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AVERAGING AT ANY LEVEL

P. L. PAPINI

Abstract. In this paper we study the behaviour of two functions which can be

defined in normed spaces: they measure, for finite sets on the unit sphere, “average
distances” from points in smaller spheres. We also study these functions when only

pairs of opposite points are considered. We generalize some results indicated in

recent papers, concerning the values of these functions when “average distances”
are measured from points in the unit sphere of the space.

0. Introduction and Notation

In this paper, we consider — in a normed space — functions defined by considering
finite subsets of the unit sphere, or only antipodal pairs. The results indicated here
generalize some of those contained in [1], [2], [3].

Let (X, ‖.‖) be a normed space, of dimension at least 2, over the real field R.
We shall use the following notations:

Sε,X = {x ∈ X; ‖x‖ = ε}, ε ≥ 0;

SX = S1,X = {x ∈ X; ‖x‖ = 1};

we shall simply write Sε and S instead of Sε,X and SX when no confusion can
arise. We shall denote by X∗ the dual of X.

Let
F(X) = {F ⊂ X;F is finite and nonempty}

and
F(S) = {F ⊂ S;F is finite and nonempty}.

If F = {x1, x2, . . . , xn} ⊂ S and x ∈ X, we set

µ(F, x) =
1
n

n∑
i=1

‖xi − x‖,

and, for ε ≥ 0:

µε1(F ) = inf{µ(F, x); ‖x‖ = ε};(0.1)

µε2(F ) = sup{µ(F, x); ‖x‖ = ε}.(0.1′)
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For F ∈ F(S), we also set

µ(F, Sε) = {α ≥ 0; there exists x ∈ Sε such that µ(F, x) = α}

and
µ(F, S) = µ(F, S1);

moreover

µ1(F ) = µ1
1(F ) = inf(µ(F, S));(0.2)

µ2(F ) = µ1
2(F ) = sup(µ(F, S)).(0.2′)

Given F ∈ F(S), since Sε is connected (0 ≤ ε ≤ 1), µ(F, Sε) is an interval; so

µ(F, Sε) = [µε1(F ), µε2(F )];

µ(F, S) = [µ1(F ), µ2(F )].

Of course, if dim (X) < ∞, then for every F there exist xF ∈ SX , yF ∈ SX , such
that µ(F, xF ) = µ1(F ); µ(F, yF ) = µ2(F ), and a similar fact is true for µε1(F ),
µε2(F ), 0 < ε < 1. We shall denote by R2

1, R2
2, R2

∞ the plane endowed with the
usual sum, euclidean, max norm.

1. A Few Simple General Facts

Now set, for ≤ ε ≤ 1:

µε1(X) = sup{µε1(F );F ∈ F(S)};(1.1)

µε2(X) = inf{µε2((F );F ∈ F(S)};(1.1′)

µ1(X) = µ1
1(X);(1.2)

µ2(X) = µ1
2(X);(1.2′)

in other terms, we have

µ1(X) = sup{µ1(F );F ∈ F(S)} = sup
F⊂S

inf
x∈S

1
n

n∑
i=1

‖xi − x‖ (F finite);(1.3)

µ2(X) = inf{µ2(F );F ∈ F(S)} = inf
F⊂S

sup
x∈S

1
n

n∑
i=1

‖xi − x‖ (F finite).(1.3′)

Clearly, given X, for any F ∈ F(S) and any ε ∈ [0, 1] we have:

max{1, µε1(F )} ≤ min{µε1(X), µε2(F )} ≤ 1 + ε;(1.4)

1 ≤ µε2(X) ≤ µε2(F ) ≤ 1 + ε;(1.4′)

µε1(F ) and µε2(F ) are 1-lipschitz functions of ε ∈ [0, 1],(1.4′′)

so:

(1.4′′′) µε1(X) and µε2(X) are 1-lipschitz functions of ε ∈ [0, 1].

The following result was proved in [15, p. 332]:
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Proposition 1.1. For any Banach space X we have

(1.5) µ1(X) ≤ µ2(X).

According to Proposition 1.1, we can consider

[µ1(X), µ2(X)] =
⋂
{µ(F, S);F ∈ F(S)};

when µ1(X) = µ2(X), we shall simply denote such value by µ(X).
We indicate a few general results on the above numbers: for the finite dimen-

sional case, see e.g. [5]; for the general case, see also [1], [2], [9], [13] and [14].
A famous result of Gross is the following:

Proposition 1.2. If dim (X) < ∞, then µ1(X) = µ2(X) = µ(X); moreover
(clearly) for every F ∈ F(S), there exists xF such that µ(F, xF ) = µ(X).

Of course, if dim(X) <∞, then for every ε ∈ [0, 1] both values µεi (X), i = 1, 2,
belong to µ(F, Sε), for any F ∈ F(S).

If dim (X) = ∞, also when µ1(X) = µ2(X) = µ(X), it is not true in general
that for every F ∈ F(S) there exists xF such that µ(F, xF ) = µ(X): this failure
may happen also in case the space is reflexive, and/or µ(X) ∈ {1, 2} (see [1], [9]).

With relation to Proposition 1.1, the following simple (2-dimensional) example
shows that in general we do not have µε1(X) ≤ µε2(X).

Example. (see also Proposition 2.2 later) Let X be the space R2
∞; we will show

that µε2(X) < µε1(X) for all ε ∈ (0, 1). Let F = {(0, 1), (0,−1)}; then, for ε ≤ 1/2,
we have µ(F, x) = 1 for every x ∈ Sε, thus µε2(F ) = 1 and then also µε2(X) = 1.

If 1/2 < ε ≤ 1, then for y = (ε, ε) we have µ(F, y) = ε + 1/2 = µε2(F ), so
µε2(X) ≤ ε + 1/2. Let G = {(1, 1), (1,−1), (−1, 1), (−1,−1)} and 0 < ε ≤ 1; then
µ(G, x) = 1 + ε/2 for every x ∈ Sε, so µε1(G) = 1 + ε/2, and then, for 0 < ε < 1,
µε1(X) ≥ 1 + ε/2 > max{1, ε+ 1/2} ≥ µε2(X).

By next proposition we indicate a few simple properties; some of them are con-
cerned with sets, that we shall call symmetric, satisfying the following property:
x ∈ F implies −x ∈ F (of course, we write −F = {−x;x ∈ F}). Note that −F ∪F
is always a symmetric set.

Proposition 1.3. For any set F ∈ F(S) and any ε ∈ [0, 1] we have:
(i) µ(F, Sε) = µ(−F, Sε),

so
(i′) µi(F, Sε) = µi(−F, Sε), i = 1, 2.
(ii) if also G ∈ F(S), then we have

min{µε1(F ), µε1(G)} ≤ µε1(F ∩G) ≤ max{µε1(F ), µε2(G)};
min{µε1(F ), µε2(G)} ≤ µε2(F ∪G) ≤ max{µε2(F ), µε2(G)}.

(iii) If #(F ) = #(G), then
1
2

(µε1(F ) + µε1(G)) ≤ µε1(F ∪G) ≤ µε2(F ∪G) ≤ 1
2

(µε2(F ) + µε2(G)) .

(iv) µε1(−F ∪ F ) ≥ 1.
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(v) µε1(F ) ≤ µε1(−F ∪ F ) ≤ µε2(−F ∪ F ) ≤ µε2(F ).

Proof. Let F = {x1, x2, . . . , xn}.
(i) (and (i′)): note that µ(F, x) = µ(−F,−x), so we have (i), and then

inf
‖x‖=ε

µ(F, x) = inf
‖−x‖=ε

µ(−F,−x);

the same is true if we take sup instead of inf, so we have (i′).
(ii): almost trivial.
(iii): Let F = {x1, x2, . . . , xn}; G = {y1, y2, . . . , yn} (#(F ) = #(G)); then for

any x ∈ Sε we have:
n∑
i=1

‖xi − x‖+
n∑
i=1

‖yi − x‖ = n(µ(F, x) + µ(G, x)) ≥ n(µε1(F ) + µε1(G)),

so
1

2n

(
n∑
i=1

‖xi − x‖+
n∑
i=1

‖yi − x‖

)
≥ 1

2
(µε1(F ) + µε1(G)),

which implies the left part of (iii).
The proof for the right part of (iii) is similar.
(iv): trivial, since ‖xi−x‖+‖xi+x‖ ≥ 2 for i = 1, . . . , n, any x ∈ Sε, ε ∈ [0, 1].
(v): is a consequence of (i) and (ii). �

Remark. If F,G ∈ F(S) and F ⊂ G (ε ∈ [0, 1]), then it is simple to see that
concerning the relation between µεi (F ) and µεi (G), i = 1, 2, all cases <, =, > are
possible.

Given F , µ(F, x) is a convex function of x ∈ X; moreover, if F ∈ F(S) is
symmetric, then µ(F, x) is even; i.e.:

(1.6) µ(F, x) = µ(F,−x).

As a consequence, we have:

Proposition 1.4. Let F ∈ F(S); then, if E denotes the set of extreme points
of the unit sphere of X, we have:

(1.7) sup
‖x‖=ε

µ(F, x) = sup
‖x‖≤ε

µ(F, x) = sup
x∈E

µ(F, εx).

Moreover, if F is symmetric, then µε1(F ) and µε2(F ) are non decreasing functions
of ε ∈ R.

Proof. The first assertion follows from the convexity in x of the functions
µ(F, x), for any given F .

For the second part, if F is symmetric, then according to (1.6), for ε < σ we
have:

µε1(F ) = inf{µ(F, x); ‖x‖ ≥ ε} ≤ inf{µ(F, x); ‖x‖ ≥ σ} = µσ1 (F );(1.8)

µε2(F ) = sup{µ(F, x); ‖x‖ ≤ ε} ≤ sup{µ(F, x); ‖x‖ ≤ σ} = µσ2 (F );(1.8′)

this concludes the proof. �



AVERAGING AT ANY LEVEL 273

Corollary 1.5. To compute µεi (X), i = 1, 2 (0 ≤ ε ≤ 1), it is enough to use
symmetric sets; moreover:

µε1(X) = sup
F⊂S

inf
‖x‖≥ε

µ(F, x),(1.9)

µε2(X) = inf
F⊂S

sup
‖x‖≤ε

µ(F, x);(1.9′)

also, the functions µε1(X) and µε2(X) are non decreasing, and we have (0 ≤ ε ≤ 1):

1 = µ0
1(X) ≤ µε1(X) ≤ µ1(X) ≤ 2;(1.10)

1 = µ0
2(X) ≤ µε2(X) ≤ µ2(X) ≤ 2;(1.10′)

Proof. The first assertion is a consequence of Proposition 1.3(v); moreover (use
(1.8)):

µε1(X) = sup
{

inf
‖x‖=ε

µ(F, x);F ⊂ S;F symmetric
}

= sup
{

inf
‖x‖≥ε

µ(F, x);F ⊂ S;F symmetric
}

≤ sup
{

inf
‖x‖≥ε

µ(F, x);F ⊂ S
}
≤ µε1(X),

which is (1.9); (1.9′) can be obtained in a similar way.
Inequalities (1.10), (1.10′) are almost trivial and follow from (1.9), (1.9′). �

Proposition 1.6. The functions µε1(X), µε2(X) satisfy the following inequalities
(0 ≤ ε ≤ 1):

µε1(X) ≤ 1− ε+ εµ1(X);(1.11)

µε2(X) ≤ 1− ε+ εµ2(X).(1.11′)

Proof. Let F = {x1, . . . , xn} ∈ F(S); for any y ∈ S set (0 ≤ ε ≤ 1):
(1.12)

fx1,...,xn,y(ε) =
1
n

n∑
i=1

‖xi − εy‖ (the function fx1,...,xn,y(ε) is convex in ε).

Since µ1(F ) ≤ µ1(X), given σ > 0 we can take y ∈ S such that

1
n

n∑
i=1

‖xi − y‖ < µ1(X) + σ.

Therefore:

fx1,...,xn,y(ε) = fx1,...,xn,y((1− ε) · 0 + ε · 1)

≤ (1− ε)fx1,...,xn,y(0) + εfx1,...,xn,y(1)

≤ 1− ε+ ε(µ1(X) + σ).

Since this can be done for any σ ≥ 0 and any ε ∈ [0, 1], this shows that µε1(F ) ≤
1− ε+ εµ1(X), and then (F being arbitrary) we have (1.11).
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Given σ > 0, let now Fσ = {x1, . . . , xn} ∈ F(S) be such that µ2(Fσ) < µ2(X)+
σ, so

1
n

n∑
i=1

‖xi − y‖ < µ2(X) + σ for all y ∈ S.

This implies

fx1,...,xn,y(ε) ≤ (1− ε)fx1,...,xn,y(0) + εfx1,...,xn,y(1) ≤ 1− ε+ ε(µ2(X) + σ)

for all y ∈ S, so µε2(Fσ) ≤ 1− ε+ ε(µ2(X) + σ).
Since σ > 0 is arbitrary, this implies (1.11′), which completes the proof. �

Remark. Note (see (1.12)) that µε2(F ) is a convex function of ε.

2. Some Other Numbers

Now set, for y ∈ S and 0 ≤ ε ≤ 1:

a(y, ε) = sup
‖x‖=ε

‖y + x‖+ ‖y − x‖
2

.

For any y ∈ S, the function on the right hand side is convex (it is also even in x);
thus we have:

a(y, ε) = sup
‖x‖≤ε

‖y + x‖+ ‖y − x‖
2

,

so a(y, ε) is a non decreasing function of ε ∈ [0, 1] (1 = a(y, 0) ≤ a(y, ε) ≤ 1 + ε ≤
2).

Now set, for 0 ≤ ε ≤ 1:

Aε1(X) = inf
y∈S

a(y, ε).(2.1)

Aε2(X) = sup
y∈S

a(y, ε);(2.2)

Note that, according to (1.7):

Aε1(X) = inf
y∈S

sup
‖x‖≤ε

‖y + x‖+ ‖y − x‖
2

= inf
y∈S

sup
x∈E

‖y + εx‖+ ‖y − εx‖
2

;(2.3)

Aε2(X) = sup
y∈S

sup
‖x‖≤ε

‖y + x‖+ ‖y − x‖
2

= sup
y∈S

sup
x∈E

‖y + εx‖+ ‖y − εx‖
2

.(2.4)

The constants A1
1(X) = A1(X) and A1

2(X) = A2(X) have been studied in [3].
We summarize in a proposition simple properties of these constants.

Proposition 2.1. The following facts are true (for ε ∈ [0, 1]):
a) Aε1(X), Aε2(X) are non decreasing functions of ε;
b) the function Aε2(X) is convex;
c) the functions Aε1(X) and Aε2(X) are 1-lipschitz;
d) 1 ≤ µε2(X) ≤ Aε1(X) ≤ Aε2(X) ≤ 1 + ε always;
e) if Y is a dense subspace of X, then Aεi (Y ) = Aεi (X), i = 1, 2.
f) if Y ⊂ X, then Aε2(Y ) ≤ Aε2(X);
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g) Aε1(X) and Aε2(X) are continuous in X with respect to the Banach-Mazur
distance, in the class of isomorphic spaces.

h) Aε2(X) = sup{Aε2(Y );Y is a two dimensional subspace of X};
k) Aε1(X) ≥ inf{Aε1(Y );Y is a two dimensional subspace of X}.

Remark. Among previous statements, e), f) and g) remain true if we substitute
to Aε1(X) and Aε2(X) the functions µε1(X) and µε2(X) respectively (and the same,
as already indicated, for a), b), c)). On the other hand, (1.7), Corollary 1.5 and
Proposition 1.6 are also true for Aε1(X), Aε2(X); in particular:

Aε1(X) ≤ 1− ε+ εA1(X);(2.5)

Aε2(X) ≤ 1− ε+ εA2(X).(2.5′)

Note that in any space, for ε ∈ [0, 1], we always have:

(2.6) µε2(X) ≤ Aε1(X) ≤ Aε2(X).

According to (2.6), by the Example in Section 1 we obtain:

Proposition 2.2. Let X = R2
∞; then we have:

µε2(R2
∞) = Aε1(R2

∞) = max{1, ε+ 1/2};
µε1(R2

∞) = 1 + ε/2.

Proof. We have shown (see the Example in Section 1) that Aε1 = 1, thus also
µε2 = 1, for ε ≤ 1/2; the same Example shows that µε2 ≤ Aε1 ≤ ε + 1/2 for
1/2 ≤ ε ≤ 1; since µ1

2 = 3/2 (see [1]) and µε2 is 1-lipschitz, we obtain the first part
of the thesis.

Concerning µε1, the quoted example shows that 1 + ε/2 ≤ µε1; since µ1 = 3/2,
(1.11) implies µε1 ≤ 1 + ε/2, which concludes the proof. �

Remark. According to the previous proposition, in R2
∞ we also have

(2.7) Aε1(X) < µε1(X) for ε ∈ (0, 1).

Also: A2(R2
∞) = 2 (see [3]) implies Aε2(R2

∞) = 1 + ε for 0 ≤ ε ≤ 1.

Note that Aε2(X)−1 is nothing else than Lindenstrauss’ modulus of smoothness,
defined as:

ρX(ε) = sup
{
‖x+ y‖+ ‖x− y‖ − 2

2
; ‖y‖ = 1; ‖x‖ ≤ ε

}
; ε ∈ [0, 1].

Therefore (see e.g. [12, p. 63]), it is related to the modulus of convexity δX(σ) of
X by the formulas:

ρX(ε) = sup
{
εδ

2
− δX∗(σ); 0 ≤ σ ≤ 2

}
;

ρX∗(ε) = sup
{εσ

2
− δX(σ); 0 ≤ σ ≤ 2

}
.

According to this equivalence, since ρX(ε) = ρX∗∗(ε) always, we deduce that
Aε2(X) = Aε2(X∗) always (cf. [3, Proposition 2.2]).
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Also: ρX(ε) ≥
√

1 + ε2 − 1 always, while equality for every ε ∈ [0, 1] character-
izes inner product spaces; therefore, in any space X, we have:

(2.8) Aε2(X) ≥
√

1 + ε2.

For more general characterizations of inner product spaces with these numbers, see
[12, p. 82].

3. General Estimates Concerning Aε1(X)

We have seen (Proposition 2.2) that it is possible to have µε2(X) = Aε1(X) = 1 for
ε ≤ 1/2. But we shall prove that if ε is not too small (ε > 2/3), then Aε1(X) > 1.

Set

f(ε) =
1 + 2ε+

√
1 + 16ε+ 4ε2

6
.

f(ε) is an increasing function of ε and we have f(2/3) = 1; f(1) = 3+
√

21
6 (which is

≈ 1.264, so less than 4/3). Therefore next proposition gives a non trivial estimate
for ε ∈ (2/3, 1].

Proposition 3.1. Let 2/3 < ε ≤ 1; then

(3.1) Aε1(X) >
1 + 2ε+

√
1 + 16ε+ 4ε2

6
.

Proof. It is enough to prove the statement for any 2-dimensional space X; also,
for ε = 1 the result was proved in [3], so we assume ε ∈ (2/3, 1).

Let Aε1(X) < 2ε (otherwise the assumption ε ≥ 2/3 already implies the thesis).
Take h ∈ (Aε1(X), 2ε), then choose x ∈ S such that ‖x − v‖ + ‖x + v‖ ≤ 2h for
every v ∈ Sε; now take y ∈ Sε so that ‖x−y‖ = ‖x+y‖, say = k (1 ≤ k ≤ h). Set
v = ε(x+y)

k (v ∈ Sε); we have: ‖x+ v‖ =
∥∥∥x(1 + ε

k

)
+ εy

k

∥∥∥ =
(

1 + ε
k

)
·
∥∥∥x+ ε

k+εy
∥∥∥;

it is not a restriction to assume that ‖x + ty‖ ≥ 1 for all t > 0 (otherwise we
exchange y with −y), so

‖x+ v‖ ≥ 1 +
ε

k
,

‖x− v‖ =
∥∥∥x(1− ε

k

)
− εy

k

∥∥∥ =
(

1− ε

k

)
·
∥∥∥x− ε

k − ε
y
∥∥∥.

Now we want estimate
∥∥∥x− ε

k−εy
∥∥∥. From ε < 1 < k ≤ h < 2ε we obtain ε

k−ε > 1,
so ∥∥∥x+

ε

k − ε
y
∥∥∥ ≤ ‖x+ y‖+

∥∥∥−y +
ε

k − ε
y
∥∥∥ = k + ε ·

∣∣∣ ε

k − ε
− 1
∣∣∣

= k + ε · 2ε− k
k − ε

=
k2 + 2ε2 − 2εk

k − ε
;

therefore, since
∥∥∥x− ε

k−εy
∥∥∥+

∥∥∥x+ ε
k−εy

∥∥∥ ≥ 2ε2

k−ε , we obtain∥∥∥x− εy

k − ε

∥∥∥ ≥ 2ε2

k − ε
− k2 + 2ε2 − 2εk

k − ε
,
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which implies

‖x− v‖ ≥
(

1− ε

k

)( 2ε2

k − ε
− k2 + 2ε2 − 2εk

k − ε

)
=

2εk − k2

k
= 2ε− k.

Thus we have, for every k < h: 2h ≥ ‖x+ v‖+ ‖x− v‖ ≥ 1 + ε
k + 2ε− k, i.e.:

2h ≥ 1 + ε
h + 2ε− h, or 3h2 − 2εh− h− ε ≥ 0, which implies (3.1). �

Remark. By using Proposition 3.1, we can see that if a space satisfies µε2(X) =
1 + α, with α small, then at least for some ε > 2/3, “big” sets are necessary
to approach such value; in fact, given σ > 0, let F = {x1, x2, . . . , xn} and∑n
i=1

‖x−xi‖
n < 1 + α+ σ for every x ∈ Sε; it is the same for F ′ = {±x1,±x2, . . . ,

±xn} (see Proposition 1.3(v)). But sup‖x‖=ε
‖x+x1‖+‖x−x1‖

2 ≥ Aε1(X) > 1 (see the
previous proposition); so we obtain, for some x ∈ Sε:

2n(1 + α+ σ) >
n∑
i=1

‖x− xi‖+
n∑
i=1

‖x+ xi‖ ≥ 2(n− 1) + 2(Aε1(X)− σ).

This means that Aε1(X) < 1 +σ+n(α+σ), so n > Aε1−1−σ
α+σ ; also, if we have α = 0

and we take ε = 1, according to (3.1) we obtain n >
√

21−3
6σ − 1.

Next proposition gives, for 2-dimensional spaces, a non trivial upper bound
concerning Aε1(X), for every ε > 0.

Proposition 3.2. If dim(X) = 2, then we always have

(3.2) Aε1(X) ≤ 1− ε+
ε

4
(1 +

√
33).

Proof. It was proved in [3, Proposition 2.8], that we always have

(3.2′) A1(X) ≤ 1
4

(1 +
√

33).

By using (2.5) we obtain (3.2). �

Remark. More precisely (see [3, Proposition 2.8]), we can obtain the above
estimates, with 4p − 1 instead of 33, p being the perimeter of the unit sphere
of X: see [11] for the definition of perimeter and Section 4 there for some general
results on it (6 ≤ p ≤ 8 in any space). Also, since Aε2(X) is convex, the inequality
A2(X) ≤ p/4 (see [3, Proposition 2.6]) implies for ε ∈ [0, 1] (see (2.5′)):

(3.3) Aε2(X) ≤ 1− ε+ ε
p

4
.

4. New and Old Constants

Note that in any space X, for 0 ≤ ε ≤ 1:

1 = sup
y∈S

inf
x∈S

‖y + εx‖+ ‖y − εx‖
2

≤ µε1(X) ≤ µ1(X) ≤ µ2(X)

≤ inf
y∈S

sup
x∈S

‖y + x‖+ ‖y − x‖
2

= A1(X) ≤ A2(X).
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Recall that in the euclidean plane (see [13]), µ1(X) = µ2(X) < A1(X) = A2(X) =√
2 and that 1 < µ1(X) = µ2(X) < 2 in any finite dimensional space. Moreover,

µ2(X) < 2 if X is reflexive. Also, Proposition 2.2 shows that for ε ∈ [0, 1],
µε1(X) ≤ Aε1(X) is not true in general (so according to d) of Proposition 2.1,
neither µε1(X) ≤ µε2(X) is true, as said in the Example in Section 1).

Now we want to show another general inequality.

Proposition 4.1. We always have:

(4.1) µε1(X) ≤ Aε2(X).

Proof. Let δ > 0; according to Corollary 1.5, we can find a symmetric finite set
F ⊂ S such that

inf
x∈Sε

1
2n

(
n∑
i=1

‖xi − x‖+
n∑
i=1

‖xi + x‖

)
> µε1(X)− δ.

But also, for every x ∈ Sε and i = 1, . . . , n, we have:

‖xi − x‖+ ‖xi + x‖
2

≤ Aε2(X),

so – for every x ∈ Sε – µε1(X) − δ < 1
2n (
∑n
i=1 ‖xi − x‖+

∑n
i=1 ‖xi + x‖)

≤ 1
2n (2n ·Aε2(X)); since δ > 0 is arbitrary, we obtain (4.1). �

Now we want to indicate some relations among the constants A1, A2, studied
in [3], and the following two “Gao constants”, studied in [4] and [7]:

g′(X) = inf
y∈S

sup
x∈S

inf(‖x− y‖, ‖x+ y‖);(4.2)

G′(X) = sup
y∈S

sup
x∈S

inf(‖x− y‖, ‖x+ y‖).(4.2′)

We could also study the “evolution” of the last numbers when we use, in the above
definitions, points x ∈ Sε, but we do not enter into these details here.

Of course, we always have

(4.3) 1 ≤ g′(X) ≤ G′(X) ≤ 2.

Recall the definition of the modulus of convexity of a space:

(4.4) δ(ε) = 1− sup
{
‖x+ y‖

2
;x, y ∈ S; ‖x− y‖ ≥ ε

}
; 0 ≤ ε ≤ 2.

A space is said to be uniformly non square if limε→2− δ(ε) > 0; uniformly
non square spaces are reflexive, but the converse is not true (see e.g. [8] for these
results).

The following other facts are known:

(4.5) G′(X) = sup
{
ε; δ(ε) ≤ 1− ε

2

}
(see [4, Proposition 2.1]);
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in particular:
√

2 ≤ G′(X) ≤ 2 in any space (see [4]);(4.6)

G′(X) = 2 if and only if X is uniformly non square (see [4]);(4.7)

if dim(X) = 2, then g′(X) ≤
√

2 (see [6]);(4.8)

also, ifX is two-dimensional, then g′(X) =
√

2 if the unit ball is a circle or a regular
octagon; g′(X) = 4/3 in case the unit ball is the affine regular hexagon (see [6]);
g′(X) = 1 if the unit sphere is a parallelogram. Also, g′(X) = 1 ⇒ G′(X) = 2
(see e.g. [10, Section 3]); thus g′(X) = 1 ⇒ X is not uniformly non square, but
not conversely.

It is clear that the following inequalities hold in any space:

g′(X) ≤ A1(X);(4.9)

G′(X) ≤ A2(X);(4.10)

it is not difficult to see that no general relation exists between A1(X) and G′(X).
Also, according to (4.7) and to [3, (2.7)], we have:

(4.11) G′(X) = 2⇔ A2(X) = 2⇔ X is not uniformly non square.

Concerning the other extreme value for these constants, we indicated in [3] the
conjecture that A2(X) =

√
2 imply that X is an i.p.s. if dim(X) ≥ 3; there are

2-dimensional examples of non inner product spaces where A2(X) =
√

2, and so
also where G′(X) =

√
2: note that G′(X) =

√
2⇔ δ(

√
2) = 1−

√
2/2 (as in inner

product spaces). So, according to [12, p. 70], we can ask the following:
let dim(X) ≥ 3; do we have G′(X) =

√
2⇔ A2(X) =

√
2⇔ X is an i.p.s.?

Concerning the relations between g′(X) and A1(X), it is known that g′(X)
can be 1 while A1(X) is always larger than 1 (see [3, Proposition 2.5]). But it is
almost immediate to see that A1(X) = 2 (⇔ Aε1(X) = 1 + ε for ε ∈ [0, 1]) implies
g′(X) = 2, so (according to (4.9)):

(4.14) g′(X) = 2⇔ A1(X) = 2.
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