A DARBOUX PROPERTY OF $\mathcal{I}_1\text{-}\mathsf{APPROXIMATE}$ PARTIAL DERIVATIVES

R. CARRESE AND E. ŁAZAROW

ABSTRACT. Some Darboux property for functions of two variables is studied. In particular, it is shown that \mathcal{I}_2 -approximately continuous functions and \mathcal{I}_1 -approximate partial derivatives of separately \mathcal{I}_1 -approximately continuous functions are Darboux.

Let $\Re(\Re^2)$ denote the real line (the plane) and \mathcal{N} -the set of all positive integers. All topological notations, except for the case where a topology \mathcal{T} is specifically mentioned, are given with respect to the natural topology on \Re or \Re^2 .

Let $S_1(S_2)$ denote the σ -field of sets of $\Re(\Re^2)$ having the Baire property. $\mathcal{I}_1(\mathcal{I}_2)$ will denote the σ -ideal of sets of $\Re(\Re^2)$ of the first category.

Recall that 0 is an \mathcal{I}_1 -density point of a set $A \in \mathcal{S}_1$ if and only if, for each increasing sequence of positive integers $\{n_m\}_{m \in \mathcal{N}}$, there is a subsequence $\{n_{m_p}\}_{p \in \mathcal{N}}$ such that

$$\{x: \chi_{n_{m_n} \cdot A \cap [-1,1]}(x) \not\to 1\} \in \mathcal{I}_1$$

where $n \cdot A = \{nx : x \in A\}$ (see [8] and, for two variables, [2]).

A point $x_0 \in \Re$ is said to be an \mathcal{I}_1 -density point of $a \in \mathcal{S}_1$ if and only if 0 is an \mathcal{I}_1 -density point of the set $\{x - x_0 : x \in A\}$.

A point $x_0 \in \Re$ is said to be an \mathcal{I}_1 -dispersion point of $A \in \mathcal{S}_1$ if and only if x_0 is an \mathcal{I}_1 -density point of $\Re \setminus A$.

For each $A \in \mathcal{S}_1$, we denote

$$\Phi_1(A) = \{ x \in \Re : x \text{ is an } \mathcal{I}_1 \text{-density point of } A \},\$$

 $\Psi_1(A) = \{ x \in \Re : x \text{ is an } \mathcal{I}_1 \text{-dispersion point of } A \}.$

In [8] it was proved that $\mathcal{T}_{\mathcal{I}_1} = \{A \in \mathcal{S}_1 : A \subset \Phi_1(A)\}$ is a topology on the real line. Every function which is continuous with respect to the $\mathcal{T}_{\mathcal{I}_1}$ -topology is called an \mathcal{I}_1 -approximately continuous function.

We say that x_0 is a deep \mathcal{I}_1 -density point of a set A if and only if there exists a closed set $F \subset A \cup \{x_0\}$ such that $x_0 \in \Phi_1(F)$. In [9] it was proved that if f is an \mathcal{I}_1 -approximately continuous function then, for every open set U, if $x_0 \in f^{-1}(U)$, then x_0 is a deep \mathcal{I}_1 -density point of the set $f^{-1}(U)$.

The following result will be useful (see [5]).

Received November 17, 1997.

²⁰⁰⁰ Mathematics Subject Classification. Primary 26B05; Secondary 26A21.

Lemma 1. Let G be an open subset of the real line; then 0 is an \mathcal{I}_1 -dispersion point of G if and only if, for each $n \in \mathcal{N}$, there exist $k \in \mathcal{N}$ and a real $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i \in \{1, \ldots, n\}$, there exist two numbers $j, j' \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk}\right) \cdot h, \left(\frac{i-1}{n} + \frac{j}{nk}\right) \cdot h \right) = \emptyset$$

and

$$G \cap \left(\left(-\frac{i-1}{n} + \frac{j'}{nk} \right) \cdot h, -\left(\frac{i-1}{n} + \frac{j'-1}{nk} \right) \cdot h \right) = \emptyset.$$

In [2], the definition of an \mathcal{I}_2 -density point of a set $A \in \mathcal{S}_2$ was introduced. The authors obtained analogous results as in [8], on the plane. They defined the topology on the plane in the following way: $\mathcal{I}_{\mathcal{I}_2} = \{A \in \mathcal{S}_2 : A \subset \Phi_2(A)\}$ where

 $\Phi_2(A) = \{ (x, y) \in \Re^2 : (x, y) \text{ is an } \mathcal{I}_2 \text{-density point of } A \}.$

We shall denote by $\Phi_2^{++}(A)$, for each $A \in S_2$, the set of \mathcal{I}_2 -density points of the set A with respect to the first quarter on the plane. For the remaining quarters, we use the symbols $\Phi_2^{-+}(A)$, $\Phi_2^{+-}(A)$ and $\Phi_2^{--}(A)$. By $\Psi_2^{++}(A)$, $\Psi_2^{-+}(A)$, $\Psi_2^{+-}(A)$ and $\Psi_2^{--}(A)$ we denote sets of \mathcal{I}_2 -dispersion points of the set A with respect to each quarter on the plane, respectively [2]. Functions which are continuous with respect to the $\mathcal{I}_{\mathcal{I}_2}$ -topology will be called \mathcal{I}_2 -approximately continuous.

In a similar way as Lemma 1 we may prove the following

Lemma 2. Let G be an open set on the plane; then $(0,0) \in \Psi_2^{++}(G)$ if and only if, for each $n \in \mathcal{N}$, there exist $k \in \mathcal{N}$ and a real number $\delta > 0$ such that, for any $h \in (0, \delta)$ and $i, i' \in \{1, \ldots, n\}$, there exist two numbers $j, j' \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot h, \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot h \right) \\ \times \left(\left(\frac{i'-1}{n} + \frac{j'-1}{nk} \right) \cdot h, \left(\frac{i'-1}{n} + \frac{j'}{nk} \right) \cdot h \right) = \emptyset.$$

The definition of a separately \mathcal{I}_1 -approximately continuous function was introduced in the obvious manner in [10] and was considered in [10] and [1].

In [6], the definition of the \mathcal{I}_1 -approximative derivative of a function f of one variable was introduced. Many properties of \mathcal{I}_1 -approximate derivatives and \mathcal{I}_1 -differentiable functions were considered there.

Definition 3 ([6]). Let $f: \mathbb{R} \to \mathbb{R}$ have the Baire property in a neighbourhood of x_0 . The upper \mathcal{I}_1 -approximate limit of f at x_0 (\mathcal{I}_1 -lim $\sup_{x\to x_0} f(x)$) is the greatest lower bound of the set $\{y: \{x: f(x) > y\}$ has x_0 as an \mathcal{I}_1 -dispersion point}. The lower \mathcal{I}_1 -approximate limit, the right-hand and left-hand upper and lower \mathcal{I}_1 -approximate limits are defined similarly. If \mathcal{I}_1 -lim $\sup_{x\to x_0} f(x) =$ \mathcal{I}_1 -liminf $_{x\to x_0} f(x)$, their common value will be called the \mathcal{I}_1 -approximate limit of f at x_0 and denoted by \mathcal{I}_1 -lim $\sup_{x\to x_0} f(x)$.

Let $f: \Re^2 \to \Re$ and $(x_0, y_0) \in \Re^2$. Put

$$U_{(x_0,y_0)}(x) = \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0} \quad \text{for } x \in \Re, x \neq x_0$$

178

A DARBOUX PROPERTY OF \mathcal{I}_1 -APPROXIMATE PARTIAL DERIVATIVES 179

Definition 4 ([6]). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be any function defined in some neighbourhood of $(x_0, y_0) \in \mathbb{R}^2$ and having there the Baire property in the direction of the ox axis. We define the upper right \mathcal{I}_1 -approximate partial derivative of f at (x_0, y_0) in the direction of ox as the corresponding extreme limit of $U_{(x_0, y_0)}(x)$ as x tends to x_0 from the right. The other extreme \mathcal{I}_1 -approximate partial derivatives in the direction of ox are defined similarly. If all these derivatives are equal and finite, we call their common value the \mathcal{I}_1 -approximate partial derivative of f at (x_0, y_0) and denote it by $f_{\mathcal{I}_1,x}(x_0, y_0)$.

In a similar way we can define the partial \mathcal{I}_1 -approximate derivate in the direction of the oy axis.

The partial \mathcal{I}_1 -approximate derivatives are considered in [3] and [4].

Definition 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$. We shall say that f has the Darboux property if and only if, for each open interval $J \subset \mathbb{R}^2$, f(J) is a connected set.

Definition 6 ([7]). A set $D \subset \Re^2$ is Darboux if and only if

- for each $x \in D$, there exists a closed interval I such that $x \in I$ and int $(I) \subset D$,
- for two points $x, y \in D$, there are $k \in \mathcal{N}$ and Q_1, Q_2, \ldots, Q_k such that, for each $i \in \{1, \ldots, k\}$, int $(\operatorname{cl}(Q_i)) \subset Q_i \subset D$, $\operatorname{cl}(Q_i)$ is a closed interval, $x \in Q_1, y \in Q_k$ and $Q_i \cap Q_{i+1} \neq \emptyset$ for $i = 1, \ldots, k - 1$.

Definition 7. Let $f: \Re^2 \to \Re$. We shall say that f is Darboux if and only if, for every Darboux set Q, f(Q) is a connected set.

Definition 8. Let $f: \mathbb{R}^2 \to \mathbb{R}$. We shall say that f is a connected function if and only if, for every connected set A, f(A) is connected.

By [2], we have the following theorem.

Theorem 9. Let $f: \Re^2 \to \Re$ be an \mathcal{I}_2 -approximately continuous function. Then f has the Darboux property.

Corollary 10. Every open interval is a connected set with respect to the $T_{\mathcal{I}_2}$ -topology.

Proposition 11. Every Darboux set is connected with respect to the $\mathcal{T}_{\mathcal{I}_2}$ -topology.

Proof. It is enough to prove that each set $Q \subset \Re^2$, such that $\operatorname{cl}(Q)$ is a closed interval and $\operatorname{int}(\operatorname{cl}(Q)) \subset Q$, is connected with respect to $\mathcal{T}_{\mathcal{I}_2}$. We put A = $\operatorname{int}(\operatorname{cl}(Q))$ and assume that $Q \setminus A \neq \emptyset$. We observe that if $(x, y) \in Q \setminus A$, then $(x, y) \in \Phi_2^{++}(A)$ or $(x, y) \in \Phi_2^{-+}(A)$ or $(x, y) \in \Phi_2^{+-}(A)$. Therefore, for each $U \in \mathcal{T}_{\mathcal{I}_2}$ such that $(x, y) \in U, U \cap A \neq \emptyset$.

We suppose that there exist two sets $U_1, U_2 \in \mathcal{T}_{\mathcal{I}_2}$ such that $Q \cap U_1 \neq \emptyset$, $Q \cap U_2 \neq \emptyset$, $Q \cap U_1 \cap U_2 = \emptyset$ and $Q \cap (U_1 \cup U_2) = \emptyset$. Since A is $\mathcal{T}_{\mathcal{I}_2}$ -connected, therefore $A \subset U_1$ or $A \subset U_2$. We assume that $A \subset U_1$. Thus $\emptyset \neq U_2 \cap A \subset U_2 \cap U_1 \cap Q$, a contradiction. Hence every Darboux set is $\mathcal{T}_{\mathcal{I}_2}$ -connected. \Box **Theorem 12.** Let $f: \Re^2 \to \Re^2$ be an \mathcal{I}_2 -approximately continuous function. Then f is a Darboux function.

Proposition 13. There exists a set $A \subset \mathbb{R}^2$ such that A is connected with respect to the natural topology and A is not connected with respect to the $\mathcal{T}_{\mathcal{I}_2}$ -topology.

Proof. It is enough to show that there exist two disjoint nonempty sets A_1 and A_2 such that $A_1 \in \mathcal{T}_{\mathcal{I}_2}$, $A_2 \in \mathcal{T}_{\mathcal{I}_2}$, and $A_1 \cup A_2$ is a connected set with respect to the natural topology.

Let

$$A_1 = \left\{ (x, y) \in \Re^2 : -\frac{1}{2}x^2 < y < \frac{1}{2}x^2 \right\}$$

and

$$A_2 = (\Re^2 \setminus \{(x, y) \in \Re^2 : -x^2 \le y \le x^2\}) \cup \{(0, 0)\}$$

Then $A_1 \in \mathcal{T}_{\mathcal{I}_2}$ and $A_1 \cup A_2$ is a connected set with respect to the natural topology. We shall show that $A_2 \in \mathcal{T}_{\mathcal{I}_2}$. Since $A_2 \setminus \{(0,0)\}$ is an open set we only prove that $(0,0) \in \Phi_2(A_2)$. It is obvious that $(0,0) \in \Phi_2^{-+}(A_2)$ and $(0,0) \in \Phi_2^{--}(A_2)$.

Let $n \in \mathcal{N}$. We put k = 2 and $\delta = \frac{1}{2n}$. Let $0 < h < \delta$, $(i_1, i_2) \in \{1, \dots, n\} \times \{1, \dots, n\}$ and

$$(x_0, y_0) \in \left(\frac{i_1 - 1}{n}h, \frac{2i_1 - 1}{2n}h\right) \times \left(\frac{2i_2 - 1}{2n}h, \frac{i_2}{n}h\right).$$

Then $y_0 > \frac{2i_2 - 1}{2n}h > (2i_2 - 1)h^2 \ge h^2$ and $0 < x_0 < h$. Thus $y_0 > x_0^2$ and $(x_0, y_0) \in A_2$. Therefore there exists $(j_1, j_2) = (1, 2) \in \{1, 2\} \times \{1, 2\}$ such that

$$\left(\left(\frac{i_1-1}{n}+\frac{j_1-1}{nk}\right)\cdot h, \left(\frac{i_1-1}{n}+\frac{j_1}{nk}\right)\cdot h\right) \times \left(\left(\frac{i_2-1}{n}+\frac{j_2-1}{nk}\right)\cdot h, \left(\frac{i_2-1}{n}+\frac{j_2}{nk}\right)\cdot h\right) \subset A_2$$

Hence, by Lemma 2, $(0,0) \in \Phi^{++}(A_2)$. In a similar way we can prove that $(0,0) \in \Phi^{+-}(A_2)$ and the proof of the proposition is completed.

Proposition 14. There exists a function $f: \Re^2 \to \Re$ such that f is \mathcal{I}_2 -approximately continuous and is not a connected function.

Proof. Let A_1, A_2 be defined in the same way as in Proposition 13. Let $f: \Re^2 \to \Re$ be a continuous function at each $(x, y) \in \Re^2 \setminus \{(0, 0)\}$ such that $f(A_1) = \{1\}$ and $f(A_2) = \{0\}$. Since $(0, 0) \in \Phi_2(A_2)$ we have that f is \mathcal{I}_2 -approximately continuous on \Re^2 . By $f(A_1 \cup A_2) = \{0, 1\}$, we know that f is not connected. \Box

Lemma 15. Let $[a,b] \subset \Re$ and let A_1, A_2 be two nonempty sets having the Baire property such that $[a,b] = A_1 \cup A_2$. Then $A_1 \cap ((a,b) \setminus \Psi_1(A_2)) \neq \emptyset$ or $A_2 \cap ((a,b) \setminus \Psi_1(A_1)) \neq \emptyset$.

Proof. First we assume that $A_1 \cap A_2 \notin \mathcal{I}_1$. Then, by [8], $(a, b) \cap A_1 \cap A_2 \cap \Phi_1(A_1 \cap A_2) \neq \emptyset$ and we choose $x_0 \in (a, b) \cap A_1 \cap A_2 \cap \Phi_1(A_1 \cap A_2)$. Then $x_0 \in A_1 \cap ((a, b) \setminus \Psi_1(A_2))$.

180

A DARBOUX PROPERTY OF \mathcal{I}_1 -APPROXIMATE PARTIAL DERIVATIVES 181

Now, let $A_1 \cap A_2 \in \mathcal{I}_1$. We put $B_1 = (A_1 \setminus (A_1 \cap A_2)) \cap (a, b)$ and $B_2 = A_2 \cap (a, b)$. Then, by $[\mathbf{8}]$, $\Psi_1(B_1) = \Psi_2(A_1)$ and $\Psi_1(B_2) = \Psi_1(A_2)$. We suppose that $B_1 \subset \Psi_1(B_2)$ and $B_2 \subset \Psi_1(B_1)$. Then $B_1 \subset \Phi(B_1)$ and $B_2 \subset \Phi(B_2)$. Hence B_1, B_2 are open sets with respect to the $\mathcal{T}_{\mathcal{I}_1}$ -topology, $B_1 \cup B_2 = (a, b)$ and $B_1 \cap B_2 = \emptyset$. This is impossible since (a, b) is a connected set the with respect to the $\mathcal{T}_{\mathcal{I}_1}$ -topology $[\mathbf{8}]$. Thus $B_1 \cap ((a, b) \setminus \Psi_1(B_2)) \neq \emptyset$ or $B_2 \cap ((a, b) \setminus \Psi_1(B_1)) \neq \emptyset$, and $A_1 \cap ((a, b) \setminus \Psi(A_2) \neq \emptyset$ or $A_2 \cap ((a, b) \setminus \Psi(A_1)) \neq \emptyset$.

Lemma 16. Let $f, g: \Re \to \Re$ be \mathcal{I}_1 -approximately continuous functions. If 0 is not an \mathcal{I}_1 -dispersion point of a set $A \in S_1$ then there exists a sequence $\{y_n\}_{n \in \mathcal{N}} \subset A$ such that $\lim_{n\to\infty} y_n = 0$, $\lim_{n\to\infty} f(y_n) = f(0)$ and $\lim_{n\to\infty} g(y_n) = g(0)$.

Proof. We may assume that 0 is not a right-side \mathcal{I}_1 -dispersion point of the set $A \in \mathcal{S}_1$. By Lemma 1, there exists $n \in \mathcal{N}$ such that, for any $k \in \mathcal{N}$ and a real $\delta > 0$, there exist $h = h(k, \delta) \in (0, \delta)$ and $i = i(h) \in \{1, \ldots, n\}$ such that, for each $j \in \{1, \ldots, k\}$,

$$\left(\frac{(i-1)k+j-1}{nk}h, \frac{(i-1)k+j}{nk}h\right) \cap A \notin \mathcal{I}.$$

Let $p \in \mathcal{N}$. We put $C_p = \left\{y : |f(y) - f(0)| < \frac{1}{p}\right\}$ and $B_p = \left\{y : |g(y) - g(0)| < \frac{1}{p}\right\}$. Since f and g are \mathcal{I}_1 -approximately continuous, 0 is a deep \mathcal{I}_1 -density point of $C_p \cap B_p$. Therefore, by Lemma 1, there exist $k_1 \in \mathcal{N}$ and $\delta_1 > 0$ such that, for any $i \in \{1, \ldots, n\}$ and $h \in (0, \delta_1)$, there exists $j = j(i, h) \in \{1, \ldots, k_1\}$ such that

$$\left(\frac{(i-1)k_1+j-1}{nk_1}h,\frac{(i-1)k_1+j}{nk_1}h\right) \subset C_p \cap B_p.$$

Let $\delta_0 = \min(\frac{1}{p}, \delta_1)$. We put $h = h(k_1, \delta_0)$, i = i(h) and j = j(i, h). Then we may choose

$$y_p \in \left(\frac{(i-1)k_1 + j - 1}{nk_1}h, \frac{(i-1)k_1 + j}{nk_1}h\right) \cap A \subset C_p \cap B_p.$$

Thus $0 < y_p < \frac{1}{p}$, $|f(y_p) - f(0)| < \frac{1}{p}$ and $|g(y_p) - g(0)| < \frac{1}{p}$. Hence $\lim_{p \to \infty} y_p = 0$, $\lim_{p \to \infty} f(y_p) = f(0)$ and $\lim_{p \to \infty} g(y_p) = g(0)$.

Theorem 17. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a separately \mathcal{I}_1 -approximately continuous function. If f is \mathcal{I}_1 -approximately differentiable with respect to x at every point, then $f_{\mathcal{I}_1,x}$ is a Darboux function.

Proof. By the assumption and by the result of [10], we have that f has the Baire property. Therefore, by [3], $f_{\mathcal{I},x}$ has the Baire property, too.

First, we show that if $I = [a, b] \times [c, d]$, then $f_{\mathcal{I}_1, x}(I)$ is a connected set. If it is not true, there exists $x_0 \in \Re$ and two nonempty sets A and B having the Baire property, such that $I = A \cup B$ and $f_{\mathcal{I}_1, x}(A) \subset (-\infty, x_0)$ and $f_{\mathcal{I}_1, x}(B) \subset (x_0, +\infty)$.

For $y \in [c,d]$, let $H_y = \{(x,y) : x \in [a,b]\}$. Since $f_{\mathcal{I}_1,x}(x,y)$, as a function of x, has Darboux property, [6], we have that $f_{\mathcal{I}_1,x}(H_y)$ is a connected set. Then $H_y \subset A$ or $H_y \subset B$. Hence there exist A_1, A_2 such that $A = [a,b] \times A_1$ and $B = [a,b] \times A_2$. By Lemma 15, we may assume that there exists a point $y_0 \in A_1$ which is not an \mathcal{I}_1 -dispersion point of A_2 . Thus, by the above and the \mathcal{I}_1 -approximate continuity of the functions f(a, y) and f(b, y) as functions of y, we may choose a sequence $\{y_n\}_{n\in\mathcal{N}}\subset A_2$ such that $\lim_{n\to\infty}y_n=y_0$, $\lim_{n\to\infty}f(b,y_n)=f(b,y_0)$ and $\lim_{n\to\infty}f(a,y_n)=f(a,y_0)$ (see Lemma 16). Since, for each $n\in\mathcal{N}$, $f(x,y_n)$ is \mathcal{I}_1 -approximately differentiable as a function of x, by the mean-value property [6], we have that there exists $z_n \in (a,b)$ such that

$$\frac{f(b,y_n) - f(a,y_n)}{b-a} = f_{\mathcal{I}_1,x}(z_n,y_n)$$

Hence

$$\lim_{n \to \infty} f_{\mathcal{I}_1, x}(z_n, y_n) = \frac{f(b, y_0) - f(a, y_0)}{b - a}.$$

Applying the mean-value property to the function $f(x, y_0)$, we can find $z_0 \in (a, b)$ such that

$$\frac{f(b, y_0) - f(a, y_0)}{b - a} = f_{\mathcal{I}_1, x}(z_0, y_0).$$

Hence

$$\lim_{n \to \infty} f_{\mathcal{I}_1,x}(z_n, y_n) = f_{\mathcal{I}_1,x}(z_0, y_0).$$

Since $\{(z_n, y_n)\}_{n \in \mathcal{N}} \subset B$, we have that $\{f_{\mathcal{I}_1, x}(z_n, y_n)\}_{n \in \mathcal{N}} \subset f_{\mathcal{I}_1, x}(B) \subset (x_0, \infty)$ and $f_{\mathcal{I}_1, x}(z_0, y_0) \geq x_0$. This contradicts the fact that $f_{\mathcal{I}_1, x}(z_0, y_0) \in f(A) \subset (-\infty, x_0)$.

To complete the proof, it suffices to show that, for each set Q such that int $(cl(Q)) \subset Q$ and cl(Q) is a closed interval, $f_{\mathcal{I}_1,x}(Q)$ is a connected set. If Q is an open interval then $Q = \bigcup_{n \in \mathcal{N}} [a_n, b_n] \times [c_n, d_n]$ where, for each $n \in \mathcal{N}$, $[a_n, b_n] \times [c_n, d_n] \subset [a_{n+1}, b_{n+1}] \times [c_{n+1}, d_{n+1}]$. Since $f_{\mathcal{I}_1,x}([a_n, b_n] \times [c_n, d_n])$ is a connected set for each $n \in \mathcal{N}$, therefore $f(\mathcal{I}_1, x)(Q)$ is a connected set, too. If Qis not an open interval, we may assume that there exists $p_0 \in Q \setminus \operatorname{int}(Q)$. Let $I = [a, b] \times [c, d]$ be an interval included in cl(Q), having p_0 as a vertex. Say, $p_0 = (a, d)$. We want to show that $f_{\mathcal{I}_1,x}(\operatorname{int}(I) \cup \{p_0\})$ is connected. Since $\operatorname{int}(I)$ is an open interval, $f_{\mathcal{I}_1,x}(\operatorname{int}(I))$ is connected. Thus the proof will be completed if we show that $f_{\mathcal{I}_1,x}(\operatorname{po})$ is a limit of a sequence of points of $f_{\mathcal{I}_1,x}(\operatorname{int}(I))$. Since $f_{\mathcal{I}_1,x}(x, d)$ has the Darboux property, there exists a sequence $\{x_n\}_{n\in\mathcal{N}} \subset (a, b)$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} f_{\mathcal{I}_1,x}(x_n, d) = f_{\mathcal{I}_1,x}(a, d)$.

Let $n \in \mathcal{N}$. Then, by our assumption, there exists $z_n \in (a, b) \setminus \{x_n\}$ such that

$$\left|\frac{f(z_n,d) - f(x_n,d)}{z_n - x_n} - f_{\mathcal{I}_{1,x}}(x_n,d)\right| < \frac{1}{3n}.$$

We assume that $z_n > x_n$. On the other hand, by the \mathcal{I}_1 -approximate continuity of $f(z_n, y)$ and $f(x_n, y)$ as functions of y, there exists $y_n \in (c, d)$ such that

$$|f(x_n, d) - f(x_n, y_n)| < \frac{1}{3n} |x_n - z_n|$$

and

$$|f(z_n,d) - f(z_n,y_n)| < \frac{1}{3n} |x_n - z_n|.$$

Then we have

$$\left|\frac{f(x_n, y_n) - f(z_n, y_n)}{x_n - z_n} - f_{\mathcal{I}_1, x}(x_n, d)\right| < \frac{1}{n}$$

A DARBOUX PROPERTY OF \mathcal{I}_1 -APPROXIMATE PARTIAL DERIVATIVES 183

By the mean-value theorem for \mathcal{I}_1 -approximate derivatives (see [6]), we can choose a point $t_n \in (x_n, z_n)$ such that $f(x_n, y_n) - f(z_n, y_n) = f_{\mathcal{I}_1, x}(t_n, y_n)(x_n - z_n)$. Then we have

$$|f_{\mathcal{I}_1,x}(t_n, y_n) - f_{\mathcal{I}_1,x}(x_n, d)| < \frac{1}{n}$$

Hence we have the sequence $\{(t_n, y_n)\}_{n \in \mathcal{N}} \subset \operatorname{int}(I)$ satisfying for each $n \in \mathcal{N}$,

$$|f_{\mathcal{I}_1,x}(t_n,y_n) - f_{\mathcal{I}_1,x}(x_n,d)| < \frac{1}{n}.$$

Therefore $\lim_{n\to\infty} f_{\mathcal{I}_1,x}(t_n, y_n) = f_{\mathcal{I}_1,x}(a, d).$

References

- Balcerzak M., Łazarow E. and Wilczyński W., On one- and two dimensional *I*-densities and related kinds of continuity, Real Anal. Exchange 13(I) (1987-88), 80–93.
- Carrese R. and Wilczyński W., *I-density points of plane sets*, Ricerche di Matematica 34(I) (1985), 147–157.
- Carrese R. and Lazarow E., Baire classes of some generalized partial derivatives, Tatra Mountains Math. Publ. 8 (1996), 9–15.
- 4. _____, Differentiability of functions of two variables and Theorem of Stepanoff, to appear.
- Lazarow E., On the Baire class of *I*-approximate derivatives, Proc. Am. Math. Soc. 100(4) (1987), 669–674.
- Lazarow E. and Wilczyński W., *I-approximate Derivatives*, Radovi Matematicki 5 (1989), 15–27.
- Neugebauer C. J., Darboux property for functions of several variables, Trans. Amer. Math. Soc. 107(1963), 30–37.
- Poreda W., Wagner-Bojakowska E. and Wilczyński W., A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- Poreda W. and Wagner-Bojakowska E., The topology of *I*-approximately continuous functions, Radovi Matematicki 2 (1986), 263–277.
- Wilczyński W., Separate *I*-approximate continuity implies the Baire property, Zeszyty Naukowe Politechniki Śląskiej, Seria Matematyka-Fizyka 48 (1986), 227–230.

R. Carrese, Dipartimento di Matematica e Applicazioni, Via Cinthia, I-80126 Napoli, Italy

E. Lazarow, Technical University of Lodz, Institute of Mathematics, Al. Politechniki 11, 90 924 Lodz, Poland