p-1).

a#n+1 a#n+1

By Proposition 2.1, we need to divide the proof of Theorem into the following
three cases.

Case (i): M™ is pseudo-umbilical, that is |u|?> = 0 or h?jﬂ = Hé;j on M™,
from (37) we get

(39) 1T = —nH?7[*.
Thus, in this case, we have
1 2 2\ (12 4 (n—2)? 4
(40) A7) = (ne = nHY)|r[" + |77/ (p = 1) = ———|7Fc+[7[*/(p — 1).

Let f = 1/4/1+ |7|2, by use of the similar methods of proof of |u|? in section
2, we have |72 = 0. Hence M™ is totally umbilical.
2
Case (ii): sup|u|? = Mc and supremum of |u|? is attained, then |u|?> =

(n=2)" 2) c. From Lemma 2.2, we have

Ve
41 AM=+vVn—=1c ==X, = .
( ) 1 ( ) 2 \/m
For any fixed o # n + 1, let h{; = a;d;5, noting ay + --- + a, = 0, by use of
(41), we have for any aw £ n + 1

2 2
[e% n n « 1
(42) E hkmhm—zlhii+lhij = <§m )‘mam) =c (V n—1-— m) a%.

(43)  —nH Y hghShitt = —nH Y Apna?,

mi' i “myj

= —nHc[vVn—1a% + (ag +o4a?)/Vn—1]

> —2¢(n —1)a? —2¢(a3 + -+ +a?)
= 9e(n— D+ (1 - 2))a? — 2e(0d + -+ a?)
> —2¢(n — zad —2c(n —1)(1 —2)(n —1)(a3 +--- +a?)

—2c(a2 +---+a?)
= —2¢(n — )zat —2c[1+ (n—1)*(1 —2)](a3 +--- +a?),

where x is a real number satisfying 0 < x < 1.
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Choosing r = %, for fixed o # n + 1, from (42) and (43) we have

(44) Z h RIS TR RS — nH Z h hes it
[(’I’L - 2)2

n—1
= —nc(a? +---+a%)=—nc Z(h%)Q
i,j

>

—2(n —1)z)ca? —2¢[1 + (n — 1)2(1 —2)](a3 +--- + a?)

From (37), (43) and (44) we have
(45) II1>-nc Y  (h$)?=—nc|r|>.
i,j,a7n+1
Combining (35) and (38) with (45), we get
il

p—1

(46) SA(r?) >

Let f = 1/4/1 + |7|2, by use of the similar methods of proof of |u|? in Section 2,
we have |7|2 = 0. Hence M™ is a hyperbolic cylinder H'(c1) x S™ ! (cy) in ST (c).
2 2

Case (iii): sup|u|*> = @c and |u|? < @6. By (32), we know that M"™
has non-negative Ricci curvature. If there is a point p in M™ and a unit vector
v € T,M™ such that Ric(v,v)(p) = 0, then taking e; = v, we obtain \; = %
Hence

ul? = $+)\§+-~-+Ai—nH2 < @c,
namely
M4+ A <e
Since
(n—1)c= ”252 = Mot + )2
we get

(n—1ec>n—-1DM\+ -+ X)) >N+ + X)) =(n—1ec

This is a contradiction. Hence the Ricci curvature is positive. From the result due
to Yau [12], we know that M™ has unbounded volume and [, S™dv = oo for
any m. This completes the proof of Theorem.
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