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ON A PROBLEM OF FUJII CONCERNING RIEMANN’S
ζ-FUNCTION

J.-C. PUCHTA

Abstract. We improve bounds of A. Fujii concerning the distribution of zeros of

Riemann’s ζ-function with respect to logarithms of prime numbers.

H. Rademacher ([5, p. 456]) posed the problem of the distribution of the zeros
of ζ(s) (mod 1). Especially he asked for the distribution of those zeros ρ = σ+iγ,
such that for a prime p and an integer k we have∥∥∥∥γ k log p

2π
− 1

2

∥∥∥∥ < 1
4
.

Defining Ξ(pk) by

Ξ(pk) :=
{
γ > 0 :

∥∥∥∥γ log pk
2π

− 1
2

∥∥∥∥ < 1
4
.

}
A. Fujii[2] proved that

{γ > 0} =
∞⋃
k=1

Ξ(pk).

Thus the following function M(T ) is well defined:

M(T ) := min

{
K : {0 < γ < T} ⊆

K⋃
k=1

Ξ(pk).

}
In a subsequent article [3] he showed that

log log T
log log log T

�M(T )� eA log2 T .

Furthermore, under the Riemannian hypothesis, the right hand side can be re-
placed by T 2 log4 T . He asked whether these bounds can be improved. The aim
of this note is to give such an improvement.

Theorem 1. With the notation as above, we have

M(T )� T 18/13+ε.
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If we assume the Riemannian Hypothesis, we have

M(T )� T log3+ε T.

Theorem 2. With the notation as above we have

M(T )� log1/2 T

log3/4
2 T

.

If we assume that

N(T ) =
T

2π
log

T

2π
− T

2π
+ o

(
log T
log2 T

)
where N(T ) denotes the number of zeros of ζ with imaginary part ≤ T , we even
have

M(T ) ≥ 1
9

log T

for arbitrary large T .

A probabilistic argument shows that one should expect M(T ) � log T , thus
Theorem 2 seems to be closer to the truth than Theorem 1.

The proof of the upper bound will be based on the following estimate on gaps
between primes.

Theorem 3 (Selberg, Heath-Brown). We have∑
pn≤x

(pn+1 − pn)2 � x23/18+ε.

If we assume RH, the right hand side can be replaced by x log3+ε x.

Proof. The estimate under RH was given by Selberg[6], the unconditional case
was treated by Heath-Brown[4]. �

For the lower bound we need an estimate for the distribution of the zeros of ζ.
Define as usual S(t) = arg ξ(1/2 + it)− arg ξ(2 + it).

Theorem 4. For any integer k ≥ 1 and any h < 1 we have∫ T

0

(S(t+ h)− S(t))2k dt� T
(
ck4 log(3 + h log T )

)k
.

Proof. This was proven by Fujii[1]. �

Now we can give the upper bound stated in Theorem 1. Let x < T be some real
number, and assume that for all pk ≤M we have ‖x log pk‖ < 1

4 . If pk runs through
the interval [M/2,M ], x log pk runs through an interval of length (log 2 + o(1))x.
Thus in this interval there are � x primes pk, such that x log pk+1 − x log pk > 1

2 ,
from which we deduce (pk+1 − pk)� M

x . Hence we obtain the bound∑
pn≤M

(pn+1 − pn)2 � x

(
M

x

)2

= M2x−1.
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If we estimate the left hand side using Theorem 3, we obtain M23/18+ε resp.
M log3+εM �M2x−1 under RH. Solving for M gives the claimed upper bound.

To prove the second estimate we note that by the pigeon-hole-principle for any
given 0 < ε < 1/2 and real numbers α1, . . . , αn there is some sequence 0 < t1 <
. . . < tN < Nε−n, such that ‖tiαj‖ < ε for all i and j and |ti − tj | > 1. Set
αj = log pj , ε = 1/8. Then there are N disjoint intervals I of length � log−1 pn,
such that for all t ∈ I we have ‖t log pj‖ < 1

4 , j ≤ n, and all these intervals are
contained in [0, N8n]. Now we define n = [c(log T )1/2 log−3/4

2 T ], N = [T8−n]
where c is a sufficiently small constant. Since n = o(log T ), this implies that
N > T 2/3 for T sufficiently large, thus the total length of all intervals is > 2

√
T ,

thus at least N/2 of the intervals are contained within [
√
T , T ]. Now assume that

one of these intervals contains the imaginary part γ of a zero of ζ. Then we have
‖γ log pj‖ < 1/2 for all j ≤ n, thus M(T ) > n. If on the other hand none of these
intervals contains a zero, we can give a lower bound for∫ T

0

(
S

(
t+

c

log n

)
− S(t)

)2k

dt.

We choose c such that c
logn is half the length of an interval I. Then on at least

one half of I we have
∣∣∣S (t+ c

logn

)
− S(t)

∣∣∣� log T
logn , and there are at least N such

intervals. Thus the integral becomes

� N ·
(
c
log T
log n

)2k

and by Theorem 4 we get the inequality

N ·
(
c
log T
log n

)2k

� T
(
ck4 log(3 + h log T )

)k
.

Since N � T8−n, we get by taking the 2k-th root

log T
log n

� 8n/2kk2 log1/2
2 T

log T

log1/2
2 T

� 8n/2kk2 log n.

By choosing k = n the right hand side becomes n2 log n, thus by definition of n
the inequality log T

log
1/2
2 T

< c1c
log T

log
1/2
2 T

, which becomes wrong for c sufficiently small.

Hence there is some positive constant c, such that under the given circumstances
the inequality n < c log1/2 T

log
3/4
2 T

implies M(T ) > n. Thus for T sufficiently large we

have M(T ) > c log1/2 T

log
3/4
2 T

− 1 proving our theorem.

If we finally assume S(T ) = o
(

log t
log2 t

)
, the argument above may be simplified

by choosing N = 1. Then if M(T ) < n, 8n < T, we get a gap between consecutive
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zeros of length � 1
log2 T

, however, the assumption on S implies that the maximal

gap length is o
(

1
log2 t

)
. Thus we get M(T ) ≥ log T

log 8 − 2.
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