DOMAINS WITH CONVEX HYPERBOLIC RADIUS

L. V. KOVALEV

ABSTRACT. The hyperbolic radius of a domain on the Riemann sphere is equal to the reciprocal of the density of the hyperbolic metric. In the present paper, it is proved that the hyperbolic radius is a convex function if and only if the complement of the domain is a convex set.

1. INTRODUCTION

A domain D on the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is said to be hyperbolic if $\overline{\mathbb{C}} \setminus D$ contains at least three points. For $w \in D$, the hyperbolic radius R(D, w) is defined by R(D, w) = |f'(0)|, where f is a covering map of the unit disk $\mathbb{U} = \{z : |z| < 1\}$ onto D with f(0) = w. Hyperbolic radius is closely related to the maximal solution of Liouville's equation and metrics of constant negative curvature [1].

Minda and Wright [10] established that the hyperbolic radius R(D, w) of a convex hyperbolic domain $D \subset \mathbb{C}$ is a concave function of w, thus strengthening the theorem of Caffarelli and Friedman [2]. Later Kim and Minda [6] proved that the concavity of R(D, w) is equivalent to the convexity of D. Here and in what follows we do not assume that the domain of a convex or concave function is a convex set.

The aim of the present paper is to describe domains with convex hyperbolic radius in geometric terms. The method from [10] does not seem to work in this case. By employing a different technique, we shall show that R(D, w) is convex in $D \setminus \{\infty\}$ if and only if $\mathbb{C} \setminus D$ is a convex set.

2. Preliminary Results

Let **M** denote the set of all univalent meromorphic functions in the unit disk \mathbb{U} with f(0) = 0, f'(0) > 0. The class **A** is defined to be a collection of all members of **M** that are analytic in \mathbb{U} . Define $\mathbf{M}^c = \{f \in \mathbf{M} : \mathbb{C} \setminus f(\mathbb{U}) \text{ is convex}\}$. Let **P** denote the set of all analytic functions in \mathbb{U} with positive real part and f(0) = 1.

2000 Mathematics Subject Classification. Primary 30F45, 30C45; Secondary 30C50.

Received July 11, 2000.

Key words and phrases. Hyperbolic radius, hyperbolic metric, convex functions.

The author was supported by Russian Foundation for Basic Research grant 99-01-00443.

For $f \in \mathbf{M}$ and $p \in \overline{\mathbb{U}} \setminus \{0\}$, define

$$[f,p](z) = \frac{2\bar{p}z}{1-\bar{p}z} - \frac{2p}{z-p} - \left(1 + \frac{zf''(z)}{f'(z)}\right).$$

For $f \in \mathbf{M} \setminus \mathbf{A}$, let $\hat{f} = [f, f^{-1}(\infty)]$, where f^{-1} is the inverse of f.

Lemma 2.1. Function [f, p] is analytic in \mathbb{U} if and only if either $f \in \mathbf{M} \setminus \mathbf{A}$ and $p = f^{-1}(\infty)$ or $f \in \mathbf{A}$ and |p| = 1.

Proof. The 'only if' part of the statement is trivial. In case of $f \in \mathbf{A}$ and |p| = 1, function [f, p] is analytic in \mathbb{U} by its definition. Let $f \in \mathbf{M} \setminus \mathbf{A}$, $p = f^{-1}(\infty)$, and $c = \lim_{x \to 0} f(z)(z-p)$. Then asymptotic expansions

$$f'(z) = -\frac{c}{(z-p)^2} + O(1), \quad f''(z) = \frac{2c}{(z-p)^3} + O(1) \quad (z \to p)$$

hold. Therefore,

$$f,p](z) = -\frac{2p}{z-p} - \frac{2cp(z-p)^{-3}}{-c(z-p)^{-2}} + O(1) = O(1) \quad (z \to p)$$

which implies the analyticity of [f, p]. This proves the lemma.

Lemma 2.2. (a) If $f \in \mathbf{M}^c \setminus \mathbf{A}$, then $\hat{f} \in \mathbf{P}$. (b) If $f \in \mathbf{M}^c \cap \mathbf{A}$, then $[f, p] \in \mathbf{P}$ for some $p \in \partial \mathbb{U}$.

Proof. (a) Let $p = f^{-1}(\infty)$. Then $p \in \mathbb{U} \setminus \{0\}$. For $0 statement (a) was proved by Pfaltzgraff and Pinchuk [11], see also [8]. For arbitrary <math>p \in \mathbb{U} \setminus \{0\}$, let $g(z) = \frac{|p|}{p} f(pz/|p|)$. It is easy to see that $g \in \mathbf{M}^c \setminus \mathbf{A}$, $g(|p|) = \infty$, and $\hat{f}(z) = \hat{g}(pz/|p|)$. Thus $\hat{f} \in \mathbf{P}$.

(b) For $n > \operatorname{dist}(0, \mathbb{C} \setminus f(\mathbb{U}))$ let $D_n = f(\mathbb{U}) \cup \{z : |z| > n\}$. Then $\mathbb{C} \setminus D_n$ is convex. There is a unique function $f_n \in \mathbf{M}^c \setminus \mathbf{A}$ that maps \mathbb{U} onto D_n . Since $D_{n+1} \subset D_n$, the function $f_n^{-1} \circ f_{n+1}$ maps \mathbb{U} into itself. By Schwarz Lemma, $|f_n^{-1}(f_{n+1}(z))| \leq |z|$ for all $z \in \mathbb{U}$. Letting $z = f_{n+1}^{-1}(\infty)$ yields $|f_n^{-1}(\infty)| \leq |f_{n+1}^{-1}(\infty)|$. Taking a subsequence, we can assume that $\{f_n^{-1}(\infty)\}$ converge to some point p of $\overline{\mathbb{U}} \setminus \{0\}$. By Carathéodory kernel theorem [5, p.56] $f_n \to f$ and $\hat{f}_n \to [f, p]$ locally uniformly in $\mathbb{U} \setminus \{p\}$. Since $\hat{f}_n \in \mathbf{P}$, it follows that $[f, p] \in \mathbf{P}$. Lemma 2.1 implies |p| = 1.

The proof is complete.

Remark 2.3. Functions f with $\hat{f} \in \mathbf{P}$ have been also considered by Miller [9] and Royster [12].

3. Main Result

Define the cone

$$C(\zeta, \theta, \beta) = \{\zeta + \rho e^{i\varphi} : \rho > 0, |\varphi - \theta| < \beta/2\}$$

with opening angle β at the point $\zeta \in \mathbb{C}$.

208

Theorem 3.1. (a) Let $D \subset \overline{\mathbb{C}}$ be a hyperbolic domain. If $\mathbb{C} \setminus D$ is convex, then for any $w \in D \setminus \{\infty\}$ and $\varphi \in \mathbb{R}$

(1)
$$\frac{d^2}{dt^2}R(D,w+te^{i\varphi})\big|_{t=0} \ge 0.$$

Equality is attained in (1) if and only if one of the following conditions holds:

- (i) *D* is a half-plane;
- (ii) $D = C(\zeta, \theta, \beta)$, where $\beta > \pi$ and $e^{-i\varphi}(w \zeta) \in \mathbb{R}$.

(b) Let D be a hyperbolic domain such that (1) holds for all $w \in D \setminus \{\infty\}$ and $\varphi \in \mathbb{R}$. Then $\mathbb{C} \setminus D$ is convex.

Proof. (a) Without loss of generality we may assume that $w = \varphi = 0$ and R(D,0) = 1. Then (1) can be rewritten as

(2)
$$\lim_{\varepsilon \downarrow 0} \varepsilon^{-2} (R(D,\varepsilon) + R(D,-\varepsilon) - 2) \ge 0.$$

There exists a unique $f \in \mathbf{M}^c$ that maps \mathbb{U} onto D. Denote its Taylor coefficients at zero by c_k (k = 1, 2, ...). Since $|c_1| = R(D, 0) = 1$, it follows that $c_1 = 1$. For $0 < \varepsilon < \operatorname{dist}(0, \partial D)$, let $z_1 = f^{-1}(\varepsilon)$ and $z_2 = f^{-1}(-\varepsilon)$. Combining expansions $z_1 + c_2 z_1^2 + o(\varepsilon^2) = \varepsilon$ and $z_2 + c_2 z_2^2 + o(\varepsilon^2) = -\varepsilon$ $(\varepsilon \downarrow 0)$ yields

(3)
$$z_1 + z_2 = -c_2(z_1^2 + z_2^2) + o(\varepsilon^2) \quad (\varepsilon \downarrow 0).$$

Since $|1 + w| = 1 + \text{Re } w + (\text{Im } w)^2/2 + o(|w|^2) \ (w \to 0)$, we have

(4)
$$|f'(z_i)| = 1 + \operatorname{Re}(2c_2z_i + 3c_3z_i^2)$$

+ 2(Im(c₂z_i))² + o(
$$\varepsilon^2$$
) ($\varepsilon \downarrow 0, i = 1, 2$).

Combining (4), (3), and relations $z_1 = \varepsilon + o(\varepsilon)$, $z_2 = -\varepsilon + o(\varepsilon)$ ($\varepsilon \downarrow 0$) yields

$$|f'(z_1)| + |f'(z_2)| = 2 + 2\varepsilon^2 \operatorname{Re}(3c_3 - 2c_2^2) + 4\varepsilon^2 (\operatorname{Im} c_2)^2 + o(\varepsilon^2) \quad (\varepsilon \downarrow 0),$$

$$R(D,\varepsilon) + R(D,-\varepsilon) = |f'(z_1)|(1-|z_1|^2) + |f'(z_2)|(1-|z_2|^2)$$

= 2 + 2\varepsilon^2 (Re(3c_3 - 2c_2^2) + 2(Im c_2)^2 - 1) + o(\varepsilon^2) \quad (\varepsilon \prod 0).

Because

(5)
$$\lim_{\varepsilon \downarrow 0} \varepsilon^{-2} (R(D,\varepsilon) + R(D,-\varepsilon) - 2) = 2(\operatorname{Re}(3c_3 - 2c_2^2) + 2(\operatorname{Im} c_2)^2 - 1) = 2(3\operatorname{Re}(c_3 - c_2^2) + |c_2|^2 - 1),$$

inequality (2) is equivalent to

(6)
$$3\operatorname{Re}(c_3 - c_2^2) + |c_2|^2 \ge 1.$$

By Lemma 2.2 there is $p \in \overline{U} \setminus \{0\}$ such that $[f, p] \in \mathbf{P}$. The Taylor series for [f, p] at 0 has the form

$$[f,p](z) = 1 + 2(\bar{p} + 1/p - c_2)z + 2(\bar{p}^2 + 1/p^2 + 2c_2^2 - 3c_3)z^2 + \cdots$$

Let $\bar{p} + 1/p = re^{i\varphi}$, where $\varphi \in \mathbb{R}$ and $r = |\bar{p} + 1/p| = |p| + 1/|p| \ge 2$. It follows from Carathéodory's lemma [4, p.41] that $|re^{i\varphi} - c_2| \le 1$. Let $c_2 = re^{i\varphi} + \rho e^{i\psi}$, where $\psi \in \mathbb{R}$, $0 \le \rho \le 1$. The identity

$$\bar{p}^2 + \frac{1}{p^2} = \left(\bar{p} + \frac{1}{p}\right)^2 - 2\frac{\bar{p}}{p} = r^2 e^{2i\varphi} - 2e^{2i\varphi} = (r^2 - 2)e^{2i\varphi}$$

implies

(7)
$$[f,p](z) = 1 - 2\rho e^{i\psi} z + 2((r^2 - 2)e^{2i\varphi} + 2c_2^2 - 3c_3)z^2 + \cdots$$
$$= 1 + a_1 z + a_2 z^2 + \cdots .$$

It is easy to see that for $\alpha \in \mathbb{R}$

$$\tau_{\alpha}(\zeta) = \frac{(1+e^{i\alpha})\zeta + 1 - e^{i\alpha}}{(1-e^{i\alpha})\zeta + 1 + e^{i\alpha}}$$

is a conformal automorphism of the right half-plane which fixes 1. Hence the function

belongs to ${\bf P}.$ It follows from Carathéodory's lemma that

$$\operatorname{Re}(a_2 - (1 - e^{i\alpha})a_1^2/2)) \le 2.$$

Passing to the supremum over all $\alpha \in \mathbb{R}$ yields

$$\operatorname{Re}(a_2 - a_1^2/2) + |a_1|^2/2 \le 2$$

which is equivalent to

$$(r^2 - 2)\cos 2\varphi + \operatorname{Re}(2c_2^2 - 3c_3) - \rho^2\cos 2\psi + \rho^2 \le 1.$$

Therefore,

(9)

$$3\operatorname{Re}(c_{3}-c_{2}^{2})+|c_{2}|^{2} \geq |c_{2}|^{2}-\operatorname{Re}c_{2}^{2}+(r^{2}-2)\cos 2\varphi+\rho^{2}(1-\cos 2\psi)-1$$

$$=2(\operatorname{Im}c_{2})^{2}+(r^{2}-2)(1-2\sin^{2}\varphi)+2\rho^{2}\sin^{2}\psi-1$$

$$=2(r\sin\varphi+\rho\sin\psi)^{2}-2(r^{2}-2)\sin^{2}\varphi+2\rho^{2}\sin^{2}\psi+r^{2}-3$$

$$=4(\sin\varphi+\rho\sin\psi)^{2}+4\rho(r-2)\sin\varphi\sin\psi+r^{2}-3$$

$$\geq-4(r-2)+r^{2}-3=(r-2)^{2}+1\geq1.$$

This proves (6), and (1) follows.

Suppose that equality is attained in (1). Then (9) also becomes an equality. This implies r = 2 and |p| = 1. Since |p| = 1, it follows from Lemma 2.1 that $\infty \notin D$. By equality statement in Carathéodory's lemma [4, p.41], there are $\alpha \in \mathbb{R}$ and $\mu \in [0, 1]$ such that

$$\tau_{\alpha}([f,p](z)) = \mu \frac{1 + e^{i\alpha/2}z}{1 - e^{i\alpha/2}z} + (1-\mu) \frac{1 - e^{i\alpha/2}z}{1 + e^{i\alpha/2}z}.$$

210

Hence,

(10)
$$[f,p](z) = \frac{1+2(2\mu-1)\cos(\alpha/2)z+z^2}{1+2(2\mu-1)i\sin(\alpha/2)z-z^2} = \frac{1+2\nu z+z^2}{1+2iuz-z^2},$$

where $u = (2\mu - 1)\sin(\alpha/2)$, $v = (2\mu - 1)\cos(\alpha/2)$. Combining (7) and (10) yields $\rho e^{i\psi} = ui - v$ and $u = \rho \sin \psi$. Since (9) is supposed to be an equality, we have $\sin \varphi = -\rho \sin \psi = -u$ which implies $p = e^{-i\varphi} \in \{p_1, p_2\}$, where $p_n = (-1)^n \sqrt{1 - u^2} + iu$, n = 1, 2. Recalling the definition of [f, p] and using |p| = 1 we obtain

(11)
$$(\log f'(z))' = \frac{f''(z)}{f'(z)} = \frac{4}{p-z} + 2\frac{z+v-iu}{z^2-2iuz-1}.$$

It is easy to see that $z^2 - 2iuz - 1 = (z - p_1)(z - p_2)$.

Case 1. |u| < 1. Let $\gamma = v/\sqrt{1-u^2}$. Integrating (11) yields

$$\log f'(z) = -4 \int_0^z \frac{d\zeta}{\zeta - p} + \int_0^z \frac{2\zeta - 2iu}{\zeta^2 - 2iu\zeta - 1} d\zeta + 2v \int_0^z \frac{d\zeta}{(\zeta - p_1)(\zeta - p_2)}$$
$$= -4 \log(1 - z/p) + \log(1 + 2iuz - z^2) - \gamma \log \frac{1 - z/p_1}{1 - z/p_2},$$
$$f'(z) = \left(\frac{1 - z/p_1}{1 - z/p_2}\right)^{-\gamma} \frac{(1 - z/p_1)(1 - z/p_2)}{(1 - z/p)^4}.$$

Recall that p is equal to either p_1 or p_2 . If $p = p_1$, then

$$f'(z) = \left(\frac{1 - z/p_2}{1 - z/p_1}\right)^{1+\gamma} (1 - z/p_1)^{-2},$$

$$f(z) = \frac{1}{(4+2\gamma)\sqrt{1-u^2}} \left\{ 1 - \left(\frac{1 - z/p_2}{1 - z/p_1}\right)^{2+\gamma} \right\}.$$

This implies $D = C\left(\left((4+2\gamma)\sqrt{1-u^2}\right)^{-1}, \theta, (2+\gamma)\pi\right)$ for some $\theta \in \mathbb{R}$. If $p = p_2$, then

$$f'(z) = \left(\frac{1-z/p_1}{1-z/p_2}\right)^{1-\gamma} (1-z/p_2)^{-2},$$

$$f(z) = \frac{1}{(4-2\gamma)\sqrt{1-u^2}} \left\{ \left(\frac{1-z/p_1}{1-z/p_2}\right)^{2-\gamma} - 1 \right\}.$$

Thus $D = C\left(\left((2\gamma - 4)\sqrt{1 - u^2}\right)^{-1}, \theta, (2 - \gamma)\pi\right)$ for some $\theta \in \mathbb{R}$. Taking into account that $\gamma \in [-1, 1]$, we conclude that domain D is a cone with opening angle not less than π at some point on the real axis. Therefore, D satisfies one of the conditions (i), (ii).

Case 2. |u| = 1. This implies $p_1 = p_2 = p = iu$ and v = 0. Integrating (11) yields

$$\log f'(z) = -2\log(1 - z/p),$$

$$f'(z) = \frac{1}{(1 - z/p)^2},$$

$$f(z) = \frac{z}{1 - z/p}.$$

In this case domain D satisfies (i).

It remains to verify that each of the conditions (i), (ii) implies equality in (1). This follows directly from the identity

$$R\left(C(\zeta,\theta,\beta),\zeta+\rho e^{i(\theta+\delta)}\right) = \frac{2\beta\rho}{\pi}\cos\frac{\pi\delta}{\beta},$$

which holds for all $\rho > 0$ and $|\delta| < \beta/2$. Claim (a) is proved.

(b) Let D be such a domain that (1) holds for all $a \in D \setminus \{\infty\}$ and $\varphi \in \mathbb{R}$. If $\mathbb{C} \setminus D$ is not convex, then there exist such points $a, b \in \mathbb{C} \setminus D$ that $ta + (1-t)b \in D$ for 0 < t < 1. The function R(D, ta + (1-t)b) is convex on the interval (0, 1) and vanishes in its ends. Therefore, $R(D, ta + (1-t)b) \leq 0$ for 0 < t < 1. This contradicts the definition of hyperbolic radius.

The proof is complete.

4. Concluding Remarks

The fact that R(D, w) is concave for convex D [10] leads to a non-covering theorem for convex univalent functions [7]. From Theorem 3.1, a covering theorem for convex meromorphic functions can be derived as follows. Consider function $f \in$ \mathbf{M}^c that has Taylor expansion $f(z) = z + c_2 z^2 + \ldots$ at the origin. One can easily show [7, p. 146] that

$$R(D, w) = 1 + 2\operatorname{Re}(c_2 w) + o(|w|) \quad (w \to 0).$$

By Theorem 3.1, $R(D, w) \ge 1 + 2 \operatorname{Re}(c_2 w)$ for all $w \in f(\mathbb{U}) \setminus \{\infty\}$. Because R(D, w) vanishes on $\partial f(\mathbb{U})$, we have the following result.

Corollary 4.1. If a function f in \mathbf{M}^c has Taylor expansion $f(z) = z + c_2 z^2 + ...$ at 0, then

$$\left\{w\in\mathbb{C} : \operatorname{Re}(c_2w) > -\frac{1}{2}\right\} \subset f(\mathbb{U}).$$

Example of the function $f(z) = \frac{z}{1-z}$ shows that the constant $-\frac{1}{2}$ in Corollary 4.1 is the maximal possible.

Remark 4.2. Coefficient estimate (6) is the reverse of known Trimble's inequality [13] which is valid in the different class of univalent functions.

Remark 4.3. Class \mathbf{M}^c is related to class MC from the recent paper of Yamashita [14], where some other sharp coefficient estimates were proposed.

212

In view of [1] it is natural to ask whether Theorem 3.1 will remain true if one replaces R(D, w) with the inner radius r(D, w) of D (see [5] or [3] for definition). Since for simply connected domains these two radii coincide [1], statement (a) holds in this case as well. However, statement (b) fails. The domain $D = \overline{\mathbb{C}} \setminus (\overline{\mathbb{U}} \cup \{2\})$ gives a counterexample. Indeed,

$$r(D, w) = r(\overline{\mathbb{C}} \setminus \overline{\mathbb{U}}, w) = |w|^2 - 1$$

for all $w \in D \setminus \{\infty\}$. Hence, r(D, w) is convex in $D \setminus \{\infty\}$, while $\mathbb{C} \setminus D$ is not a convex set.

Problem 4.4. Hyperbolic radius can also be defined for certain domains in \mathbb{R}^n , n > 2 [1]. Does Theorem 3.1 hold for such domains?

References

- Bandle C. and Flucher M., Harmonic radius and concentration of energy, hyperbolic radius and Liouville's equations ΔU = e^U and ΔU = Uⁿ⁺²/_{n-2}, SIAM Review 38(2) (1996), 191–238.
- Caffarelli L. A. and Friedman A., Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52 (1985), 431–457.
- Dubinin V. N., Symmetrization in the geometric theory of functions of a complex variable, Russian Math. Surveys 49(1) (1994), 1–79, Translation of Uspekhi Mat. Nauk 49(1) (1994), 3–76.
- 4. Duren P. L., Univalent functions, Springer-Verlag, Heidelberg and New York, 1983.
- Goluzin G. M., Geometric theory of the functions of a complex variable, 2nd ed., Nauka, Moscow, 1966 (in Russian). English transl. Amer. Math. Soc, Providence, RI, 1969.
- Kim S.-A. and Minda C. D., The hyperbolic and quasihyperbolic metrics in convex regions, Journ. Anal. 1 (1993), 109–118.
- Kovalev L. V., Estimates for conformal radius and distortion theorems for univalent functions, Zapiski Nauchnyh Seminarov POMI 254 (2000), 141–156 (in Russian).
- Livingston A. E., Convex meromorphic mappings, Ann. Polonici Math. 59(3) (1994), 275– 291.
- Miller J., Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220–228.
- Minda C. D. and Wright D. J., Univalence criteria and the hyperbolic metric in convex regions, Rocky Mtn. J. Math. 12 (1982), 471–479.
- Pfaltzgraff J. and Pinchuk B., A variational method for classes of meromorphic functions, J. Analyse Math. 24 (1971), 101–150.
- Royster W. C., *Convex meromorphic functions*, In Mathematical Essays Dedicated to A. J. MacIntyre, Ohio Univ. Press, Athens, Ohio, 1970, 331–339.
- Trimble S. Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266–267.
- Yamashita S., Coefficient inequalities for meromorphic univalent functions, Math. Japonica 41, No.3 (1995), 583–594.

L. V. Kovalev, Department of Mathematics, Washington University, St. Louis, MO 63130, USA, *e-mail*: lkovalev@math.wustl.edu