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PREVALENCE OF SOME KNOWN TYPICAL PROPERTIES

H. SHI

Abstract. In this paper, some known typical properties of function spaces are

shown to be prevalent in the sense of the measure-theoretic notion of Haar null.

1. Introduction

In 1994, B. R. Hunt, T. Sauer and J. A. Yorke [8] rediscovered the idea of defining
Haar null sets in a Banach space (see such sets in [6] and [16]). They termed
a Borel Haar null set and all its subsets shy. However, Hunt, Sauer and Yorke
emphasized the applications of shy sets to the study of properties of function
spaces. An interesting result [9] shows that the known typical property of nowhere
differentiability in the space of continuous functions is also a prevalent property
in the sense of shyness. The purpose of this paper is to show that some known
typical properties of function spaces are also prevalent. Of course, generally a
typical property may or may not be prevalent in a function space, and vice verse
(see [14] for example).

Throughout this paper we use the universal measurability of the small sets as
required by Christensen [6]. We record several definitions from [6], [8] and [16] as
follows.

A universally measurable set S in a Banach space B is said to be shy if there
exists a tight, Borel probability measure µ on X such that µ(S + x) = 0 for any
x ∈ B.

A set in a Banach space is prevalent if it is the complement of a shy set.
A prevalent property in a Banach space is a property which holds for all

points except for a shy set.
A probability measure µ on a Banach space X is transverse to a set S if

µ({z ∈ X : x+ z ∈ S}) = 0 for all x ∈ X.

2. A Prevalent Property in C[a, b]

A continuous function is called nowhere monotonic type on an interval [a, b] if
for any γ ∈ R the function f(x)− γx is not monotonic on any subinterval of [a, b].

It is well known (e.g. see [4, pp. 461–464]) that being nowhere monotonic type
is a typical property in the space C[a, b]. We will show that this typical property
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is also a prevalent property in C[a, b]. This result follows easily from the results
of Hunt [9]. Our proof, however, is more elementary.

Theorem 2.1. The prevalent function f ∈ C[a, b] is of nowhere monotonic
type.

Proof. Given any interval I, let

G(I) = {f ∈ C[a, b] : f is of monotonic type on I},

and let

Gn(I) =
{
f ∈ C[0, 1] :

there exists a γ ∈ [−n, n] such that
f − γx is monotonic on I

}
.

Then

G(I) =
∞⋃
n=1

Gn(I).

It is easy to show that Gn(I) is a closed set and so G(I) is a Borel set. Now
we show that Gn(I) is a shy set. Choose a function g ∈ C[a, b] that is nowhere
differentiable on I. For any f ∈ C[a, b], let

Gn,g = {λ ∈ R : f + λg ∈ Gn}.

Then Gn,g is a singleton or empty set. If not, there exist λ1, λ2 ∈ Gn,g, λ1 6= λ2.
Then there exist γ1 and γ2 such that f+λ1g−γ1x and f+λ2g−γ2x are monotonic
on I. Therefore

(f + λ1g − γ1x)− (f + λ2g − γ2x) = (λ1 − λ2)g + (γ2 − γ1)x

is differentiable almost everywhere on I. This contradicts our assumption that the
function g is nowhere differentiable. Thus Gn,g is a singleton or empty set and
therefore the set Gn(I) is a shy set. The countable union of G(Ik) over all rational
intervals Ik is also shy. The result follows. �

3. A Prevalent Property in C∞[0, 1]

C∞[0, 1] is the space of all infinitely differentiable functions on [0, 1], equipped
with the metric d defined by

d(f, g) =
∞∑
n=0

1
2n

pn(f − g)
1 + pn(f − g)

,

where pn(f) = sup{|f (n)(x)| : x ∈ [0, 1]}. C∞[0, 1] is complete under the metric
d. A function f ∈ C∞[0, 1] is said to be analytic at a point x0 if its Taylor series

T (f, x0) =
∞∑
n=0

f (n)(x0)
n!

(x− x0)n

converges to f in an open neighbourhood of x0. There are several papers (e.g.
[1], [5], and [12]) devoted to the constructions of nowhere analytic functions in
C∞[0, 1], or to showing that nowhere analytic functions in C∞[0, 1] are typical.
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In this section a very simple method will be given to show that nowhere analytic
functions in C∞[0, 1] are both typical and prevalent.

Theorem 3.1. Both the typical function and the prevalent function in C∞[0, 1]
are nowhere analytic on [0, 1].

Proof. Let I ⊆ [0, 1] be a closed interval and xI be the center point of I. Let

C(I) = {f ∈ C∞[0, 1] : T (f, xI) converges to f on I}.

Then C(I) is closed. In fact, let {fn} be a Cauchy sequence in C(I). Then there
exists a function f ∈ C∞[0, 1] such that fn → f in the metric d. For arbitrary
integers n,N and x ∈ I,∣∣∣∣∣f(x)−

N∑
k=0

f (k)(xI)
k!

(x− xI)k
∣∣∣∣∣

≤

(
1 +

N∑
k=0

2k|x− xI |k

k!

)
d(fn, f) +

∣∣∣∣∣fn(x)−
N∑
k=0

f
(k)
n (xI)
k!

(x− xI)k
∣∣∣∣∣ .

Thus, for any n and x ∈ I,

limN→∞

∣∣∣∣∣f(x)−
N∑
k=0

f (k)(xI)
k!

(x− xI)k
∣∣∣∣∣ ≤

(
1 +

∞∑
k=0

2k|x− xI |k

k!

)
d(fn, f).

Let n→∞. Then, for all x ∈ I,

limN→∞

∣∣∣∣∣f(x)−
N∑
k=0

f (k)

k!
(x− xI)k

∣∣∣∣∣ = 0.

Thus f ∈ C(I) and so C(I) is closed. Clearly, the set C(I) is a linear, proper
subspace of C∞[0, 1]. Thus C(I) is nowhere dense and shy. Notice that the union
of all C(I) over all rational intervals I consists of all functions in C∞[0, 1] that are
analytic at some point of [0, 1]. Thus the result follows. �

4. Prevalent Properties in bA, bDB1, bB1

Following Bruckner [2] and Bruckner and Petruska [3] we use bA, bDB1, bB1

to denote the spaces of bounded approximately continuous functions, bounded
Darboux Baire 1 functions, and bounded Baire 1 functions defined on [0, 1] re-
spectively, all of which are equipped with supremum norms. All these spaces are
Banach spaces and form a strictly increasing system of closed subspaces (see [2],
[3]). In [3] it was shown that for a given arbitrary Borel measure µ on [0, 1] the
typical function in F = bA, bDB1, or bB1 is discontinuous µ almost everywhere.
We will show that such typical properties in these three spaces are also prevalent
properties for any σ-finite Borel measure.

Theorem 4.1. Let µ be a σ-finite Borel measure on [0, 1]. The prevalent func-
tion in F = bA, bDB1, or bB1 is discontinuous µ almost everywhere on [0, 1].
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Proof. Let

S = {f ∈ F : f is continuous on a set Fλ, µ(Fλ) > 0} .

We show first that the set S is a Borel set. Note

S =
∞⋃
n=1

A 1
n

where

A 1
n

=
{
f ∈ F : µ(Cf ) ≥ 1

n

}
and Cf is the set of continuity points of f . Let {fm} be a Cauchy sequence in A 1

n
,

then fm → f ∈ F uniformly. Let

C =
∞⋂
N=1

∞⋃
m=N

Cfm .

Then C ⊆ Cf . Note

µ(C) = lim
N→∞

µ(
∞⋃

m=N

Cfm) ≥ lim inf
m→∞

µ(Cfm) ≥ 1
n
.

So f ∈ A 1
n

. Thus A 1
n

is closed and the set S is a Borel set.
We now show that the set S is a shy set. It is well known that there is

a function g ∈ F which is discontinuous µ almost everywhere on [0, 1]. See
[3, pp. 331, Theorem 2.4]. We will use this function g as a probe. For any
given function f ∈ F , let

Sg = {λ ∈ R : f + λg ∈ S}.

We claim that Sg is Lebesgue measure zero. For distinct λ1, λ2 ∈ Sg, if µ(Fλ1 ∩
Fλ2) > 0, then

(f + λ1g)− (f + λ2g) = (λ1 − λ2)g

would be continuous on Fλ1 ∩ Fλ2 . This contradicts the choice of the function g.
Thus for distinct λ1 and λ2 the corresponding sets Fλ1 and Fλ2 satisfy µ(Fλ1 ∩
Fλ2) = 0. Since µ is σ-finite on [0, 1] then [0, 1] =

⋃∞
i=1Xi where µ(Xi) <∞ and

Xi ∩Xj = φ, i 6= j. Let

Smn =
{
λ ∈ Sg : µ(Fλ ∩Xm) ≥ 1

n

}
.

Then Smn is finite. If not, there exist countably many λi ∈ Smn such that

∞ =
∞∑
i=1

µ(Fλi ∩Xm) = µ

(
Xm ∩

( ∞⋃
i=1

Fλi

))
≤ µ(Xm) <∞.

This is a contradiction. Hence Smn is finite and Sg =
⋃∞
m,n=1 Smn is at most

countable. Thus Sg is Lebesgue measure zero and the result follows. �
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In the proof of Theorem 4.1 we did not use any special propertes of functions
in bA, bDB1, bB1, except that in all these classes there are functions that are
discontinuous µ almost everywhere on [0, 1]. Thus, we can extend Theorem 4.1 in
a general form as follows (see [11] for a typical version).

Theorem 4.2. Let µ be a σ-finite Borel measure on [0, 1]. Let F be a linear
space of bounded functions f : [0, 1] → R with supremum metric. Suppose that
there is a function f ∈ F that is discontinuous µ almost everywhere on [0, 1].
Then the prevalent function in F is discontinuous µ almost everywhere on [0, 1].

5. Prevalent Properties in BSC[a, b]

The space BSC[a, b] of bounded symmetrically continuous functions equipped with
the supremum norm is a complete space (see [15]). From [13] we know that the
set of functions f ∈ BSC[a, b], which have c-dense sets of points of discontinuity,
is residual. In this section we show that such a set is also prevalent. Here we say
that a set is c-dense in a metric space (X, ρ) if it has continuum many points in
every non-empty open set.

In [10] Pavel Kostyrko showed the following theorem.

Theorem 5.1. Let (X, ρ) be a metric space. Let F be a linear space of bounded
functions f : X → R furnished with the supremum norm ‖f‖ = supx∈X{|f(x)|}.
Suppose that in F there exists a function h such that its set D(h) of points of
discontinuity is uncountable. Then

G = {f ∈ F : D(f) is uncountable}
is an open residual set in (F, d), d(f, g) = ‖f − g‖.

By modifying the methods in [13] we can get a stronger result in separable
metric spaces.

Theorem 5.2. Let (X, ρ) be a separable metric space. Let F be a complete
metric linear space of bounded functions f : X → R furnished with supremum
norm ‖f‖ = supx∈X{|f(x)|}. Suppose that there is a function h such that its set
D(h) of points of discontinuity is c-dense in (X, ρ). Then

G = {f ∈ F : D(f) is c-dense}
is a dense residual Gδ set in (F, d), where d(f, g) = ‖f − g‖.

Proof. Given a non-empty set O, we can show that

A(O) = {f ∈ F : D(f) ∩O is of power c}
is a dense open set by using the methods in [13]. In fact, let {fn} ⊆ F \ A(O)
be a convergent sequence. Then there is a function f ∈ F such that fn −→ f
uniformly. Then D(fn)∩O is at most countable and so the union

⋃∞
n=1D(fn)∩O

is at most countable. Since f is continuous at each point x ∈ O \
⋃∞
n=1D(fn)∩O,

so f ∈ F \A(O). Hence F \A(O) is closed and A(O) is open.
Now we show that A(O) is dense in F . For every ball B(f, ε) ⊆ F , if f ∈ A(O)

there is nothing to prove. We assume f ∈ F \A(O), then f has at most countably
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many points of discontinuity in O. From the assumption there is a function h ∈ F
such that h has a c-dense set of points of discontinuity in O. Let M be a constant
such that |h(x)| ≤ M for all x ∈ X and set g = f + ε

2M h. Then g ∈ F is
discontinuous in continuum many points of O. It is easy to see g ∈ A(O)

⋂
B(f, ε)

and hence A(O) is dense.
Let {xi} be a dense countable subset of X, then

G =
∞⋂
i=1

∞⋂
m=1

A(B(xi, 1/m))

is a dense Gδ set where B(xi, 1/m) is the open ball centered at xi and with radius
1/m. Thus G is a dense residual Gδ set in F . �

Corollary 5.3. The typical functions in R[a, b], the space of Riemann inte-
grable functions furnished with the supremum norm, have c-dense sets of points of
discontinuity.

Proof. The set of points of discontinuity of any bounded symmetrically contin-
uous function is Lebesgue measure zero [15, pp. 27, Theorem 2.3]. Thus, such a
function is Riemann integrable by the well known fact that a bounded Lebesgue
measurable function is Riemann integrable iff its set of points of discontinuity is
Lebesgue measure zero [4]. Tran in [17] has constructed a symmetrically contin-
uous function whose set of points of discontinuity is c-dense. Hence the result
follows. �

The following theorem gives a similar form of Theorem 5.2 in the sense of
prevalence.

Theorem 5.4. Let (X, ρ) be a separable metric space, µ be a σ-finite Borel
measure that is non-zero on every open set in (X, ρ). Let F be a complete metric
linear space of bounded functions f : X → R furnished with the supremum norm
‖f‖ = supx∈X{|f(x)|}. Suppose that in F there exists a function h such that its
set of points of discontinuity is c-dense in (X, ρ). Then the prevalent function
f ∈ F has a c-dense set of points of discontinuity.

Proof. Let
G = {f ∈ F : D(f) is c-dense in X}.

By Theorem 5.2 the set G and its complement are Borel sets. We need only show
that for every f ∈ F the following set

S =
{
λ ∈ R :

f + λh is discontinuous at most countably many
points in some non-empty open set Oλ ⊆ (X, ρ)

}
.

is a Lebesgue measure zero set. Using the method in the proof of Theorem 4.1 we
can show that the set S is at most countable. Therefore the set F is shy and the
result follows. �

Corollary 5.5. The prevalent function f ∈ BSCn[a, b], the space of bounded
n-th symmetrically continuous functions furnished with the supremum norm, has
a c-dense set of points of discontinuity.
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Proof. The space BSCn[a, b] is a complete metric space (see [10]). By Tran’s
results [17], there exist functions h1 and h2 in BSC1[a, b] and BSC2[a, b] respec-
tively such that h1 and h2 have c-dense sets of points of discontinuity on [a, b]. Also
note that BSC1[a, b] = BSC[a, b] ⊆ BSC2k−1[a, b] and BSC2[a, b] ⊆ BSC2k[a, b]
(see [10] for details). Thus, the result follows from Theorem 5.4. �

Applying Theorem 5.4 and Tran’s results [17] we immediately obtain a prevalent
property in the space R[a, b], which is also a typical property in R[a, b] as shown
in Corollary 5.3.

Corollary 5.6. The prevalent function f ∈ R[a, b] has a c-dense set of points
of discontinuity.

In the following theorem we show that the non-countable continuity is both a
typical property and a prevalent property in the space BSC[a, b]. Here a function
f : X ⊆ R→ R is called countably continuous if there is a countable cover {Xn :
n ∈ N} of X (by arbitrary sets) such that each restriction f |Xn is continuous.

By constructing an example of a non-countably continuous function Ciesiel-
ski [7] answered a question of L. Larson who asked whether every symmetrically
continuous function is countably continuous. We will use this construction to
show that the non-countable continuity is both a typical property and a prevalent
property in the space BSC[a, b].

Theorem 5.7. Both the typical function and the prevalent function f ∈
BSC[a, b] are not countably continuous.

Proof. Let

S = {f ∈ BSC[a, b] : f is countably continuous}.

Then the set S is a linear, closed and proper space. In fact, for all f1, f2 ∈ S,
there are countable covers {X1

n : n ∈ N} and {X2
n : n ∈ N} of [a, b] such that

the restrictions fi|Xi
n are continuous. So {X1

i ∩ X2
j : i, j ∈ N} is a countable

cover of [a, b] and the restrictions fi|X1
i ∩ X2

j are continuous for any α, β ∈ R.
Therefore S in linear. Let {fn} ⊆ S be a convergent sequence. Then there is a
function f ∈ BSC[a, b] such that fn → f uniformly. For each fn there exists a
countable cover {Xn

i } of [a, b] such that fn|Xn
i is continuous. so

⋂∞
n=1X

n
i is a

countable cover of [a, b] and the restriction fm|
⋂∞
n=1X

n
i is continuous for any m, i.

Thus the restriction f |
⋂∞
n=1X

n
i is continuous since f is the uniform limit of fn.

Therefore f ∈ S and S is closed. S is proper from Ciesielski’s construction of a
non-countably continuous function [7]. Therefore, the set S is closed and nowhere
dense. So the non-countable continuity is a typical property.

On the other hand, the intersection of the set S with any line with the direction
g ∈ BSC[a, b] \ S is Lebesgue measure zero. Therefore the set S is shy and the
non-countable continuity is also a prevalent property. �
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