DOMAINS WITH CONVEX HYPERBOLIC RADIUS

L. V. KOVALEV

Abstract

The hyperbolic radius of a domain on the Riemann sphere is equal to the reciprocal of the density of the hyperbolic metric. In the present paper, it is proved that the hyperbolic radius is a convex function if and only if the complement of the domain is a convex set.

1. Introduction

A domain D on the Riemann sphere $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ is said to be hyperbolic if $\overline{\mathbb{C}} \backslash D$ contains at least three points. For $w \in D$, the hyperbolic radius $R(D, w)$ is defined by $R(D, w)=\left|f^{\prime}(0)\right|$, where f is a covering map of the unit disk $\mathbb{U}=\{z:|z|<1\}$ onto D with $f(0)=w$. Hyperbolic radius is closely related to the maximal solution of Liouville's equation and metrics of constant negative curvature [1].

Minda and Wright [10] established that the hyperbolic radius $R(D, w)$ of a convex hyperbolic domain $D \subset \mathbb{C}$ is a concave function of w, thus strengthening the theorem of Caffarelli and Friedman [2]. Later Kim and Minda [6] proved that the concavity of $R(D, w)$ is equivalent to the convexity of D. Here and in what follows we do not assume that the domain of a convex or concave function is a convex set.

The aim of the present paper is to describe domains with convex hyperbolic radius in geometric terms. The method from [10] does not seem to work in this case. By employing a different technique, we shall show that $R(D, w)$ is convex in $D \backslash\{\infty\}$ if and only if $\mathbb{C} \backslash D$ is a convex set.

2. Preliminary Results

Let \mathbf{M} denote the set of all univalent meromorphic functions in the unit disk \mathbb{U} with $f(0)=0, f^{\prime}(0)>0$. The class \mathbf{A} is defined to be a collection of all members of \mathbf{M} that are analytic in \mathbb{U}. Define $\mathbf{M}^{c}=\{f \in \mathbf{M}: \mathbb{C} \backslash f(\mathbb{U})$ is convex $\}$. Let \mathbf{P} denote the set of all analytic functions in \mathbb{U} with positive real part and $f(0)=1$.

[^0]For $f \in \mathbf{M}$ and $p \in \overline{\mathbb{U}} \backslash\{0\}$, define

$$
[f, p](z)=\frac{2 \bar{p} z}{1-\bar{p} z}-\frac{2 p}{z-p}-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

For $f \in \mathbf{M} \backslash \mathbf{A}$, let $\hat{f}=\left[f, f^{-1}(\infty)\right]$, where f^{-1} is the inverse of f.
Lemma 2.1. Function $[f, p]$ is analytic in \mathbb{U} if and only if either $f \in \mathbf{M} \backslash \mathbf{A}$ and $p=f^{-1}(\infty)$ or $f \in \mathbf{A}$ and $|p|=1$.

Proof. The 'only if' part of the statement is trivial. In case of $f \in \mathbf{A}$ and $|p|=1$, function $[f, p]$ is analytic in \mathbb{U} by its definition. Let $f \in \mathbf{M} \backslash \mathbf{A}, p=f^{-1}(\infty)$, and $c=\lim _{z \rightarrow p} f(z)(z-p)$. Then asymptotic expansions

$$
f^{\prime}(z)=-\frac{c}{(z-p)^{2}}+O(1), \quad f^{\prime \prime}(z)=\frac{2 c}{(z-p)^{3}}+O(1) \quad(z \rightarrow p)
$$

hold. Therefore,

$$
[f, p](z)=-\frac{2 p}{z-p}-\frac{2 c p(z-p)^{-3}}{-c(z-p)^{-2}}+O(1)=O(1) \quad(z \rightarrow p)
$$

which implies the analyticity of $[f, p]$. This proves the lemma.
Lemma 2.2. (a) If $f \in \mathbf{M}^{c} \backslash \mathbf{A}$, then $\hat{f} \in \mathbf{P}$.
(b) If $f \in \mathbf{M}^{c} \cap \mathbf{A}$, then $[f, p] \in \mathbf{P}$ for some $p \in \partial \mathbb{U}$.

Proof. (a) Let $p=f^{-1}(\infty)$. Then $p \in \mathbb{U} \backslash\{0\}$. For $0<p<1$ statement (a) was proved by Pfaltzgraff and Pinchuk [11], see also [8]. For arbitrary $p \in \mathbb{U} \backslash\{0\}$, let $g(z)=\frac{|p|}{p} f(p z /|p|)$. It is easy to see that $g \in \mathbf{M}^{c} \backslash \mathbf{A}, g(|p|)=\infty$, and $\hat{f}(z)=\hat{g}(p z /|p|)$. Thus $\hat{f} \in \mathbf{P}$.
(b) For $n>\operatorname{dist}(0, \mathbb{C} \backslash f(\mathbb{U}))$ let $D_{n}=f(\mathbb{U}) \cup\{z:|z|>n\}$. Then $\mathbb{C} \backslash D_{n}$ is convex. There is a unique function $f_{n} \in \mathbf{M}^{c} \backslash \mathbf{A}$ that maps \mathbb{U} onto D_{n}. Since $D_{n+1} \subset D_{n}$, the function $f_{n}^{-1} \circ f_{n+1}$ maps \mathbb{U} into itself. By Schwarz Lemma, $\left|f_{n}^{-1}\left(f_{n+1}(z)\right)\right| \leq|z|$ for all $z \in \mathbb{U}$. Letting $z=f_{n+1}^{-1}(\infty)$ yields $\left|f_{n}^{-1}(\infty)\right| \leq$ $\left|f_{n+1}^{-1}(\infty)\right|$. Taking a subsequence, we can assume that $\left\{f_{n}^{-1}(\infty)\right\}$ converge to some point p of $\overline{\mathbb{U}} \backslash\{0\}$. By Carathéodory kernel theorem [5, p.56] $f_{n} \rightarrow f$ and $\hat{f}_{n} \rightarrow[f, p]$ locally uniformly in $\mathbb{U} \backslash\{p\}$. Since $\hat{f}_{n} \in \mathbf{P}$, it follows that $[f, p] \in \mathbf{P}$. Lemma 2.1 implies $|p|=1$.

The proof is complete.
Remark 2.3. Functions f with $\hat{f} \in \mathbf{P}$ have been also considered by Miller [9] and Royster [12].

3. Main Result

Define the cone

$$
C(\zeta, \theta, \beta)=\left\{\zeta+\rho e^{i \varphi}: \rho>0,|\varphi-\theta|<\beta / 2\right\}
$$

with opening angle β at the point $\zeta \in \mathbb{C}$.

Theorem 3.1. (a) Let $D \subset \overline{\mathbb{C}}$ be a hyperbolic domain. If $\mathbb{C} \backslash D$ is convex, then for any $w \in D \backslash\{\infty\}$ and $\varphi \in \mathbb{R}$

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} R\left(D, w+t e^{i \varphi}\right)\right|_{t=0} \geq 0 \tag{1}
\end{equation*}
$$

Equality is attained in (1) if and only if one of the following conditions holds:
(i) D is a half-plane;
(ii) $D=C(\zeta, \theta, \beta)$, where $\beta>\pi$ and $e^{-i \varphi}(w-\zeta) \in \mathbb{R}$.
(b) Let D be a hyperbolic domain such that (1) holds for all $w \in D \backslash\{\infty\}$ and $\varphi \in \mathbb{R}$. Then $\mathbb{C} \backslash D$ is convex.

Proof. (a) Without loss of generality we may assume that $w=\varphi=0$ and $R(D, 0)=1$. Then (1) can be rewritten as

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \varepsilon^{-2}(R(D, \varepsilon)+R(D,-\varepsilon)-2) \geq 0 \tag{2}
\end{equation*}
$$

There exists a unique $f \in \mathbf{M}^{c}$ that maps \mathbb{U} onto D. Denote its Taylor coefficients at zero by $c_{k}(k=1,2, \ldots)$. Since $\left|c_{1}\right|=R(D, 0)=1$, it follows that $c_{1}=1$. For $0<\varepsilon<\operatorname{dist}(0, \partial D)$, let $z_{1}=f^{-1}(\varepsilon)$ and $z_{2}=f^{-1}(-\varepsilon)$. Combining expansions $z_{1}+c_{2} z_{1}^{2}+o\left(\varepsilon^{2}\right)=\varepsilon$ and $z_{2}+c_{2} z_{2}^{2}+o\left(\varepsilon^{2}\right)=-\varepsilon(\varepsilon \downarrow 0)$ yields

$$
\begin{equation*}
z_{1}+z_{2}=-c_{2}\left(z_{1}^{2}+z_{2}^{2}\right)+o\left(\varepsilon^{2}\right) \quad(\varepsilon \downarrow 0) \tag{3}
\end{equation*}
$$

Since $|1+w|=1+\operatorname{Re} w+(\operatorname{Im} w)^{2} / 2+o\left(|w|^{2}\right)(w \rightarrow 0)$, we have
(4) $\left|f^{\prime}\left(z_{i}\right)\right|=1+\operatorname{Re}\left(2 c_{2} z_{i}+3 c_{3} z_{i}^{2}\right)$

$$
+2\left(\operatorname{Im}\left(c_{2} z_{i}\right)\right)^{2}+o\left(\varepsilon^{2}\right) \quad(\varepsilon \downarrow 0, i=1,2)
$$

Combining (4), (3), and relations $z_{1}=\varepsilon+o(\varepsilon), z_{2}=-\varepsilon+o(\varepsilon)(\varepsilon \downarrow 0)$ yields

$$
\left|f^{\prime}\left(z_{1}\right)\right|+\left|f^{\prime}\left(z_{2}\right)\right|=2+2 \varepsilon^{2} \operatorname{Re}\left(3 c_{3}-2 c_{2}^{2}\right)+4 \varepsilon^{2}\left(\operatorname{Im} c_{2}\right)^{2}+o\left(\varepsilon^{2}\right) \quad(\varepsilon \downarrow 0)
$$

$$
\begin{aligned}
R(D, \varepsilon)+R(D,-\varepsilon) & =\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)+\left|f^{\prime}\left(z_{2}\right)\right|\left(1-\left|z_{2}\right|^{2}\right) \\
= & 2+2 \varepsilon^{2}\left(\operatorname{Re}\left(3 c_{3}-2 c_{2}^{2}\right)+2\left(\operatorname{Im} c_{2}\right)^{2}-1\right)+o\left(\varepsilon^{2}\right) \quad(\varepsilon \downarrow 0)
\end{aligned}
$$

Because
(5) $\lim _{\varepsilon \downarrow 0} \varepsilon^{-2}(R(D, \varepsilon)+R(D,-\varepsilon)-2)$

$$
=2\left(\operatorname{Re}\left(3 c_{3}-2 c_{2}^{2}\right)+2\left(\operatorname{Im} c_{2}\right)^{2}-1\right)=2\left(3 \operatorname{Re}\left(c_{3}-c_{2}^{2}\right)+\left|c_{2}\right|^{2}-1\right)
$$

inequality (2) is equivalent to

$$
\begin{equation*}
3 \operatorname{Re}\left(c_{3}-c_{2}^{2}\right)+\left|c_{2}\right|^{2} \geq 1 \tag{6}
\end{equation*}
$$

By Lemma 2.2 there is $p \in \overline{\mathbb{U}} \backslash\{0\}$ such that $[f, p] \in \mathbf{P}$. The Taylor series for $[f, p]$ at 0 has the form

$$
[f, p](z)=1+2\left(\bar{p}+1 / p-c_{2}\right) z+2\left(\bar{p}^{2}+1 / p^{2}+2 c_{2}^{2}-3 c_{3}\right) z^{2}+\cdots
$$

Let $\bar{p}+1 / p=r e^{i \varphi}$, where $\varphi \in \mathbb{R}$ and $r=|\bar{p}+1 / p|=|p|+1 /|p| \geq 2$. It follows from Carathéodory's lemma [4, p.41] that $\left|r e^{i \varphi}-c_{2}\right| \leq 1$. Let $c_{2}=r e^{i \varphi}+\rho e^{i \psi}$, where $\psi \in \mathbb{R}, 0 \leq \rho \leq 1$. The identity

$$
\bar{p}^{2}+\frac{1}{p^{2}}=\left(\bar{p}+\frac{1}{p}\right)^{2}-2 \frac{\bar{p}}{p}=r^{2} e^{2 i \varphi}-2 e^{2 i \varphi}=\left(r^{2}-2\right) e^{2 i \varphi}
$$

implies

$$
\begin{align*}
{[f, p](z) } & =1-2 \rho e^{i \psi} z+2\left(\left(r^{2}-2\right) e^{2 i \varphi}+2 c_{2}^{2}-3 c_{3}\right) z^{2}+\cdots \\
& =1+a_{1} z+a_{2} z^{2}+\cdots \tag{7}
\end{align*}
$$

It is easy to see that for $\alpha \in \mathbb{R}$

$$
\tau_{\alpha}(\zeta)=\frac{\left(1+e^{i \alpha}\right) \zeta+1-e^{i \alpha}}{\left(1-e^{i \alpha}\right) \zeta+1+e^{i \alpha}}
$$

is a conformal automorphism of the right half-plane which fixes 1. Hence the function

$$
\begin{equation*}
\tau_{\alpha}([f, p](z))=1+e^{i \alpha} a_{1} z+e^{i \alpha}\left(a_{2}-\left(1-e^{i \alpha}\right) a_{1}^{2} / 2\right) z^{2}+\cdots \tag{8}
\end{equation*}
$$

belongs to \mathbf{P}. It follows from Carathéodory's lemma that

$$
\left.\operatorname{Re}\left(a_{2}-\left(1-e^{i \alpha}\right) a_{1}^{2} / 2\right)\right) \leq 2
$$

Passing to the supremum over all $\alpha \in \mathbb{R}$ yields

$$
\operatorname{Re}\left(a_{2}-a_{1}^{2} / 2\right)+\left|a_{1}\right|^{2} / 2 \leq 2
$$

which is equivalent to

$$
\left(r^{2}-2\right) \cos 2 \varphi+\operatorname{Re}\left(2 c_{2}^{2}-3 c_{3}\right)-\rho^{2} \cos 2 \psi+\rho^{2} \leq 1
$$

Therefore,

$$
\begin{align*}
& 3 \operatorname{Re}\left(c_{3}-c_{2}^{2}\right)+\left|c_{2}\right|^{2} \geq \\
& \geq\left|c_{2}\right|^{2}-\operatorname{Re} c_{2}^{2}+\left(r^{2}-2\right) \cos 2 \varphi+\rho^{2}(1-\cos 2 \psi)-1 \\
& =2\left(\operatorname{Im} c_{2}\right)^{2}+\left(r^{2}-2\right)\left(1-2 \sin ^{2} \varphi\right)+2 \rho^{2} \sin ^{2} \psi-1 \\
& =2(r \sin \varphi+\rho \sin \psi)^{2}-2\left(r^{2}-2\right) \sin ^{2} \varphi+2 \rho^{2} \sin ^{2} \psi+r^{2}-3 \tag{9}\\
& =4(\sin \varphi+\rho \sin \psi)^{2}+4 \rho(r-2) \sin \varphi \sin \psi+r^{2}-3 \\
& \geq-4(r-2)+r^{2}-3=(r-2)^{2}+1 \geq 1
\end{align*}
$$

This proves (6), and (1) follows.
Suppose that equality is attained in (1). Then (9) also becomes an equality. This implies $r=2$ and $|p|=1$. Since $|p|=1$, it follows from Lemma 2.1 that $\infty \notin D$. By equality statement in Carathéodory's lemma [4, p.41], there are $\alpha \in \mathbb{R}$ and $\mu \in[0,1]$ such that

$$
\tau_{\alpha}([f, p](z))=\mu \frac{1+e^{i \alpha / 2} z}{1-e^{i \alpha / 2} z}+(1-\mu) \frac{1-e^{i \alpha / 2} z}{1+e^{i \alpha / 2} z}
$$

Hence,

$$
\begin{equation*}
[f, p](z)=\frac{1+2(2 \mu-1) \cos (\alpha / 2) z+z^{2}}{1+2(2 \mu-1) i \sin (\alpha / 2) z-z^{2}}=\frac{1+2 v z+z^{2}}{1+2 i u z-z^{2}} \tag{10}
\end{equation*}
$$

where $u=(2 \mu-1) \sin (\alpha / 2), v=(2 \mu-1) \cos (\alpha / 2)$. Combining (7) and (10) yields $\rho e^{i \psi}=u i-v$ and $u=\rho \sin \psi$. Since (9) is supposed to be an equality, we have $\sin \varphi=-\rho \sin \psi=-u$ which implies $p=e^{-i \varphi} \in\left\{p_{1}, p_{2}\right\}$, where $p_{n}=$ $(-1)^{n} \sqrt{1-u^{2}}+i u, n=1,2$. Recalling the definition of $[f, p]$ and using $|p|=1$ we obtain

$$
\begin{equation*}
\left(\log f^{\prime}(z)\right)^{\prime}=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{4}{p-z}+2 \frac{z+v-i u}{z^{2}-2 i u z-1} \tag{11}
\end{equation*}
$$

It is easy to see that $z^{2}-2 i u z-1=\left(z-p_{1}\right)\left(z-p_{2}\right)$.
Case 1. $|u|<1$. Let $\gamma=v / \sqrt{1-u^{2}}$. Integrating (11) yields

$$
\begin{aligned}
\log f^{\prime}(z) & =-4 \int_{0}^{z} \frac{d \zeta}{\zeta-p}+\int_{0}^{z} \frac{2 \zeta-2 i u}{\zeta^{2}-2 i u \zeta-1} d \zeta+2 v \int_{0}^{z} \frac{d \zeta}{\left(\zeta-p_{1}\right)\left(\zeta-p_{2}\right)} \\
& =-4 \log (1-z / p)+\log \left(1+2 i u z-z^{2}\right)-\gamma \log \frac{1-z / p_{1}}{1-z / p_{2}}, \\
f^{\prime}(z) & =\left(\frac{1-z / p_{1}}{1-z / p_{2}}\right)^{-\gamma} \frac{\left(1-z / p_{1}\right)\left(1-z / p_{2}\right)}{(1-z / p)^{4}} .
\end{aligned}
$$

Recall that p is equal to either p_{1} or p_{2}. If $p=p_{1}$, then

$$
\begin{aligned}
f^{\prime}(z) & =\left(\frac{1-z / p_{2}}{1-z / p_{1}}\right)^{1+\gamma}\left(1-z / p_{1}\right)^{-2} \\
f(z) & =\frac{1}{(4+2 \gamma) \sqrt{1-u^{2}}}\left\{1-\left(\frac{1-z / p_{2}}{1-z / p_{1}}\right)^{2+\gamma}\right\}
\end{aligned}
$$

This implies $D=C\left(\left((4+2 \gamma) \sqrt{1-u^{2}}\right)^{-1}, \theta,(2+\gamma) \pi\right)$ for some $\theta \in \mathbb{R}$.
If $p=p_{2}$, then

$$
\begin{aligned}
f^{\prime}(z) & =\left(\frac{1-z / p_{1}}{1-z / p_{2}}\right)^{1-\gamma}\left(1-z / p_{2}\right)^{-2} \\
f(z) & =\frac{1}{(4-2 \gamma) \sqrt{1-u^{2}}}\left\{\left(\frac{1-z / p_{1}}{1-z / p_{2}}\right)^{2-\gamma}-1\right\}
\end{aligned}
$$

Thus $D=C\left(\left((2 \gamma-4) \sqrt{1-u^{2}}\right)^{-1}, \theta,(2-\gamma) \pi\right)$ for some $\theta \in \mathbb{R}$. Taking into account that $\gamma \in[-1,1]$, we conclude that domain D is a cone with opening angle not less than π at some point on the real axis. Therefore, D satisfies one of the conditions (i), (ii).

Case 2. $|u|=1$. This implies $p_{1}=p_{2}=p=i u$ and $v=0$. Integrating (11) yields

$$
\begin{aligned}
\log f^{\prime}(z) & =-2 \log (1-z / p) \\
f^{\prime}(z) & =\frac{1}{(1-z / p)^{2}} \\
f(z) & =\frac{z}{1-z / p}
\end{aligned}
$$

In this case domain D satisfies (i).
It remains to verify that each of the conditions (i), (ii) implies equality in (1). This follows directly from the identity

$$
R\left(C(\zeta, \theta, \beta), \zeta+\rho e^{i(\theta+\delta)}\right)=\frac{2 \beta \rho}{\pi} \cos \frac{\pi \delta}{\beta}
$$

which holds for all $\rho>0$ and $|\delta|<\beta / 2$. Claim (a) is proved.
(b) Let D be such a domain that (1) holds for all $a \in D \backslash\{\infty\}$ and $\varphi \in \mathbb{R}$. If $\mathbb{C} \backslash D$ is not convex, then there exist such points $a, b \in \mathbb{C} \backslash D$ that $t a+(1-t) b \in D$ for $0<t<1$. The function $R(D, t a+(1-t) b)$ is convex on the interval $(0,1)$ and vanishes in its ends. Therefore, $R(D, t a+(1-t) b) \leq 0$ for $0<t<1$. This contradicts the definition of hyperbolic radius.

The proof is complete.

4. Concluding Remarks

The fact that $R(D, w)$ is concave for convex $D[\mathbf{1 0}]$ leads to a non-covering theorem for convex univalent functions $[\mathbf{7}]$. From Theorem 3.1, a covering theorem for convex meromorphic functions can be derived as follows. Consider function $f \in$ \mathbf{M}^{c} that has Taylor expansion $f(z)=z+c_{2} z^{2}+\ldots$ at the origin. One can easily show [7, p. 146] that

$$
R(D, w)=1+2 \operatorname{Re}\left(c_{2} w\right)+o(|w|) \quad(w \rightarrow 0)
$$

By Theorem 3.1, $R(D, w) \geq 1+2 \operatorname{Re}\left(c_{2} w\right)$ for all $w \in f(\mathbb{U}) \backslash\{\infty\}$. Because $R(D, w)$ vanishes on $\partial f(\mathbb{U})$, we have the following result.

Corollary 4.1. If a function f in \mathbf{M}^{c} has Taylor expansion $f(z)=z+c_{2} z^{2}+\ldots$ at 0 , then

$$
\left\{w \in \mathbb{C}: \operatorname{Re}\left(c_{2} w\right)>-\frac{1}{2}\right\} \subset f(\mathbb{U})
$$

Example of the function $f(z)=\frac{z}{1-z}$ shows that the constant $-\frac{1}{2}$ in Corollary 4.1 is the maximal possible.

Remark 4.2. Coefficient estimate (6) is the reverse of known Trimble's inequality $[\mathbf{1 3}]$ which is valid in the different class of univalent functions.

Remark 4.3. Class \mathbf{M}^{c} is related to class $M C$ from the recent paper of Yamashita [14], where some other sharp coefficient estimates were proposed.

In view of [1] it is natural to ask whether Theorem 3.1 will remain true if one replaces $R(D, w)$ with the inner radius $r(D, w)$ of D (see [5] or [3] for definition). Since for simply connected domains these two radii coincide [1], statement (a) holds in this case as well. However, statement (b) fails. The domain $D=\overline{\mathbb{C}} \backslash(\overline{\mathbb{U}} \cup\{2\})$ gives a counterexample. Indeed,

$$
r(D, w)=r(\overline{\mathbb{C}} \backslash \overline{\mathbb{U}}, w)=|w|^{2}-1
$$

for all $w \in D \backslash\{\infty\}$. Hence, $r(D, w)$ is convex in $D \backslash\{\infty\}$, while $\mathbb{C} \backslash D$ is not a convex set.

Problem 4.4. Hyperbolic radius can also be defined for certain domains in \mathbb{R}^{n}, $n>2$ [1]. Does Theorem 3.1 hold for such domains?

References

1. Bandle C. and Flucher M., Harmonic radius and concentration of energy, hyperbolic radius and Liouville's equations $\Delta U=e^{U}$ and $\Delta U=U^{\frac{n+2}{n-2}}$, SIAM Review 38(2) (1996), 191-238.
2. Caffarelli L. A. and Friedman A., Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52 (1985), 431-457.
3. Dubinin V. N., Symmetrization in the geometric theory of functions of a complex variable, Russian Math. Surveys 49(1) (1994), 1-79, Translation of Uspekhi Mat. Nauk 49(1) (1994), 3-76.
4. Duren P. L., Univalent functions, Springer-Verlag, Heidelberg and New York, 1983.
5. Goluzin G. M., Geometric theory of the functions of a complex variable, 2nd ed., Nauka, Moscow, 1966 (in Russian). English transl. Amer. Math. Soc, Providence, RI, 1969.
6. Kim S.-A. and Minda C. D., The hyperbolic and quasihyperbolic metrics in convex regions, Journ. Anal. 1 (1993), 109-118.
7. Kovalev L. V., Estimates for conformal radius and distortion theorems for univalent functions, Zapiski Nauchnyh Seminarov POMI 254 (2000), 141-156 (in Russian).
8. Livingston A. E., Convex meromorphic mappings, Ann. Polonici Math. 59(3) (1994), 275291.
9. Miller J., Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220-228.
10. Minda C. D. and Wright D. J., Univalence criteria and the hyperbolic metric in convex regions, Rocky Mtn. J. Math. 12 (1982), 471-479.
11. Pfaltzgraff J. and Pinchuk B., A variational method for classes of meromorphic functions, J. Analyse Math. 24 (1971), 101-150.
12. Royster W. C., Convex meromorphic functions, In Mathematical Essays Dedicated to A. J. MacIntyre, Ohio Univ. Press, Athens, Ohio, 1970, 331-339.
13. Trimble S. Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266-267.
14. Yamashita S., Coefficient inequalities for meromorphic univalent functions, Math. Japonica 41, No. 3 (1995), 583-594.
L. V. Kovalev, Department of Mathematics, Washington University, St. Louis, MO 63130, USA, e-mail: lkovalev@math.wustl.edu

[^0]: Received July 11, 2000.
 2000 Mathematics Subject Classification. Primary 30F45, 30C45; Secondary 30C50.
 Key words and phrases. Hyperbolic radius, hyperbolic metric, convex functions.
 The author was supported by Russian Foundation for Basic Research grant 99-01-00443.

