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A NONLINEAR EVOLUTION INCLUSION IN PERFECT
PLASTICITY WITH FRICTION

A. AMASSAD, M. SHILLOR and M. SOFONEA

Abstract. We consider a nonlinear evolution inclusion associated with a time de-
pendent convex set in a Hilbert space. We prove an existence and uniqueness result

for the problem using classical results from the theory of evolution equations in-
volving maximal monotone operators, a fixed point argument and a regularization
method. We apply this result to a model for the quasistatic evolution process of

a perfectly plastic body which is in frictional contact with a rigid foundation and
obtain the existence of the unique stress field.

1. Introduction

In this paper we establish an existence and uniqueness theorem for an abstract
Cauchy problem in a Hilbert space involving the indicator function of a time-
dependent convex set. The main difficulty in studying the problem arises from
this time dependence of the convex set. We deal with it by imposing sufficient
regularity and compatibility on the problem data.

Problems of this type arise in models of quasistatic contact with friction of
perfectly plastic materials. There the main unknown is the stress tensor and the
time dependence of the convex set is a consequence of the time dependence of the
volume forces and tractions.

Initial and boundary value problems for perfectly-plastic materials have been
studied in [7, 9, 14] with classical displacements and tractions boundary condi-
tions. An existence result for a one-dimensional problem using the Prandtl-Reuss
plastic flow rule and unilateral conditions imposed on the velocity has been ob-
tained recently in [12]. Moreover, the existence and uniqueness of the stress tensor
and the existence of the velocity field for a quasistatic perfectly-plastic contact
problem with Tresca’s friction law was established in [3].

The aim of this paper is to extend some of the results in [3] to include various
nonlinear boundary conditions with friction. To that end we establish an existence
and uniqueness theorem for an abstract nonlinear evolution equation in a Hilbert
space. Then we apply it to problems in quasistatic perfect plasticity with friction.
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The paper is structured as follows. In Section 2 we state the abstract problem,
list the assumptions imposed on the data, state and then prove our main existence
and uniqueness result, Theorem 2.1. The proof is based on arguments from the
theory of variational inequalities, regularization and Banach’s fixed point theorem.
In Section 3 we present a general model for a class of problems for perfectly plastic
bodies with friction and we formulate it as a variational inequality for the stress
field. We apply Theorem 2.1 to this formulation and deduce the existence and
uniqueness of the solution of the mechanical problem. Finally, in Section 4 we
present a number of examples of friction laws to which our results apply.

2. An Abstract Existence Theorem

In this section we prove an abstract existence theorem for an evolution problem in
a Hilbert space. We will apply it in the following sections to problems involving
frictional contact of a perfectly plastic body with a rigid obstacle.

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉H and the
associated norm | · |H . Let A : H → H be an operator described below, let K and
Σ0 be two closed convex sets in H and let χ : [0, T ]→ H be a given function. For
t ∈ [0, T ], (T > 0), Σ(t) denotes the following convex set in H

Σ(t) = Σ0 + χ(t).(2.1)

Let y0 ∈ H and denote by ψK∩Σ(t) : H −→ (−∞,+∞] the indicator function of
the set K ∩ Σ(t).

We study the following Cauchy problem on H:

Find y : [0, T ]→ H such that

Aẏ(t) + ∂ψK∩Σ(t)(y(t)) 3 f(t) a.e. t ∈ (0, T ),(2.2)
y(0) = y0.(2.3)

Here f : [0, T ]→ H is given, a dot above a variable represents the time derivative
and ∂ψ denotes the subdifferential of ψ.

To study problem (2.2) and (2.3) we make the following assumptions on the
data: A : H −→ H is a positive definite symmetric operator, i.e.,

(a) 〈Ax, x〉H ≥ m|x|2H ∀x ∈ H, m > 0,(2.4)

(b) 〈Ax, y〉H = 〈Ay, x〉H ∀x, y ∈ H;

f ∈ L2(0, T ;H);(2.5)

χ ∈W 1,∞(0, T ;H);(2.6)

y0 = χ(0) ∈ Σ(0).(2.7)

Also, there exists a positive δ such that

χ(t) + z ∈ K for all t ∈ [0, T ], for z ∈ H, |z|H ≤ δ.(2.8)

The main result of our paper is the following.
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Theorem 2.1. When assumptions (2.4)–(2.8) hold, there exists a unique solu-
tion y of problem (2.2) and (2.3), such that

y ∈W 1,2(0, T ;H).

The proof of the Theorem 2.1 is based on classical results from the theory of
evolution equation with maximal monotone operators, fixed point arguments and
a regularization method. It is carried out below in several steps. We suppose that
η ∈ L2(0, T ;H) and consider the following auxiliary problem:

Find yη : [0, T ]→ H such that

Aẏη(t) + η(t) + ∂ψΣ(t)(yη(t)) 3 f(t) a.e. t ∈ (0, T ),(2.9)
yη(0) = y0.(2.10)

Lemma 2.2. Problem (2.9) and (2.10) has a unique solution yη ∈
W 1,2(0, T ;H).

Proof. We begin with a change of the dependent variable which leads to an
evolution equation associated with the fixed convex set Σ0. Let

yη = yη − χ.(2.11)

It is straightforward to show that yη ∈ W 1,2(0, T ;H) is a solution of (2.9) and
(2.10) if and only if yη ∈W 1,2(0, T ;H) and

Aẏη(t) + ∂ψΣ0(yη(t)) 3 f(t)−Aχ̇(t)− η(t) a.e. t ∈ (0, T ),(2.12)

yη(0) = 0.(2.13)

We note that (2.1) and (2.7) imply that 0 ∈ Σ0. Moreover, f − Aχ̇ − η ∈
L2(0, T ;H) by (2.4), (2.5) and (2.6). Therefore, by (2.4) and a classical result for
evolution equations (see e.g. [4, p. 189]) we obtain the existence of a unique func-
tion yη ∈ W 1,2(0, T ;H) which solves problem (2.12) and (2.13). This concludes
the proof. �

Let now µ > 0 be a viscosity coefficient, and denote byGµ : H → H the operator

Gµ(z) =
1
µ

(z − PKz) ∀z ∈ H,(2.14)

where PK represents the projection onK. Below we denote by C a positive constant
which depends on A, f , χ and T , but does not depend on µ, and whose value may
change from line to line. We define Λµ : L2(0, T ;H) −→ L2(0, T ;H) by

Λµ(η) = Gµ(yη)(2.15)

where, for a given η ∈ L2(0, T ;H), the function yη is the solution of the Cauchy
problem (2.9) and (2.10) given by Lemma 2.2.

Lemma 2.3. For each µ > 0 the operator Λµ has a unique fixed point ηµ.
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Proof. We use similar arguments to those in [1, 2, 13]. Let η1, η2 ∈ L2(0, T ;H)
and t ∈ [0, T ]. Using (2.9), (2.10) and algebraic manipulations we find

|yη1(t)− yη2(t))|2H ≤ C
∫ t

0

|η1(s)− η2(s)|2H ds.

Moreover, from (2.14) and (2.15) we obtain

|Λµ(η1(t))− Λµ(η2(t))|H ≤
2
µ
|yη1(t)− yη2(t)|H .

Combining the last two inequalities yields

|Λµ(η1(t))− Λµ(η2(t))|2H ≤
C

µ2

∫ t

0

|η1(s)− η2(s)|2H ds.

This implies that for p sufficiently large, a power Λpµ of Λµ is a contraction on
L2(0, T ;H), which concludes the proof of Lemma 2.3. �

Next, we consider the following regularized problem:

Find yµ : [0, T ] −→ H such that

Aẏµ(t) +Gµ(yµ(t)) + ∂ψΣ(t)(yµ(t)) 3 f(t) a.e. t ∈ (0, T ),(2.16)
yµ(0) = y0.(2.17)

Lemma 2.4. For µ > 0 the Cauchy problem (2.16) and (2.17) has a unique
solution yµ ∈W 1,2(0, T ;H).

Proof. Let ηµ be the unique fixed point of the operator Λµ and let yµ ∈
W 1,2(0, T ;H) be the solution of (2.9) and (2.10) for η = ηµ. Then, yµ is a so-
lution of (2.16) and (2.17). The uniqueness of the solution is obtained from the
uniqueness of the fixed point of Λµ. �

We now obtain a priori estimates on the solutions yµ of (2.16) and (2.17). Then
we study the behavior of the solutions when µ→ 0, which is the main ingredient
of the regularization. Here and below by µ→ 0 we mean any sequence µn → 0 for
n→∞. To that end let Gµ : H → R+ be given by

Gµ(z) =
1

2µ
|z − PKz|2H ∀z ∈ H.(2.18)

Lemma 2.5. The sequence {yµ} is bounded in L∞(0, T ;H).

Proof. Applying (2.16) to z − yµ(t) we obtain

〈Aẏµ(t), z − yµ(t)〉H + 〈Gµ(yµ(t)), z − yµ(t)〉H(2.19)

≥ 〈f(t), z − yµ(t)〉H ∀z ∈ Σ(t),

a.e. on t ∈ (0, T ). Let

yµ = yµ − χ.(2.20)
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Since 0 ∈ Σ0, by (2.1) we find χ(t) ∈ Σ(t) for all t ∈ [0, T ]. Therefore, choosing
z = χ(t) in (2.19) and using (2.20) and (2.1) we get

〈Aẏµ(t), yµ(t)〉H + 〈Gµ(yµ(t)), yµ(t)〉H(2.21)

≤ 〈f(t)−Aχ̇(t), yµ(t)〉H a.e. t ∈ (0, T ).

Now, the operator Gµ, given by (2.14), is the Gâteaux-derivative of the convex
function Gµ given by (2.18); therefore,

Gµ(z)− Gµ(y) ≥ 〈Gµ(y), z − y〉H ∀y, z ∈ H.(2.22)

Using (2.8) and (2.18) we obtain Gµ(χ(t)) = 0 for all t ∈ [0, T ]. It follows from
(2.22) that

〈Gµ(yµ(t)), yµ(t)〉H ≥ Gµ(yµ(t)) ∀t ∈ [0, T ].(2.23)

Then, (2.21) and (2.23) imply that

〈Aẏµ(t), yµ(t)〉H + Gµ(yµ(t)) ≤ 〈f(t)−Aχ̇(t), yµ(t)〉H a.e. t ∈ (0, T ).(2.24)

From (2.20), (2.17) and (2.7) we have yµ(0) = 0, and since Gµ(yµ(t)) ≥ 0 for all
t ∈ [0, T ], the previous inequality and (2.4) lead to

|yµ(s)|2H ≤ C
∫ s

0

|f(t)−Aχ̇(t)|H |yµ(t)|H dt ∀s ∈ [0, T ].(2.25)

Lemma 2.5 follows now from (2.20) and (2.25). �

Lemma 2.6. The sequence {Gµ(yµ)} is bounded in L1(0, T ;H).

Proof. Using (2.21) and Lemma 2.5 we find∫ T

0

〈Gµ(yµ(t)), yµ(t)〉Hdt ≤ C.(2.26)

Let z ∈ H such that |z|H ≤ δ. Using (2.8) we have χ(t) + z ∈ K which implies
that Gµ(χ(t)+z) = 0 for all t ∈ [0, T ]. Therefore, we obtain from (2.20) and (2.22)

〈Gµ(yµ(t)), z〉H ≤ 〈Gµ(yµ(t)), yµ(t)〉H ∀t ∈ [0, T ].(2.27)

Thus, from (2.27) we find

|Gµ(yµ(t))|H =
1
δ

sup
|z|H≤δ

〈Gµ(yµ(t)), z〉H(2.28)

≤ 1
δ
〈Gµ(yµ(t)), yµ(t)〉H ,

for all t ∈ [0, T ]. Lemma 2.6 follows now from (2.26) and (2.28). �

Lemma 2.7. The sequence {ẏµ} is bounded in L2(0, T ;H).

Proof. Using (2.19) we find

〈Aẏµ(t) +Gµ(yµ(t))− f(t), z − yµ(t)〉H ≥ 0 ∀z ∈ Σ(t), a.e. t ∈ (0, T ),

and by (2.1) and (2.20) we deduce

〈Aẏµ(t) +Aχ̇(t) +Gµ(yµ(t))−f(t), z−yµ(t)〉H ≥ 0 ∀z ∈ Σ0, a.e. t ∈ (0, T ).
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This implies

〈Aẏµ(t) +Aχ̇(t) +Gµ(yµ(t))− f(t), ẏµ(t)〉H = 0 a.e. t ∈ (0, T ).(2.29)

Integration of (2.29) over [0, T ], Lemma 2.6 and simple manipulations result in

|ẏµ|2L2(0,T ;H) +
∫ T

0

〈Gµ(yµ(t)), ẏµ(t)〉H dt ≤ C + C|ẏµ|L2(0,T ;H).(2.30)

Then by using (2.7), (2.8) and (2.17) we obtain∫ T

0

〈Gµ(yµ(t)), ẏµ(t)〉H dt = Gµ(yµ(T ))− Gµ(yµ(0)) ≥ −Gµ(y0) = 0.(2.31)

Lemma 2.7 follows now from (2.30) and (2.31), since ẏµ = ẏµ + χ̇. �

We have all the ingredients needed to prove Theorem 2.1.

Proof of Theorem 2.1.
Existence. Using Lemmas 2.5 and 2.7 we deduce that there exists an element
y ∈ W 1,2(0, T ;H) such that, for a subsequence which is still denoted by {yµ},
when µ→ 0 we have

yµ −→ y weak? in L∞(0, T ;H),(2.32)

ẏµ −→ ẏ weakly in L2(0, T ;H).(2.33)

We show that y is the solution of problem (2.2) and (2.3). First, we note that
(2.32) and (2.33) imply

yµ(t) −→ y(t) weakly in H ∀t ∈ [0, T ].(2.34)

It follows from (2.16) and (2.34) that y(t) ∈ Σ(t) for all t ∈ [0, T ]. Moreover, we
have from (2.22)

Gµ(y(t)) ≤ Gµ(yµ(t))− 〈Gµ(y(t)), yµ(t)− y(t)〉H
for all t ∈ [0, T ] and, using (2.14), we obtain

µ

∫ T

0

Gµ(y(t)) dt ≤ µ
∫ T

0

Gµ(yµ(t)) dt−
∫ T

0

〈y(t)− PKy(t), yµ(t)− y(t)〉H dt.

(2.35)

Using (2.24) and Lemma 2.5 yields∫ T

0

Gµ(yµ(t)) dt ≤ C.(2.36)

It now follows from (2.18), (2.32), (2.35) and (2.36) that∫ T

0

|y(t)− PKy(t)|2H dt = 0,

which implies that

y(t) ∈ K ∀t ∈ [0, T ].(2.37)
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Now, using (2.19) and (2.22) we have

〈Aẏµ(t),z − yµ(t)〉H + Gµ(z)− Gµ(yµ(t))

≥ 〈f(t), z − yµ(t)〉H ∀z ∈ Σ(t), a.e. t ∈ (0, T ).

Therefore, since Gµ(yµ(t)) ≥ 0, we find

〈Aẏµ(t), z − yµ(t)〉H ≥ 〈f(t), z − yµ(t)〉H ∀z ∈ K ∩ Σ(t), a.e. t ∈ (0, T ).

Choosing z ∈ L2(0, T ;H), such that z ∈ K ∩ Σ(t) a.e. t ∈ (0, T ) in the previous
inequality and integrating over [0, s] we get∫ s

0

〈Aẏµ, z〉H dt ≥
∫ s

0

〈Aẏµ, yµ〉H dt+
∫ s

0

〈f, z − yµ〉H dt ∀s ∈ [0, T ].

Using this inequality, (2.32), (2.33) and the lower-semicontinuity of the norm we
deduce ∫ s

0

〈Aẏ, z〉H dt ≥
∫ s

0

〈Aẏ, y〉H dt+
∫ s

0

〈f, z − y〉H dt ∀s ∈ [0, T ].(2.38)

We now apply in (2.38) the Lebesgue point argument for an L1 function, and
obtain

〈Aẏ(t), z(t)〉H ≥ 〈Aẏ(t), y(t)〉H + 〈f(t), z(t)− y(t)〉H(2.39)

∀z ∈ K ∩ Σ(t), a.e. t ∈ (0, T ).

Inequality (2.2) follows now from y(t) ∈ Σ(t) for all t ∈ [0, T ], (2.37) and (2.39). Fi-
nally, (2.3) is a consequence of (2.17) and (2.34). We conclude that y ∈
W 1,2(0, T ;H) is a solution of the Cauchy problem (2.2) and (2.3).

Uniqueness. To prove uniqueness, let {yi} for i = 1, 2, be two solutions of (2.2)
and (2.3), then

〈Aẏ1(t), z − y1(t)〉H ≥ 〈f(t), z − y1(t)〉H ,

〈Aẏ2(t), z − y2(t)〉H ≥ 〈f(t), z − y2(t)〉H ,

for all z ∈ K ∩ Σ(t), a.e. t ∈ (0, T ). It is straightforward to show that

〈Aẏ1(t)−Aẏ2(t), y1(t)− y2(t)〉H ≤ 0 a.e. t ∈ (0, T ).(2.40)

Integration of (2.40) over [0, s] and (2.3) yield

|y1(s)− y2(s)|2H ≤ 0 ∀s ∈ [0, T ].(2.41)

The uniqueness of the solution is now a consequence of (2.41). �
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3. Stress Formulation in Perfect Plasticity

In this section we consider a quasistatic problem which describes the frictional
contact between an elastic perfectly plastic body and a rigid foundation. We
obtain a variational formulation for the model and, by applying Theorem 2.1, we
establish the existence and uniqueness of the solution.

The mechanical state of a perfectly plastic body which occupies the domain
Ω ⊂ RM (M = 2, 3) evolves over the time interval [0, T ], for T > 0, due to body
forces and surface tractions which act on it. The surface Γ = ∂Ω, which is assumed
to be Lipschitz continuous, is decomposed into three disjoint (measurable) parts
ΓD, ΓN and ΓC , such that measΓD > 0. The body is clamped on ΓD × (0, T ),
surface tractions fN act on ΓN × (0, T ) and volume forces of density fA act in
Ω×(0, T ). We assume slow variation of the external forces and so the accelerations
may be neglected, leading to a quasistatic approximation of the process. The body
is in frictional contact with a rigid obstacle on ΓC × (0, T ), which we model by
a subdifferential type of inequality. The mechanical problem of frictional contact
may be formulated classically as follows:

Find a displacement field u : Ω× [0, T ] −→ R
M and a stress field σ : Ω× [0, T ] −→

SM such that

Aσ̇ + ∂ψK(σ) 3 ε(u̇) in Ω× (0, T ),(3.1)
Div σ + fA = 0 in Ω× (0, T ),(3.2)

u = 0 on ΓD × (0, T ),(3.3)
σν = fN on ΓN × (0, T ),(3.4)

u ∈ U, σν · (v − u̇) ≥ ϕ(u̇)− ϕ(v) ∀v ∈ U on ΓC × (0, T ),(3.5)
u(0) = u0, σ(0) = σ0 in Ω.(3.6)

Here, SM represents the space of second order symmetric tensors on RM , (3.1)
is the elastic-perfectly plastic constitutive law in which K is the set of elastic
stresses, A is the tensor of elastic compliance, ∂ψK denotes the subdifferential of
the indicator function ψK : SM −→ (−∞,+∞] and ν denotes the outward unit
normal to Ω on Γ. The inequality (3.5) models the frictional contact conditions, U
represents the set of admissible test functions, σν denotes the Cauchy stress vector
and ϕ is a given function. In the next section we shall present a number of concrete
examples of friction laws which may be cast in the form (3.5) by appropriate choice
of ϕ and U.

To obtain a weak formulation of (3.1)-(3.6) we introduce the following notation
and present preliminary material. For further details, we refer to [5, 6, 11]. We
denote by “ · ” and | · | the inner product and the Euclidean norm on SM and RM ,
respectively. We also use the spaces

H =
{
u = (ui) | ui ∈ L2(Ω)

}
, H =

{
σ = (σij) | σij = σji ∈ L2(Ω)

}
,

H1 =
{
u = (ui) | ui ∈ H1(Ω)

}
, H1 =

{
σ ∈ H | σij,j ∈ H

}
.
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Here and below i, j = 1, . . . ,M , summation over repeated indices is implied and
an index that follows a comma indicates a partial derivative. H, H, H1 and H1

are real Hilbert spaces endowed with their canonical inner products given by

〈u, v〉H =
∫

Ω

uivi dx, 〈σ, τ〉H =
∫

Ω

σijτij dx,

〈u, v〉H1 = 〈u, v〉H + 〈ε(u), ε(v)〉H, 〈σ, τ〉H1 = 〈σ, τ〉H + 〈Div σ,Div τ〉H ,
respectively, where ε : H1 → H and Div : H1 → H are the deformation and the
divergence operators, respectively, defined by

ε(v) = (εij(v)), εij(v) =
1
2

(vi,j + vj,i), Div σ = (σij,j).

The associated norms on the spaces H, H, H1 and H1 are denoted by | · |H , | · |H,
| · |H1 and | · |H1 , respectively.

For every element v ∈ H1 we also use the notation v to denote the trace of v
on Γ and we denote by vν and vτ the normal and the tangential components of
v on Γ given by

vν = v · ν, vτ = v − vνν.(3.7)

We also denote by σν and στ the normal and the tangential traces of σ ∈ H1

on ΓC (see, e.g., [11]), and note that when σ is a regular function,

σν = σν · ν, στ = σν − σνν,(3.8)

and the Green formula holds:

〈σ, ε(v)〉H + 〈Div σ, v〉H =
∫

Γ

σν · v da ∀v ∈ H1.(3.9)

Let V be a closed subspace of H1 given by

V =
{
v ∈ H1 | v = 0 on Γ1

}
.

By assumption measΓD > 0, and thus the Korn inequality holds, i.e., there exists
C > 0 depending only on Ω and ΓD such that

|ε(u)|H ≥ C|u|H1 ∀u ∈ V(3.10)

(see, e.g., [10, p. 79]). Next, the inner product 〈· , ·〉V on V is given by

〈u, v〉V = 〈ε(u), ε(v)〉H,(3.11)

then | · |H1 and | · |V are equivalent norms on V . Therefore, (V, | · |V ) is a real
Hilbert space.

We make the following assumptions on the data of problem (3.1)–(3.6).
The operator A : Ω× SM −→ SM is a symmetric positive definite tensor, i.e.,

(a)Aijkh ∈ L∞(Ω) i, j, k, h = 1, . . . ,M ;
(b)Aσ · τ = σ · Aτ σ, τ ∈ SM , a.e. in Ω;
(c) there exists α > 0 such that Aσ · σ ≥ α|σ|2, σ ∈ SM , a.e. in Ω.

(3.12)

K ⊂ SM is a closed convex set such that 0 ∈ K.(3.13)
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The forces and the tractions satisfy

fA ∈W 1,∞(0, T ;H), fN ∈W 1,∞(0, T ;L2(ΓN )M ).(3.14)

Let K denote the set

K = { τ ∈ H | τ(x) ∈ K a.e. x ∈ Ω }(3.15)

and, for all t ∈ [0, T ], let F(t) be the element of V given by

〈F(t), v〉V =
∫

Ω

fA(t) · v dx+
∫

ΓN

fN (t) · v da ∀v ∈ V.(3.16)

We suppose that U ⊂ H1, ϕ : ΓC ×RM −→ R, and define the functional j : H1 →
(−∞,+∞] by

j(v) =


∫

ΓC

ϕ(v) da if ϕ(v) ∈ L1(ΓC),

+∞ otherwise.
(3.17)

We also denote by D(j) the effective domain of j in V ∩ U , i.e.,

D(j) = { v ∈ V ∩ U | j(v) < +∞ },

and, for all t ∈ [0, T ], let Σ(t) be given by

Σ(t) = { τ ∈ H | 〈τ, ε(v)〉H + j(v) ≥ 〈F(t), v〉V ∀v ∈ D(j) }.(3.18)

In the sequel we denote by χ(t) = ε(F(t)) and assume that there exists δ > 0 such
that

χ(t) + τ ∈ K for all t ∈ [0, T ], for τ ∈ H, |τ |H ≤ δ,(3.19)

D(j) = V ∩ U and V ∩ U is a subspace of H1,(3.20)

j(v) ≥ 0 and j(αv) = αj(v) ∀v ∈ D(j), α ≥ 0,(3.21)

σ0 = χ(0).(3.22)

We note that assumptions (3.19) and (3.22) represent a compatibility condition on
the problem data similar to the one used in [7, 9, 14]. Moreover, j is a positively
homogeneous functional on V ∩ U .

Next, we obtain a variational formulation of the mechanical problem (3.1)–(3.6).
To this end, we assume that {u, σ} are regular functions satisfying (3.1)–(3.6) and
let v ∈ D(j), t ∈ [0, T ]. Using (3.9) and (3.2) we have

〈σ(t), ε(v)− ε(u̇(t))〉H = 〈fA(t), v − u̇(t)〉H +
∫

Γ

σ(t)ν · (v − u̇(t)) da,

and, using (3.3), (3.4) and (3.16), we find

〈σ(t), ε(v)− ε(u̇(t))〉H = 〈F(t), v − u̇(t)〉V +
∫

ΓC

σ(t)ν · (v − u̇(t)) da.(3.23)
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Moreover, it follows from (3.5) and (3.17) that∫
ΓC

σ(t)ν · (v − u̇(t)) da ≥ j(u̇(t))− j(v).(3.24)

Using now (3.23) and (3.24) we obtain

〈σ(t), ε(v)− ε(u̇(t))〉H + j(v)− j(u̇(t)) ≥ 〈F(t), v − u̇(t)〉V .(3.25)

Choosing now v = 2u̇(t) and v = 0 in (3.25) and using (3.21), we deduce

〈σ(t), ε(u̇(t))〉H + j(u̇(t)) = 〈F(t), u̇(t)〉V .(3.26)

Thus, from (3.25) and (3.26) it follows that σ(t) ∈ Σ(t) and since by (3.1) and
(3.15) σ(t) ∈ K, we obtain

σ(t) ∈ K ∩ Σ(t).(3.27)

Using now (3.18) and (3.26) we find

〈τ − σ(t), ε(u̇(t))〉H ≥ 0 ∀τ ∈ Σ(t),(3.28)

and from (3.1) it follows that

〈Aσ̇(t), τ − σ(t)〉H ≥ 〈τ − σ(t), ε(u̇(t))〉H ∀τ ∈ K.(3.29)

We conclude from (3.28) and (3.29) that

〈Aσ̇(t), τ − σ(t)〉H ≥ 0 ∀τ ∈ K ∩ Σ(t).(3.30)

Therefore, by (3.6), (3.27) and (3.30) we obtain the following variational formula-
tion in terms of the stress field of the problem (3.1)–(3.6):

Find σ : [0, T ] −→ H1 such that

Aσ̇(t) + ∂ψK∩Σ(t)(σ(t)) 3 0 a.e. t ∈ (0, T ),(3.31)
σ(0) = σ0.(3.32)

Here, ∂ψK∩Σ(t) denotes the subdifferential of the indicator function ψK∩Σ(t) : H −→
(−∞,+∞], for all t ∈ [0, T ].

The main result in this section is the following.

Theorem 3.1. Under the assumptions (3.12)–(3.14), (3.19)–(3.22), there ex-
ists a unique solution σ of the Cauchy problem (3.31) and (3.32) such that σ ∈
W 1,2(0, T ;H). Moreover, if D(Ω)M ⊂ U , then Div σ ∈W 1,∞(0, T ;H).

We conclude from Theorem 3.1 the existence of a unique weak solution, in terms
of stress, to the mechanical problem (3.1)–(3.6).

Proof. Let Σ0 = { τ ∈ H | 〈τ, ε(v)〉H+j(v) ≥ 0 ∀v ∈ D(j) }. Then Σ0 is a closed
convex set in H and, using (3.11), (3.18) and keeping in mind that χ = ε(F), we
find

Σ(t) = Σ0 + χ(t) ∀t ∈ [0, T ].(3.33)
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Moreover, it follows from (3.15) that K is a closed convex set in H and from (3.14)
and (3.16) we deduce F ∈W 1,∞(0, T ;V ) which implies

χ ∈W 1,∞(0, T ;H).(3.34)

Since j(v) ≥ 0 ∀v ∈ D(j) (see (3.21)), it follows that 0 ∈ Σ0 and from (3.33) and
(3.22) we find

σ0 = χ(0) ∈ Σ(0).(3.35)

Using now (3.33), (3.34), (3.12) (3.19) and (3.35), we may apply Theorem 2.1
with the space H and f = 0. Thus, we obtain the existence and uniqueness of
σ ∈ W 1,2(0, T ;H) which satisfies (3.31) and (3.32). Since σ(t) ∈ K ∩ Σ(t) for all
t ∈ [0, T ], it follows from (3.18) that

〈σ(t), ε(v)〉H + j(v) ≥ 〈F(t), v〉V ∀v ∈ D(j), t ∈ [0, T ].

Next, we remark that if D(Ω)M ⊂ U then D(Ω)M ⊂ V ∩ U = D(j) (see (3.20)).
Therefore, taking v = ±ϕ ∈ D(Ω)M in the previous inequality and using (3.16)
and (3.17) we deduce

Div σ(t) + fA(t) = 0 in Ω, ∀t ∈ [0, T ].(3.36)

The fact that Div σ ∈W 1,∞(0, T ;H) is now a consequence of (3.36) and (3.14). �

4. Examples of Friction Laws

In this section we present a number of friction laws which lead to inequalities of
the form (3.5) and for which conditions (3.20) and (3.21) hold. We conclude from
Theorem 3.1 the existence of a unique solution for each one of the quasistatic
contact problems with these frictional boundary conditions.

Example 4.1. Bilateral contact with Tresca’s friction law.
We consider, following, e.g., [1, 3, 5, 8], the boundary condition when contact

is maintained and the friction bound is prescribed on ΓC × (0, T ). Thus,

uν = 0, |στ | ≤ g,
|στ | < g ⇒ u̇τ = 0,
|στ | = g ⇒ u̇τ = −λστ , for some λ ≥ 0.

(4.1)

Here g represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins. We assume g ∈ L∞(ΓC) and g ≥ 0 a.e. on ΓC . The
contact described with (4.1) is bilateral, i.e., there is no loss of contact during the
process. The set of admissible test functions U is given by

U = { v ∈ H1 | vν = 0 on ΓC},

and, using (3.7) and (3.8), it is straightforward to show that if {u, σ} is a pair of
regular functions satisfying (4.1) then

σν · (v − u̇) ≥ g|u̇τ | − g|vτ | ∀v ∈ U,
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a.e. on ΓC × (0, T ). Thus, (3.5) holds with the choice ϕ(v) = g|vτ | and we obtain
from (3.17) that

j(v) =
∫

ΓC

g|vτ |da ∀v ∈ H1.

The assumptions (3.20) and (3.21) hold in this case. Therefore, Theorem 3.1 yields
the existence and uniqueness of a function σ which represents a weak solution
in terms of the stress for the mechanical problem (3.1)–(3.4), (3.6), (4.1). The
existence of a weak solution in terms of the velocity for the same problem has
been proved in [3], using the properties of the spaces BD(Ω).

Example 4.2. Frictionless contact problem with damped normal response.
We consider now a contact problem similar to that proposed in [5, p. 147]. It

consists of the following boundary conditions on ΓC × (0, T ):

g1 ≤ σν ≤ g2,
g1 < σν < g2 ⇒ u̇ν = 0,
σν = g1 ⇒ u̇ν ≥ 0,
σν = g2 ⇒ u̇ν ≤ 0,
στ = 0.

(4.2)

Here g1 and g2 are prescribed functions in L∞(ΓC) which satisfy g1 ≤ 0 ≤ g2, a.e.
on ΓC . It is straightforward to show that if {u, σ} is a pair of regular functions
satisfying (4.2), then (3.5) holds with

U = H1, ϕ(v) = g2v
−
ν − g1v

+
ν .

Here, r+ and r− represent the positive and the negative part of r, respectively,
given by r+ = max{r, 0}, r− = max{−r, 0}. Then it follows from (3.17) that

j(v) =
∫

ΓC

(g2v
−
ν − g1v

+
ν )da ∀v ∈ H1.

The assumptions (3.20) and (3.21) are satisfied; hence, we may apply Theorem
3.1 to the mechanical problem (3.1)–(3.4), (3.6), (4.2) and conclude that it has a
unique weak solution, in terms of the stress.

Example 4.3. Damped normal response and Tresca’s friction law.
This is a combination of (4.1) and (4.2) above. The boundary conditions on

ΓC × (0, T ) are the following:

g1 ≤ σν ≤ g2,
g1 < σν < g2 ⇒ u̇ν = 0,
σν = g1 ⇒ u̇ν ≥ 0,
σν = g2 ⇒ u̇ν ≤ 0,
|στ | ≤ g,
|στ | < g ⇒ u̇τ = 0,
|στ | = g ⇒ u̇τ = −λστ for some λ ≥ 0.

(4.3)

Here g1, g2 and g are prescribed functions lying in L∞(ΓC) which satisfy g ≥ 0,
g1 ≤ 0 ≤ g2, a.e. on ΓC . The boundary conditions (4.3) imply (3.5) with

U = H1, ϕ(v) = g2v
−
ν − g1v

+
ν + g|vτ |,
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where r+ and r− are defined as in example 4.2. Using (3.17) we obtain

j(v) =
∫

ΓC

(g2v
−
ν − g1v

+
ν + g|vτ |) da ∀v ∈ H1.

We conclude that the mechanical problem (3.1)–(3.4), (3.6) and (4.3) has a unique
weak solution, in terms of the stress, by Theorem 3.1, since the assumptions (3.20)
and (3.21) are satisfied.
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