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POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC SYSTEMS

WITH STRONG DEPENDENCE ON THE GRADIENT

D. ŽUBRINIĆ

Abstract. We study existence and nonexistence of positive, spherically symmetric

solutions of diagonal quasilinear elliptic systems involving equations with

p-Laplacians, and with strong dependence on the gradient on the right-hand side.
The existence proof is constructive, with solutions possessing explicit integral rep-
resentation. Also, we obtain critical exponents of the gradient. We introduce the

notion of cyclic elliptic systems in order to study nonsolvability of general elliptic
systems. The elliptic system is studied by relating it to the corresponding system

of singular ordinary integro-differential equations of the first order.

1. Introduction

This article is motivated by the fact that very little is known about solvability
and nonsolvability of elliptic systems with strong dependence on the gradient. We
consider diagonal quasilinear elliptic systems involving p-Laplacians on the left-
hand side. The main difficulty is the presence of gradients of unknown functions
on right-hand sides with powers of arbitrary positive order. We study existence
and nonexistence of positive, spherically symmetric solutions in a ball. Diagonal
quasilinear elliptic systems involving two equations have been considered in a
number of papers, let us cite De Figueiredo [3], Clément, Manásevich, Mitidieri [2],
and the references therein. All these papers consider problems without gradients
on the right-hand side.

In our previous paper [11] we have studied quasilinear elliptic systems involv-
ing only two equations and with the natural growth in the gradient. The method
exploited there does not permit us to extend existence and nonexistence results
to systems with more general right-hand sides, involving all unknown functions
and their gradients. In this paper we use a different approach which enables us to
consider also this case. Although the results obtained here are less explicit than
in [11], the question of solvability of a quasilinear elliptic system is reduced to
question of solvability of a simple system of algebraic inequalities, see Theorems 1
and 2. In [11] the basic tool was to study fixed points of a system of two singu-
lar ODEs of the first order. This method was exploited in [6] in the scalar case.
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Solutions of the system of singular ODEs in [11] are obtained by means of fixed
points of a composition of two integral operators of Volterra type corresponding
to the system of singular ODEs. In analogous way we have studied the question of
nonsolvability. Here we use a different approach, and study existence of solutions
by means of fixed points of an ordered pair of integral operators on the corre-
sponding product function space. Of course, when dealing with an elliptic system
of n equations as is the case in this paper, we introduce an operator represented
as n-tuple of integral operators. Solvability of the system is studied by means of
fitting the domain of this operator, in order to be able to apply Schauder’s theo-
rem, or using method of monotone iterations. The question of nonsolvability for
general quasilinear elliptic systems is studied by means of cyclic elliptic systems
that we introduce in Section 3.

Let us introduce some notation. Throughout this paper B = BR(0) will be a
ball of radius R in RN , N ≥ 1. The Lebesgue measure of B is denoted by |B|, ∂B

is the boundary of B, the Lebesgue measure of the unit ball is denoted by CN .
If 1 < p < ∞, we define p-Laplacian ∆p by ∆pu = div(|∇u|p−2∇u). By a strong
solution of an elliptic system we mean a vector function whose components are in
C2(B \ {0}) ∩ C(B) and satisfy the system pointwise in B \ {0}. By p′ = p

p−1 we
denote the conjugate exponent of p.

Rather than formulating the most general result, we illustrate a special case
of Theorems 3 and for the following cyclic system of three quasilinear elliptic
equations:

(1)



−∆pu = g̃1|x|m1 + f̃1|∇v|e1 in B \ {0},

−∆qv = g̃2|x|m2 + f̃2|∇w|e2 in B \ {0},

−∆rw = g̃3|x|m3 + f̃3|∇u|e3 in B \ {0},

u > 0, v > 0, w > 0 on B, spherically symmetric, decreasing,

u = v = w = 0 on ∂B.

Here ei are positive constants, p, q, r ∈ (1,∞), mi ∈ R, f̃i > 0, g̃i > 0. We seek
for strong solutions (u, v, w) of (1), that is, a vector function with components
in C2(B \ {0}) ∩ C(B) satisfying (1) pointwise in B \ {0}. The following theo-
rem shows that the critical case is when the product of exponents ei is equal to
(p− 1)(q − 1)(r − 1). It will be convenient to denote p1 = p, p2 = q, p3 = r,

γi = 1 +
mi

N
, δi =

ei

pi+1 − 1
, εi = δi

(
1− 1

N

)
,(2)

gi =
g̃i

C
mi+pi

N

N Npi−1(mi + N)
, fi =

f̃i

Npi−eiC
pi−ei

N

N

, T = |B|,(3)
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and

(4) bi = fi
T δiγi+1−εi+1−γi

δiγi+1 − εi + 1
,

where i = 1, 2, 3. Here we compute i + 1 modulo 3.

Theorem 1. (Existence and Nonexistence of Solutions) Assume that
mi > −N and

(5) ei(mi+1 + 1) ≥ mi(pi+1 − 1),

for i = 1, 2, 3.
(a) If e1e2e3 < (p− 1)(q − 1)(r− 1) then for any positive f̃i and g̃i there exists

a strong solution of quasilinear elliptic system (1).
(b1) Assume that e1e2e3 > (p− 1)(q− 1)(r− 1). If there exist positive numbers

Mi, i = 1, 2, 3, satisfying the following cyclic system of algebraic inequalities:

(6) gi + bi ·M δi
i+1 ≤ Mi,

i = 1, 2, 3, then there exists a strong solution of quasilinear elliptic system (1).
(b2) Assume that e1 > p − 1, e2 > q − 1, e3 > r − 1. We also assume

that technical condition (33) is fulfilled with k = 3. There exist explicit positive
constants H̃i independent of g̃i and f̃i, such that if

g̃δ1δ2δ3−1
i f̃i > H̃i for some i ∈ {1, 2, 3},

then system (1) has no strong solutions.

As we see, contrary to case e1e2e3 < (p − 1)(q − 1)(r − 1), if e1e2e3 > (p − 1)
(q − 1)(r − 1) then we have existence-nonexistence breaking with respect to coef-
ficients f̃i, g̃i. For this reason we say that the case when

e1e2e3 = (p− 1)(q − 1)(r − 1)

is critical. This situation is analogous to that of scalar quasilinear elliptic equa-
tions, see [10]. Regarding nonexistence result stated in Theorem 1(b2), we do not
know anything about nonsolvability of (1) when e1e2e3 > (p−1)(q−1)(r−1) and,
say, e1 < p− 1. Also, the question of solvability and nonsolvability for system (1)
modelled on arbitrary bounded domain is an open problem.

Remark. It is possible to impose sufficient conditions that will gaurantee ex-
istence of classical solution of (1) on the whole domain, that is, u, v, w ∈ C2(B).
This can be done using integral representation (19) of solutions, similarly as in
[7, Proposition 6], [10, Theorem 7] and [11, Theorem 6]. For example, assuming
that conditions of Theorem 1(b1) are satisfied with pi = ei = 2 (i.e., we have
ordinary Laplacian and quadratic growth in the gradient in (1)), and mi ≥ 0 for
i = 1, 2, 3, then there exists a classical solution of (1). Note that we do not claim
that all solutions are classical in this case, that is, we have only a-posteriori reg-
ularity. Using methods from cited papers it is also possible to study existence of
weak and bounded solutions of (1) on B.
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2. Existence of Solutions

We study the following diagonal quasilinear elliptic system of n equations with
strong dependence on the gradient, whose very special case is system (1):

(7)


−∆pu = F (|x|, u, |∇u|∗) in B \ {0},
u > 0 on B, u = 0 on ∂B,

ui spherically symmetric and decreasing,

where u = (u1, . . . , un). We say that u > 0 on B if ui > 0 for all i = 1, . . . , n.
Here we denote p = (p1, . . . pn), 1 < pi < ∞,

∆pu = (∆p1u1, . . . ,∆pn
un), |∇u|∗ = (|∇u1|, . . . , |∇un|),

and assume that

F = (F1, . . . , Fn) : (0, R]×Rn
+ ×Rn

+ → Rn

is continuous, where R+ = [0,∞). We consider strong solutions of (7), that is,
u = (u1, . . . , un) such that ui ∈ C2(B \ {0})∩C(B). Our basic assumption on the
right-hand side of (7) is

(8) 0 ≤ Fi(r, u, ξ) ≤ g̃ir
mi +

n∑
j=1

f̃ijξ
eij

j ,

for all r ∈ (0, R) and ξ ∈ Rn
+, where g̃i, f̃ij are given nonnegative numbers. We

also assume that

(9) ∀a > 0, ∃r ∈ (0, a), ∀η ≥ 0, ∀ξ ≥ 0, ∀i, Fi(r, η, ξ) > 0.

The role of (9) will be to ensure that the solution u of (7) be positive, that is,
ui > 0 on B for all i. If we seek only for nonnegative solutions, then condition (9)
can be dropped. Now we define

γi = 1 +
mi

N
, δij =

eij

pj − 1
, εij = δij(1−

1
N

),(10)

gi =
g̃i

C
mi+pi

N

N Npi−1(mi + N)
, fij =

f̃ij

Npi−eij C
pi−eij

N

N

, T = |B|,(11)

where i, j = 1, . . . , n, and

(12) bij = fij
T γjδij−εij+1−γi

γjδij − εij + 1
.

We say that a function Fi(r, η, ξ) is nondecreasing in η and ξ if it is nondecreas-
ing with respect to each component of η and ξ ∈ Rn

+.
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Theorem 2. (Existence of Solutions) Assume that (8) and (9) are fulfilled,
and let mi > −N , eij > 0,

(13) γjδij − εij + 1 ≥ γi

for all i, j = 1, . . . , n. Assume that g̃ij ≥ 0 and f̃ij ≥ 0 are such that the following
system of algebraic inequalities is solvable:

(14) ∃M1 > 0, . . . ,∃Mn > 0, ∀i ∈ {1, . . . , n}, gi +
n∑

j=1

bijM
δij

j ≤ Mi.

Then (7) possesses at least one strong solution. If Fi(r, η, ξ) are nondecreasing
in η and ξ for all i = 1, . . . , n, then there exists a strong solution which can be
obtained constructively using monotone iterations.

The idea of the proof is to assign to quasilinear elliptic problem (7) the cor-
responding system of singular, integro-differential equations in the following way.
Let D = D1 × · · · ×Dn, where

(15) Di = {ϕ ∈ C([0, T ]) : 0 ≤ ϕ(t) ≤ Mit
γi},

with constants Mi > 0 to be determined later. For fixed ω ∈ D we define a
function

(16) fω
i (t) :=

1

NpiC
pi/N
N

Fi( (tC−1
N )

1
N , V ω(t),W (t, ω(t)) ).

where V ω(t) = (V ωj

j (t))j=1,...,n, W (t, ω(t)) = (Wj(t, ω(t))j=1,...,n, with

V
ωj

j (t) =
∫ T

t

ωj(s)p′j−1

sp′j(1−
1
N )

ds, Wj(t, ω(t)) = NC
1/N
N

ωj(t)p′j−1

t
p′

j
pj

(1− 1
N )

.

Note that the operator ωj 7→ V
ωj

j is not of Nemytski type. The growth condition
(8) implies that

(17) 0 ≤ fω
i (t) ≤ giγit

γi−1 +
n∑

j=1

fij
ωj(t)δij

tεij
.

Let us consider the following system of singular ordinary integro-differential equa-
tions:

(18)
dωi

dt
= fω

i (t), t ∈ (0, T ],

for i = 1, . . . , n. Note that ω 7→ fω
i is not an operator of the Nemytski type. Using

the analogous proof as in [7, Lemma 1], we obtain the following result which
enables to generate solutions of system (7) by means of solutions of (18).
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Lemma 1. Assume that ω is a solution of singular system of integro-differential
equations (18). Then

(19) ui(x) = V ωi
i (CN |x|N ) =

∫ |B|

CN |x|N

ωi(s)p′i−1

sp′i(1−
1
N )

ds, i = 1, . . . , n

is a strong solution of quasilinear elliptic system (7), ui(0) < ∞.

Proof of Theorem 2. To prove existence of solutions of (7) it suffices to prove
solvability of (18), see Lemma 3. Let us define the operator

(20)


K : D ⊂ C([0, T ],Rn) → C([0, T ],Rn),

K = (K1, . . . ,Kn), Kjω(t) =
∫ t

0

fω
j (s) ds.

It suffices to show that K possesses a fixed point in D. We assume that
C([0, T ],Rn) is endowed with uniform topology. Compactness of K will follow
from Schauder’s fixed point theorem.

To prove that the set K(D) is relatively compact, we use vector valued version
of Ascoli’s theorem. The domain D defined via (15) is bounded. To show that
the family of vector functions K(D) is uniformly equicontinuous on [0, T ], we take
any ω ∈ D and a, b such that 0 ≤ a < b ≤ T . Using (17) we obtain that

(21) |Kiω(b)−Kiω(a)| ≤
∫ b

a

[giγis
γi−1 +

n∑
j=1

fij
ωj(s)δij

sεij
] ds.

The fact that ωj ∈ Dj together with (13) yields after a short computation that
the right-hand side of (21) converges to 0 uniformly for all ω ∈ D as b − a → 0.
In the similar way we prove uniform boundedness:

(22) 0 ≤ Kiω(t) ≤ (gi +
n∑

j=1

bijM
δij

j )tγi .

where we have used (13) again in order to have tγjδij−εij+1 ≤ T γjδij−εij+1−γitγi for
t ∈ [0, T ]. Therefore K is compact by Ascoli’s theorem. Conditions (14) and (22)
imply that K(D) ⊂ D, so that the claim of Theorem 2 follows from Schauder’s
theorem.

To prove the constructive part of Theorem 2 we introduce an operator K0 =
(K01, . . . ,K0n) defined analogously as K, see (20), by

K0iω(t) = git
γi +

n∑
j=1

fij

∫ t

0

ωj(s)δij

sεij
ds, i = 1, . . . n.
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Using the above proof with K0 instead of K, we see that there exists a fixed point
ω ∈ D of K0. Now we view the space C([0, T ],Rn) as an ordered Banach space
with the usual componentwise partial ordering. Since 0 ≤ K ≤ K0, see (17), and
since due to our monotonicity assumption on Fis the operator K is nondecreasing
in the sense of [1], we see that 0 ≤ K(0) and Kω ≤ ω, that is, 0 and ω are ordered
subsolution and supersolution of K respectively. The claim follows from Amann [1,
Theorem 6.1]. In other words, the sequence (ω(k)) of monotone iterations defined
inductively by ω(k) = Kω(k−1), ω(0) = 0, converges monotonically in C([0, T ],Rn)
to a fixed point ω ∈ D of operator K. This ω generates a strong solution u(x) of
(7) via (19). The sequence of successive approximations u(k)(x) generated by ω(k)

via (19) converges monotonically to u(x).
Since ω = Kω, then (9) implies that ω > 0 on (0, T ]. Therefore u > 0 on B,

see (19). �

Now we discuss a class of quasilinear elliptic systems which contains cyclic
systems considered in Theorem 1 as a special case. We consider the following
special case of (8):

0 ≤ Fi(r, u, ξ) ≤ g̃ir
mi + f̃iξ

ei
i+1

for i = 1, . . . , n, where by definition n + 1 = 1.

Theorem 3. (Existence of Solutions) Assume that condition (9) is fulfilled
and let (8) hold with f̃ij = 0 for all i and j 6= i+1, f̃i := f̃i,i+1 > 0, ei := ei,i+1 > 0
for all i, where i + 1 is computed modulo n. Furthermore, assume that

ei(mi+1 + 1) ≥ mi(pi+1 − 1).

and let the constants γi, δi, εi, gi, fi, bi be defined by (2), (3) and (4).
(a) If

(23) e1 . . . en < (p1 − 1) . . . (pn − 1),

then quasilinear elliptic system (7) is solvable for any positive g̃i, f̃i.
(b) Let

(24) e1 . . . en > (p1 − 1) . . . (pn − 1),

and let there exist positive numbers Mi satisfying condition (6) for all i = 1, . . . , n.
Then there exists a strong solution of quasilinear elliptic system (7).

In both cases, if Fi(r, η, ξ) is nondecreasing with respect to η and ξ for all r ∈
(0, R], i = 1, . . . , n, then there exists a strong solution of (7) which can be obtained
constructively using monotone iterations.

Proof. (a) Condition (23) is equivalent to
∏n

i=1 δi < 1, and it is easy to see that
in this case condition (6) is fulfilled for suitable positive Mi. Indeed, we can find
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Mi > 0 so that in (6) we have equalities. To see this, we substitute Mn−1 from
the last equation into the preceding one, then Mn−2 from (n− 1)st equation into
the preceding one, and so on. The final equation acquires the form f(M) = M ,
where M = M1 and

f(M) = g1 + b1(g2 + b2(. . . gn−1 + bn−1(gn + bnM δn)δn−1 . . . )δ2)δ1 .

It is easy to see that f(M)
M → ∞ as M → 0, and since

∏
i δi < 1 then f(M)

M → 0
as M → ∞. Continuity of f(M) implies that there exists M > 0 such that
f(M) = M . Condition (6) is then satisfied with M1 = M , Mn = gn + bnM δn

1 ,
Mn−1 = gn−1 + bn−1M

δn−1
n etc. This means that (14) is fulfilled, and the claim

follows from Theorem 2.
Case (b) is an immediate consequence of Theorem 2. �

Remark. Algebraic system of inequalities in (14) defines a set of possible values
of (g̃i and f̃i) for which our elliptic system (7) is solvable. It is worth noting that if
δij < 1 for all i, j in Theorem 2, then condition (14) is clearly satisfied. Therefore,
in case when 0 < eij < pj − 1 for all i, j, elliptic system (7) is solvable. We do not
know any reasonably general sufficient condition on the coefficients of algebraic
system of inequalities (14) for n ≥ 2, that guarantees its solvability.

In the scalar case, i.e. when n = 1, we have the following characterization:

(25) (∃M > 0, g + b ·M δ ≤ M) ⇐⇒ gδ−1 · b ≤ (δ − 1)δ−1

δδ
,

where δ > 1 and g and b are given positive real numbers, see [11, Lemma 5].
Furthermore, if gδ−1 · b ≤ (δ − 1)δ−1/δδ then g + b ·M δ ≤ M is satisfied with

(26) M0 =
(

g

b(δ − 1)

)1/δ

.

3. Nonsolvability of Cyclic Systems of Singular ODEs

The aim of this section is to study nonsolvability of the following cyclic system
consisting of k singular ODEs of the first order:

(27)
dωi

dt
= giγit

γi−1 + fi
ωi+1(t)δi

tεi
, i = 1, . . . , k, ω ∈ Dk

+,

where

D+ = {ϕ ∈ C([0, T ]) : ϕ(t) ≥ 0, and nondecreasing},(28)

Dk
+ = D+ × · · · ×D+,
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and γi > 0, δi > 0, εi ∈ R, gi, fi > 0 are given constants. We compute i + 1
modulo k, that is, k + 1 = 1. Here we use an approach recently introduced by
Pašić in [8] for scalar quasilinear elliptic equations, see also an extension of his
result in [7].

To formulate the main result of this section we introduce some notation:

Emi = 1− εi + δi · Em−1,i+1, m = 2, . . . , k, E1j = 1− εj ,(29)

δ(i,j) = δiδi+1 . . . δi+j−1, δ = δ(1,k) = δ1 . . . δk, δ+
i =

k−1∑
j=1

δ(i,j),(30)

Hi(γ) =
δ

δ
+
i

+δ

δ−1 γδ+
i +1

T (δ−1)γ+Eki

k−1∏
j=1

(
fi+j

δ(i+j,i+k−j)

)−δ(i,j)

.(31)

Summation of indices in the definition of δ(i,j) and Eki is performed modulo k,
and δ(i,j) is the product of j terms.

Theorem 4. Let k ≥ 2 be a given natural number. Assume that

δi ≥ 1, δ := δ1 . . . δn > 1, γi > 0,(32)

min{γi+1, γi+2} · δi − εi + 1 ≥ γi+1 > 0,(33)

for all i = 1, . . . , k, where indices are summed modulo k. Let Eki be constants
defined by (29) and Hi by (4). Assume that any of the following four conditions
holds:

(a) ∃i ∈ {1, . . . , k}, Eki ≤ 0, ∀j ∈ {1, . . . , k − 1}, Ek−j,i+j ≤ 0,

gδ−1
i fi ≥ Hi(γi),

(b) ∃i ∈ {1, . . . , k}, Eki > 0, ∀j ∈ {1, . . . , k − 1}, Ek−j,i+j ≤ 0,

gδ−1
i fi ≥ Hi(γi + Eki/(δ − 1)),

Then the singular system of k integro-differential equations (27) has no solutions
in Dk

+.

In order to prove Theorem 4, we define simultaneously k sequences of functions
(zim)m≥0, i = 1, . . . , k, by:

(34) zi,m+1(t) = fi

∫ t

0

zi+1,m(s)δi

sεi
ds, zi0(t) = git

γi .

We have the following a priori estimate.
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Lemma 2. Let δi ≥ 1, i = 1, . . . , k, and let ω = (ω1, . . . , ωk) be a solution of
(27) in D = Dk

+. Then for each index i we have

(35)
∞∑

m=0

zim(t) ≤ ωi(t).

Proof. It suffices to prove that

(36)
n∑

m=0

zim(t) ≤ ωi(t),

for all n. This can easily be proved by induction with respect to n, simultaneously
for all i. For n = 0 the claim is clear, see (27). Assume that (36) holds for some
fixed n and all i = 1, . . . , k. Since ωi is nondecreasing and nonnegative, we have
ωi(t) ≥ ωi(0) +

∫ t

0
ω′i(s) ds ≥

∫ t

0
ω′i(s) ds. Using (27) and δi ≥ 1, we have

ωi(t) ≥ git
γi + fi

∫ t

0

ωi+1(s)δi

sεi
ds

≥ zi0(t) + fi

∫ t

0

(
∑n

m=0 zi+1,m(s))δi

sεi
ds

≥ zi0(t) +
n∑

m=0

fi

∫ t

0

zi+1,m(s)δi

sεi
ds

=
n+1∑
m=0

zim(t). �

Lemma 3. Assume (33), γi > 0, and let (zim)m≥0 be k sequences defined by
(34), i = 1, . . . , k. Then

(37) zim(t) = aimtbim , i = 1, . . . , k, m = 0, 1, 2, . . .

where

(38) ai,km = aδm

i0

m∏
j=1

Aδj−1

i,m−j , (ai0, bi0) = (gi, γi),

with

Ai,m =
fi

δ · bi,km + Eki

k−1∏
j=1

(
fi+j

bi+j,km+k−j

)δ(i,j)

,(39)

bi,km = δmbi0 +
δm − 1
δ − 1

· Eki, i = 1, . . . , k, m = 0, 1, 2, . . .(40)

bim ≥ γi+1.
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Proof. It is clear that sequences ((aim(t))m≥0, i = 1, . . . , k, defined by (34) have
the form (37). From (34) we see that

(41) ai,m+1 =
fi

bi,m+1
aδi

i+1,m, bi,m+1 = bi+1,mδi − εi + 1.

The claim is proved using induction with respect to m simultaneously for all i =
1, . . . , k. We omit the details. �

Proof of Theorem 4. It suffices to prove that under conditions of the theorem
we have for each i = 1, . . . , k:

(42)
∞∑

m=0

zi,km(T ) = ∞.

Indeed, assume, contrary to the claim of the theorem, that there exists a solution
ω of (27). Then (35) implies that ωi(T ) = ∞, which is a contradiction.

(a) To prove (42), assume that condition (a) in the theorem holds. It is easy to
see that, cf. (41),

(43) bi+j,km+k−j =
(

δmbi0 +
δm − 1
δ − 1

· Eki

) k−1∏
s=j

δi+s + Ek−j,i+j .

From this, and using (39), (40), Eki ≤ 0 and Ek−j,i+j ≤ 0 for all j = 1, . . . , k − 1,
we obtain

Ai,m ≥ fi

δm+1bi0

k−1∏
j=1

(
fi+j

δmbi0 · δ(i+j,k−j)

)δ(i,j)

≥ fi

δm(δ+
i +1)+1

Pi(bi0),(44)

where we have denoted

Pi(bi0) =
1

b
δ+

i +1
i0

k−1∏
j=1

(
fi+j

δ(i+j,k−j)

)δ(i,j)

.

This implies that
m∏

j=1

Aδj−1

i,m−j ≥
[fiPi(bi0)]

δm−1
δ−1

δ(δ+
i +1)Sm+ δm−1

δ−1

,

where

Sm =
m−1∑
j=1

(m− j)δj−1 = m · δm−1 − 1
δ − 1

− d

dδ

(
δm − δ

δ − 1

)
=

δm − 1
(δ − 1)2

− m

δ − 1
.
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Hence, see (38),

ai,km ≥ aδm

i0

[fiPi(bi0)]
δm−1
δ−1

δ(δ+
i +1)Sm+ δm−1

δ−1

.

Now we substitute this and bi,km = δmbi0+ δm−1
δ−1 ·Eki into zi,km(T ) = ai,kmT bi,km .

Using Sm ≤ δm/(δ − 1)2 and separating the terms containing δm

δ−1 from the rest
we obtain that

(45) zi,km(T ) ≥ Ci(bi0) · Si(bi0)
δm

δ−1 ,

where

Ci(bi0) = Pi(bi0)
−1

δ−1 · T
−Eki
δ−1 · (δ/fi)

1
δ−1 ,(46)

Si(bi0) = gδ−1
i fi ·

Pi(bi0) · T (δ−1)bi0+Eki

δ
δ
+
i

+δ

δ−1

.(47)

Condition gδ−1
i fi ≥ Hi(γi) is equivalent to Si(bi0) ≥ 1, and (42) follows from (45).

(b) If Eki ≥ 0 for some i, then

δmbi0 +
δm − 1
δ − 1

· Eki ≤ δm

(
bi0 +

Eki

δ − 1

)
,

which we use in (40) and (43) in order to estimate Ai,m from below. We can
proceed in the same way as in (a), with bi0 + Eki/(δ − 1) instead of bi0. �

4. Nonexistence of Solutions of Elliptic Systems

Here we study the problem of nonsolvability of quasilinear elliptic system (7).
To formulate the main result of this section, we introduce some notation and
terminology.

We say that a quasilinear elliptic system (7) possesses a k-cycle, 2 ≤ k ≤ n, if
there exist indices i1 < · · · < ik such that

Fi1(|x|, u, |∇u|∗) ≥ g̃i1 |x|mi1 + f̃i1 |∇ui2 |ei1 ,

Fi2(|x|, u, |∇u|∗) ≥ g̃i2 |x|mi2 + f̃i2 |∇ui3 |ei2 ,

. . .

Fik
(|x|, u, |∇u|∗) ≥ g̃ik

|x|mik + f̃ik
|∇ui1 |eik ,

for all x ∈ B and u ∈ C2(B \ {0}). When speaking about k-cycles, we can assume
without loss of generality that i1 = 1, . . . ,ik = k. We can also define 1-cycle at
index i if we have Fi(|x|, u, |∇u|∗) ≥ g̃i|x|mi + f̃i|∇ui|ei . With this convention, we
can state the following fairly general nonexistence result.
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Theorem 5. (Nonexistence of Solutions) Let the coefficients γi, δi, εi,
gi, fi be defined by (2) and (3), i = 1, . . . , k. Assume that (7) possesses a k-
cycle, 1 ≤ k ≤ n, with the following properties. If k ≥ 2, we assume that the
corresponding coefficients of the k-cycle satisfy conditions of Theorem 4. If k = 1,
then we only change the definition of δ1 in (2) to δ1 = e1

p1−1 , and assume that
γ1δ1 − ε1 + 1 > γ1, δ1 > 1, γ1 > 0, and f1, g1, see (3), are positive real numbers
such that

(48) gδ1−1
1 f1 ≥


[γ1(δ1 − 1)− ε1 + 1]δδ′1

1

(δ1 − 1)T γ1(δ1−1)−ε1+1
for ε1 < 1,

γ1 δ
δ′1
1

T γ1(δ1−1)−ε1+1
for ε1 ≥ 1.

Then quasilinear elliptic system (7) has no strong solutions.

It is easy to see that system (7) can have at most 2n − 1 cycles, and this
number can be achieved. Our Theorem 5 gives rise to nonexistence test which we
can formulate in the form of algorithm with the following two steps: 1. find all
cycles, 2. check if conditions of the theorem are satisfied for any of them. If so,
quasilinear elliptic system (7) has no strong solutions.

To prove Theorem 5 we use the following lemma. Its proof is analogous to that
of [7, Lemma 2], and therefore we omit it.

Lemma 4. Assume that u(x) is a strong solution of quasilinear elliptic system
(7). Let us define constants γi, δi, εi by (2), gi, fi by (3), and

ωi(t) = tpi(1− 1
N )

∣∣∣∣dVi

dt

∣∣∣∣pi−1

, t ∈ (0, T ],

where
Vi(t) = ui((tC−1

N )
1
N ),

and let fi(t) be defined by

fi(t) =
1

NpC
p/N
N

Fi( (tC−1
N )

1
N , u((tC−1

N )
1
N ), |∇u((tC−1

N )
1
N )|∗ ).

Then the functions ωi(t) satisfy the following system of equations:

(49)
dωi

dt
= fi(t), t ∈ (0, T ), ω ∈ Dn

+, i = 1, . . . , n,

with D+ defined by (28).

Proof of Theorem 5. Assume, contrary to the claim of Theorem 5, that there
exists a strong solution u(x) of elliptic system (7). Let us consider the case of
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k ≥ 2 first. Using Lemma 6 we obtain a solution ω of (49) in Dn
+. Since by the

assumption the system (7) is cyclic with respect to first k equations, we conclude
that

(50) fi(t) ≥ giγit
γi−1 +

ωi+1(t)δi

tεi
, i = 1, . . . , k.

Since ωi(t) is nondecreasing, (49) implies that

(51) ωi(t) ≥ ωi(0) +
∫ t

0

fi(s) ds ≥i tγi + fi

∫ t

0

ωi+1(s)δi

sεi
ds =: Kiωi(t).

Let us define the operator

K0 : Dk
+ ⊂ C([0, T ],Rk) → C([0, T ],Rk),

by
K0ϕ = (K1ϕ1, . . . ,Kkϕk), ϕ = (ϕ1, . . . , ϕk).

The space C([0, T ],Rk) is an ordered Banach space with respect to the usual com-
ponentwise ordering. By (51) we have K0Pkω ≤ Pkω, where Pk is the projection
operator defined on Rn by Pkω = (ω1, . . . , ωk). Also, it is obvious that 0 ≤ K0(0),
that is, 0 and Pkω are ordered subsolution and supersolution of K0 respectively.
Since K0 is compact and nondecreasing, we can use Amann [1, Theorem 6.1]
to conclude that K0 possesses a fixed point ω in Dk

+. However, this contradicts
Theorem 4.

If k = 1 then we can proceed in the same way as for k ≥ 2, using [7, Theorem 7]
instead of Theorem 4. �

Using minor modifications in the proof of Theorem 4 when δ = 1, it is possible
to treat also the critical case. This enables to study nonsolvability of elliptic
system which has a k-cycle such that ei = pi − 1 for all i = 1, . . . , k. Here is the
corresponding result which we state without proof.

Theorem 6. Assume that quasilinear elliptic system (7) possesses a k-cycle,
k ≥ 2, such that ej = pj − 1 for all j = 1, . . . , k. Retaining the notation from
Theorem 5, let condition (33) be satisfied and let there exist i ∈ {1, . . . , k} such
that Eki ≤ 0. If

(52)
k∏

j=1

fj ≥ T−Ekiγi

k−1∏
j=1

(γi + Ek−j,i+j),

then for all g̃i > 0 quasilinear elliptic system (7) has no strong strong solutions.

Condition Eki ≤ 0 in the above result is not artificial. Indeed, let us compare
the critical case of system (7) considered in Theorem 6 with the following scalar
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elliptic equation:

(53)


−∆pu = g̃1|x|m + f̃1|∇u|p−1 in B \ {0},

u = 0 on ∂B,

u(x) spherically symmetric and decreasing,

which has the critical exponent e1 = p − 1 on the gradient. In this case the
condition E11 ≤ 0 is equivalent to p ≤ N , while E11 > 0 is equivalent to p > N .
It is possible to prove the following precise result.

Theorem 7. (see [10, Theorem 2]) Assume that m > −N , g̃1 > 0, f̃1 > 0,
and 1 < p < ∞.

(a) If p > N then (53) has a continuum of explicit strong solutions.
(b) If p < N then (53) has no strong solutions.
(c) If p = N then for f̃1 < (m + N)C1/N

N and arbitrary g̃1 > 0 equation (53)
possess a continuum of explicit strong solutions, while for f̃1 ≥ (m+N)C1/N

N there
are no strong solutions.

As we see, Theorem 6 is in accordance with Theorem 7.

Acknowledgement. It is my pleasant duty to thank anonymous referee for
his careful reading and useful suggestions.

References

1. Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Review 18 (1976), 620–709.
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