ON LARGE RANDOM ALMOST EUCLIDEAN BASES

R. VERSHYNIN

Abstract

A new class of random proportional embeddings of l_{2}^{n} into certain Banach spaces is found. Let $\left(\xi_{i}\right)_{i=1}^{n}$ be i.i.d. mean zero Cramèr random variables. Suppose $\left(x_{i}\right)_{i=1}^{n}$ is a sequence in the unit ball of a Banach space with $\mathbf{E}\left\|\sum_{i} \varepsilon_{i} x_{i}\right\| \geq \delta n$. Then the system of $\lceil c n\rceil$ independent random vectors distributed as $\sum_{i} \xi_{i} x_{i}$ is well equivalent to the euclidean basis with high probability (c depends on ξ_{1} and δ). A connection with combinatorial discrepancy theory is presented.

1. Sign Embeddings And Short Films

G. Schechtman proved that in l_{1}^{n} a certain random choise of $c n$ vectors is well equivalent to the euclidean basis (Sch1, see also M-S, 7.15). More precisely, by ε_{i} we denote the Rademacher random variables, i.e. independent random variables taking values -1 and 1 with probability $1 / 2$, by e_{i} the canonical vectors in \mathbf{R}^{n}, and by c_{1}, c_{2}, \ldots absolute constants. A system $\left(z_{i}\right)_{i=1}^{k}$ of vectors in a Banach space is said to be c-equivalent to the euclidean basis if there is a linear operator $T: \operatorname{span}\left(z_{i}\right) \rightarrow l_{2}^{k}$ sending each z_{i} to e_{i}, with $\|T\|\left\|T^{-1}\right\| \leq c$. Then Schechtman's theorem says the following. Every system of $\left\lceil c_{1} n\right\rceil$ independent random vectors in l_{1}^{n} distributed as $\sum_{j=1}^{n} \varepsilon_{j} e_{j}$ is c_{2}-equivalent to the euclidean basis with probability $\geq 1-\exp \left(-c_{3} n\right)$.

This result is generalized here in two directions. Instead of the canonical vector basis of l_{1}^{n}, we work with arbitrary sequence $\left(x_{j}\right)_{j=1}^{n}$ of vectors in the unit ball $B(X)$ of a Banach space X satisfying

$$
\begin{equation*}
\mathbf{E}\left\|\sum_{j=1}^{n} \varepsilon_{j} x_{j}\right\| \geq \delta n \tag{1}
\end{equation*}
$$

for some $\delta>0$. This estimate is known as the random δ-sign embedding from l_{1}^{n} condition $\mathbf{F - J - S}$. In Sch1] it was considered in spaces with a good cotype; our proof does not require cotype restrictions.

Moreover, instead of the Bernoullian distribution of each coordinate, we consider arbitrary distribution of a mean zero r.v. ξ having moment generating function, that is $\mathbf{E} e^{\alpha|\xi|}<\infty$ for some $\alpha>0$. This is called the Cramèr condition,
and is equivalent to the following: there are constants $a, \alpha>0$ so that

$$
\begin{equation*}
\mathbf{P}\{|\xi|>t\} \leq a e^{-\alpha t} \text { for all } t \tag{2}
\end{equation*}
$$

(see P, Lemma III.5).
Theorem 1.1. Let $\left(\xi_{j}\right)_{j=1}^{n}$ be independent copies of a mean zero r.v. ξ satisfying (2); set $\alpha_{1}=\mathbf{E}|\xi|$. Suppose $\left(x_{j}\right)_{j=1}^{n}$ is a sequence in $B(X)$ satisfying (II), and set $s=\sqrt{a} / \alpha_{1} \alpha \delta$. There is a $c=c(s)>0$ so that the system of $\lceil c n\rceil$ independent random vectors distributed as $\sum_{j=1}^{n} \xi_{j} x_{j}$ is $\left(c_{1} s\right)$-equivalent to the euclidean basis with probability $\geq 1-2 \exp \left(-c_{2} s^{-2} n\right)$.

Remarks. 1. One can set $c(s)=c_{2} / s^{2} \log \left(c_{1} s\right)$. We see that Theorem 1.1 is controlled by the only parameter s.
2. Actually, we prove that the operator T realizing the equivalence satisfies $\|T\| \leq c_{3}\left(\alpha_{1} \delta n\right)^{-1}$, and $\left\|T^{-1}\right\| \leq c_{4} \sqrt{a} \alpha^{-1} n$.
J. Elton $\mathbb{E}]$ proved that (II) yields the existence of a subset $A \subset\{1, \ldots, n\}$, $|A| \geq c(\delta) n$, such that the sequence $\left(x_{j}\right)_{j \in A}$ is $c^{\prime}(\delta)$-equivalent to the canonical vector basis of $l_{1}^{|A|}$. If combined with Schechtman's theorem, this gives another form of proportional euclidean sections of X (however, with a worse dependence on $\left.\delta: c(\delta) \sim \delta^{2} / \log ^{2}(4 / \delta), c^{\prime}(\delta) \sim \delta^{-3}\right)$.

For convenience, we restricted ourselves to identically distributed random variables ξ, but the main result can easily be modified to handle the case when ξ have different distributions.

Theorem I.I admits an immediate application to random matrices. The next corolary says that the unit cube in \mathbf{R}^{n} under the action of a random $k \times n$ matrix (with k proportional to n) is close to the euclidean ball B_{2}^{k}. We denote the unit euclidean ball in \mathbf{R}^{k} by B_{2}^{k}.

Corollary 1.2. Suppose ξ is a random variable satisfying (II), then there exist $c, \mu, \nu>0$ such that we have the following. Let A be the $k \times n$ matrix whose entries are independent random variables distributed as ξ. If $k \leq c n$ then with probability $\geq 1-2 \exp (-c n)$

$$
\mu B_{2}^{k} \subset n^{-1} A\left([-1,1]^{n}\right) \subset \nu B_{2}^{k}
$$

Proof. Pass to the dual setting and apply Theorem 1.1 together with Remark 2.

Now we discuss a relation between almost euclidean bases in l_{1}^{n} and combinatorial discrepancies. Given a two-coloring χ, say White and Black, of a finite set Ω, the discrepancy $\operatorname{disc}(A, \chi)$ of a set $A \subset \Omega$ is the number of White points in A minus the number of Black points in A (cf. A-S], B-S]). A family $\bar{\chi}=\left(\chi_{j}\right)_{j=1}^{n}$ of two-colorings on Ω is called a film of length n. We define the film discrepancy $\operatorname{fdisc}(A, \bar{\chi})$ of a set $A \subset \Omega$ as the average $\frac{1}{n} \sum_{j=1}^{n}\left|\operatorname{disc}\left(A, \chi_{j}\right)\right|$.

The problem is to make a short homogeneous film, so that the film discrepancies of any two sets $A, B \subset \Omega$ of equal size be nearly the same: fdisc $(A, \bar{\chi}) \approx$ fdisc $(B, \bar{\chi})$ (the relation $x \approx y$ means $c_{1} x \leq y \leq c_{2} x$ for some absolute constants $c_{1}, c_{2}>0$). Since nobody wants to watch a monochromatic film, we require it to be balanced, that is the density of each shot be nontrivial: $\left|\operatorname{disc}\left(\Omega, \chi_{j}\right)\right| \leq\left(1-c_{3}\right)|\Omega|$ for all j and some absolute constant $c_{3}>0$.

One might think that balanced homogeneous films must be fairly long comparing with $|\Omega|$, but this is unjustified.

Theorem 1.3. Given a finite set Ω, there is a balanced homogeneous film on Ω of length $c_{1}|\Omega|$.

Proof. We begin with a geometrical interpretation of the problem, as in Sp. Let $k=|\Omega|$. A coloring χ on Ω is regarded as a sequence $\left(\varepsilon_{i}\right) \in\{-1,1\}^{k}$, assigning 1 to White and -1 to Black. A set $A \subset \Omega$ is identified with its incidence vector $\left(a_{i}\right) \in\{0,1\}^{k}$. Then disc $(A, \chi)=\sum_{i=1}^{k} \varepsilon_{i} a_{i}$.

Now we clarify a relation to Schechtman's result, that is Theorem I.I with $\xi_{j}=\varepsilon_{j}$ and $\left(x_{j}\right)=$ the canonical vectors in $X=l_{1}^{n}$. Let n be the minimal integer such that $\lceil c n\rceil \geq k$. In this case we get with probability $\geq 1-2 \exp \left(-c_{2} n\right)$

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n}\left|\sum_{i=1}^{k} a_{i} \varepsilon_{i j}\right| \approx\left(\sum_{i=1}^{k}\left|a_{i}\right|^{2}\right)^{1 / 2} \quad \text { for all scalars }\left(a_{i}\right) \tag{3}
\end{equation*}
$$

where $\varepsilon_{i j}$ are Rademacher random variables (see Remark 2 following Theorem 1.1). Let $\bar{\chi}$ be a random film of length n, so that $\chi_{j}=\left(\varepsilon_{i j}\right)_{i=1}^{k}$. Then (3) yields that, with probability $\geq 1-2 \exp \left(-c_{2} n\right)$, every set $A \subset \Omega$ satisfies fdisc $(A, \bar{\chi}) \approx \sqrt{|A|}$. Hence most films are homogeneous.

It suffices to show that most films are also balanced. Consider a random coloring $\chi=\left(\varepsilon_{i}\right)$ on Ω. Using a subgaussian tail estimate for Rademacher sums (see \mathbf{L} or apply Theorem), we have

$$
\mathbf{P}\left\{|\operatorname{disc}(\Omega, \chi)| \leq \frac{1}{2}|\Omega|\right\}=\mathbf{P}\left\{\left|\sum_{i=1}^{k} \varepsilon_{i}\right| \leq k / 2\right\} \geq 1-2 \exp (-k / 8)
$$

Then the probability that $\left|\operatorname{disc}\left(\Omega, \chi_{j}\right)\right| \leq \frac{1}{2}|\Omega|$ for all $j=1, \ldots, n$ is at least $1-2 n \exp (-k / 8)$. Since $n \leq c_{1} k$, this probability tends to 1 as $k \rightarrow \infty$. This completes the proof.

I do not know whether there are asymptotically shorter balanced homogeneous films.

To prove the main result, we will apply a deviation inequality for sums of independent Banach space valued random variables.

Theorem 1.4. Let X_{1}, \ldots, X_{n} be independent Banach space valued random variables with $\mathbf{P}\left\{\left\|X_{i}\right\|>t\right\} \leq a e^{-\alpha_{i} t}$ for all t and i. Let $d \geq \max _{i \leq n} \alpha_{i}^{-1}$ and $b \geq a \sum_{i=1}^{n} \alpha_{i}^{-2}$. Then setting $S_{n}=\sum_{i=1}^{n} X_{i}$ we have

$$
\mathbf{P}\left\{\left|\left\|S_{n}\right\|-\mathbf{E}\left\|S_{n}\right\|\right|>t\right\} \leq \begin{cases}2 \exp \left(-t^{2} / 32 b\right) & \text { for } 0 \leq t \leq 4 b / d \\ 2 \exp (-t / 8 d) & \text { for } t \geq 4 b / d\end{cases}
$$

This result can be derived by truncation from known deviation inequalities for sums of bounded random variables (see e.g. Le-Ta, Section 6.2]). However, it is more convenient and more instructive to give a direct proof based on martingales, as in $\mathbf{Y u}$, Sec. 3.3. A rather short instructive proof is given in $\S 2$.
$\S 3$ consists of the proof of Theorem [.1.
This work was supported by C.N.R. (Italy). I am grateful to P. Terenzi and to V. Kadets for discussions.

2. Deviations of Sums

In this section we prove Theorem 1.4.
First we recall that problems about Banach space valued independent random variables can often be reduced to a real valued martingale case, see Le-Ta.

Ch. 6.3.

Let \mathcal{A}_{i} be the σ-algebra generated by the random variables $X_{1}, \ldots, X_{i}, i \leq n$, and \mathcal{A}_{0} be the trivial σ-algebra. The conditional expectation with respect to \mathcal{A}_{i} is denoted by $\mathbf{E}^{\mathcal{A}_{i}}$. Set, for each $i, d_{i}=\mathbf{E}^{\mathcal{A}_{i}}\left\|S_{n}\right\|-\mathbf{E}^{\mathcal{A}_{i-1}}\left\|S_{n}\right\|$. Then $\left(d_{i}\right)_{i=1}^{n}$ forms a real valued martingale difference sequence, and $\sum_{i=1}^{n} d_{i}=\left\|S_{n}\right\|-\mathbf{E}\left\|S_{n}\right\|$.

Lemma 2.1. For every i and every $p \geq 1$

$$
\mathbf{E}^{\mathcal{A}_{i-1}}\left|d_{i}\right|^{p} \leq 2^{p} \mathbf{E}\left\|X_{i}\right\|^{p}
$$

almost surely.
Proof. Yurinskii's inequality states that $\left|d_{i}\right| \leq\left\|X_{i}\right\|+\mathbf{E}\left\|X_{i}\right\|$ almost surely (see Le-Ta, Lemma 6.16]. Then $\left|d_{i}\right|^{p} \leq 2^{p-1}\left(\left\|X_{i}\right\|^{p}+\left(\mathbf{E}\left\|X_{i}\right\|\right)^{p}\right)$. Hence

$$
\begin{aligned}
\mathbf{E}^{\mathcal{A}_{i-1}}\left|d_{i}\right|^{p} & \leq 2^{p-1}\left(\mathbf{E}^{\mathcal{A}_{i-1}}\left\|X_{i}\right\|^{p}+\left(\mathbf{E}\left\|X_{i}\right\|\right)^{p}\right) \\
& =2^{p-1}\left(\mathbf{E}\left\|X_{i}\right\|^{p}+\left(\mathbf{E}\left\|X_{i}\right\|\right)^{p}\right) \leq 2^{p} \mathbf{E}\left\|X_{i}\right\|^{p}
\end{aligned}
$$

and we are done.
Proof of Theorem 1.4. Apply Chebyshev's inequality. For every $\lambda \geq 0$

$$
\begin{equation*}
P:=\mathbf{P}\left\{\left\|S_{n}\right\|-\mathbf{E}\left\|S_{n}\right\|>t\right\}=\mathbf{P}\left\{\sum_{i=1}^{n} d_{i}>t\right\} \leq e^{-\lambda t} \mathbf{E} \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) \tag{4}
\end{equation*}
$$

But

$$
\begin{align*}
\mathbf{E} \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right) & =\mathbf{E}\left(\mathbf{E}^{\mathcal{A}_{n-1}} \exp \left(\lambda \sum_{i=1}^{n} d_{i}\right)\right)=\mathbf{E}\left(\exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right) \mathbf{E}^{\mathcal{A}_{n-1}} \exp \left(\lambda d_{n}\right)\right) \\
& \leq\left\|\mathbf{E}^{\mathcal{A}_{n-1}} \exp \left(\lambda d_{n}\right)\right\|_{\infty} \mathbf{E} \exp \left(\lambda \sum_{i=1}^{n-1} d_{i}\right)=\cdots \tag{5}\\
& =\prod_{i=1}^{n}\left\|\mathbf{E}^{\mathcal{A}_{i-1}} \exp \left(\lambda d_{i}\right)\right\|_{\infty} .
\end{align*}
$$

So we are to evaluate

$$
\begin{aligned}
\mathbf{E}^{\mathcal{A}_{i-1}} \exp \left(\lambda d_{i}\right) & =1+\sum_{p=2}^{\infty} \frac{\lambda^{p} \mathbf{E}^{\mathcal{A}_{i-1}} d_{i}^{p}}{p!} \quad\left(\text { since } \mathbf{E}^{\mathcal{A}_{i-1}} d_{i}=0\right) \\
& \leq 1+\sum_{p=2}^{\infty} \frac{\lambda^{p} 2^{p} \mathbf{E}\left\|X_{i}\right\|^{p}}{p!} \quad \text { (by Lemma 2.1). }
\end{aligned}
$$

Note that

$$
\begin{equation*}
\mathbf{E}\left\|X_{i}\right\|^{p}=\int_{0}^{\infty} \mathbf{P}\left\{\left\|X_{i}\right\|>t\right\} d t^{p} \leq \int_{0}^{\infty} a e^{-\alpha_{i} t} d t^{p}=a \alpha_{i}^{-p} p! \tag{6}
\end{equation*}
$$

Then for $0 \leq \lambda \leq \alpha_{i} / 4$
$\mathbf{E}^{\mathcal{A}_{i-1}} \exp \left(\lambda d_{i}\right) \leq 1+a\left(2 \lambda / \alpha_{i}\right)^{2} \sum_{p=2}^{\infty}\left(2 \lambda / \alpha_{i}\right)^{p-2} \leq 1+a\left(2 \lambda / \alpha_{i}\right)^{2} 2 \leq \exp \left(8 \lambda^{2} a \alpha_{i}^{-2}\right)$.
Combining this estimate, (5), and (4), we obtain for $0 \leq \lambda \leq 1 / 4 d$

$$
P \leq e^{-\lambda t} \prod_{i=1}^{n} \exp \left(8 \lambda^{2} a \alpha_{i}^{-2}\right) \leq \exp \left(-\lambda t+8 \lambda^{2} b\right)
$$

The minimum here is attained for $\lambda=t / 16 b$. If $t \leq 4 b / d$, then the condition $\lambda \leq 1 / 4 d$ is satisfied, and $P \leq \exp \left(-t^{2} / 32 b\right)$. If $t \geq 4 b / d$, then we take $\lambda:=1 / 4 d$, and get $P \leq \exp (-t / 8 d)$.

Similarly, one obtains the same estimates on $\mathbf{P}\left\{\left\|S_{n}\right\|-\mathbf{E}\left\|S_{n}\right\|<-t\right\}$.

3. Random Euclidean Embeddings

In this section Theorem I.I is proved.
We will use a simple symmetrization lemma, see Le-Ta, Lemma 6.3.

Lemma 3.1. For every finite sequence $\left(X_{i}\right)$ of Banach space valued mean zero random variables

$$
\frac{1}{2} \mathbf{E}\left\|\sum_{i} \varepsilon_{i} X_{i}\right\| \leq \mathbf{E}\left\|\sum_{i} X_{i}\right\| \leq 2 \mathbf{E}\left\|\sum_{i} \varepsilon_{i} X_{i}\right\|
$$

Next, we need a known generalization of the Khinchine inequality.
Proposition 3.2. Let $\left(\xi_{i}\right)$ be a sequence of real valued i.i.d. mean zero random variables. Then for every finite sequence of numbers $\left(a_{i}\right)$

$$
\frac{1}{2} A_{p}\left\|\xi_{1}\right\|_{\min (2, p)}\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{i} a_{i} \xi_{i}\right\|_{p} \leq 2 B_{p}\left\|\xi_{1}\right\|_{\max (2, p)}\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

where A_{p} and B_{p} are the constants from the classical Khinchine inequality.
Actually, we will use the following particular case of the inequality, and give a proof only for this case:

$$
\begin{equation*}
\frac{1}{2 \sqrt{2}}\left\|\xi_{1}\right\|_{1}\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{i} a_{i} \xi_{i}\right\|_{1} \leq\left\|\xi_{1}\right\|_{2}\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Proof (sketch). To prove the left-hand side observe that, by Lemma 3.1, $\mathbf{E}\left|\sum_{i} a_{i} \xi_{i}\right|$ is nearly the same as $\mathbf{E}\left|\sum_{i} \varepsilon_{i} a_{i} \xi_{i}\right|$. Now it is enough to apply partial integration and use the classical Khinchine inequality (note that $A_{1}=1 / \sqrt{2}$ $\mathbf{S z}$). Since $\left\|\sum_{i} a_{i} \xi_{i}\right\|_{1} \leq\left\|\sum_{i} a_{i} \xi_{i}\right\|_{2}$, the right-hand side of (7) follows from the orthogonality of $\left(\xi_{i}\right)$ in $L_{2}(\Omega)$, due to the independentness.

Another simple consequence of the symmetrization is this.
Lemma 3.3. Let $\left(\eta_{i}\right)$ be a finite sequence of real valued i.i.d. mean zero random variables. Then, for any sequence $\left(x_{i}\right)$ in a Banach space,

$$
\mathbf{E}\left\|\sum_{i} \eta_{i} x_{i}\right\| \geq \frac{1}{2}\left\|\eta_{1}\right\|_{1} \mathbf{E}\left\|\sum_{i} \varepsilon_{i} x_{i}\right\| .
$$

Proof. By the symmetry, $\varepsilon_{i}\left|\eta_{i}\right|$ has the same distribution as $\varepsilon_{i} \eta_{i}$. Using partial integration and the triangle inequality, we have

$$
\mathbf{E}\left\|\sum_{i} \varepsilon_{i} \eta_{i} x_{i}\right\|=\mathbf{E}\left\|\sum_{i} \varepsilon_{i}\left|\eta_{i}\right| x_{i}\right\| \geq \mathbf{E}\left\|\sum_{i} \varepsilon_{i}\right\| \eta_{i}\left\|_{1} x_{i}\right\| .
$$

Now it is enough to apply Lemma 3.1 with $X_{i}=\eta_{i} x_{i}$.
Finally, recall a standard approximation lemma (see M-S, 4.1).

Lemma 3.4. Let X be a Banach space, and $F: X \rightarrow \mathbf{R}$ be a non-negative convex homogeneous function. Suppose for some θ-net \mathcal{N} of $S(X)$ one has $a \leq$ $F(x) \leq b$ for every $x \in \mathcal{N}$. Then

$$
a-\frac{\theta}{1-\theta} b \leq F(x) \leq \frac{1}{1-\theta} b
$$

for every $x \in S(X)$.
In particular, if $\theta \leq a / 3 b$, then $\frac{1}{2} a \leq F(x) \leq \frac{3}{2} b$ for every $x \in S(X)$.
Proof of Theorem 1.1. Let $\left(\xi_{i j}\right)$ be independent copies of ξ. Let $k \leq c n$. We are to show that the random vectors $y_{i}=n^{-1} \sum_{j=1}^{n} \xi_{i j} x_{j}, i=1, \ldots, k$, are well equivalent to the euclidean basis.

Fix $\bar{a}=\left(a_{i}\right)_{i=1}^{k}$ in the unit sphere $S\left(l_{2}^{k}\right)$. Consider a sequence of independent random variables

$$
X_{i j}=n^{-1} a_{i} \xi_{i j} x_{j}, \quad i=1, \ldots, k, \quad j=1, \ldots, n
$$

and their sum $S(\bar{a})=\sum_{i=1}^{k} \sum_{j=1}^{n} X_{i j}$. We will prove that, with high probability, $\|S(\bar{a})\|$ is bounded from above and below for every \bar{a}.

Theorem 1.4 applied to the sum of $X_{i j}$ helps here. Note that $\mathbf{P}\left\{\left\|X_{i j}\right\|>t\right\}=$ $\mathbf{P}\left\{n^{-1}\left|a_{i}\right||\xi|>t\right\} \leq a \exp \left(-\alpha n\left|a_{i}\right|^{-1} t\right)$, thus we take

$$
d=\alpha^{-1} n^{-1} \quad \text { and } \quad b=a \sum_{i=1}^{k} \sum_{j=1}^{n} \alpha^{-2} n^{-2}\left|a_{i}\right|^{2}=a \alpha^{-2} n^{-1} .
$$

Furthermore,

$$
\begin{aligned}
\mathbf{E}\|S(\bar{a})\| & =n^{-1} \mathbf{E}\left\|\sum_{j=1}^{n}\left(\sum_{i=1}^{k} a_{i} \xi_{i j}\right) x_{j}\right\| \\
& \geq n^{-1} \frac{1}{2}\left\|\sum_{i=1}^{k} a_{i} \xi_{i j}\right\| \mathbf{E}_{1}\left\|\sum_{j=1}^{n} \varepsilon_{j} x_{j}\right\| \quad \text { (by Lemma 3.3) } \\
& \left.\geq \frac{1}{4 \sqrt{2}} \alpha_{1} \delta \quad(\text { by (} \mathbf{(}) \text { and the condition on }\left(x_{j}\right)\right) .
\end{aligned}
$$

Conversely, let $\alpha_{2}=\|\xi\|_{2}$. Note that $\alpha_{2} \leq \sqrt{2} \sqrt{a} \alpha^{-1}$, as in (6). Then by the triangle inequality and (7)

$$
\mathbf{E}\|S(\bar{a})\| \leq n^{-1} \sum_{j=1}^{n} \mathbf{E}\left|\sum_{i=1}^{k} a_{i} \xi_{i j}\right| \leq \alpha_{2} \leq \sqrt{2} \sqrt{a} \alpha^{-1}
$$

Now set $t:=\frac{1}{8 \sqrt{2}} \alpha_{1} \delta \leq \frac{1}{2} \mathbf{E}\|S(\bar{a})\|$ and apply Theorem 1.4. Clearly, $t \leq 4 b / d$ is the case, because $\delta \leq 1$ and $\alpha_{1} \leq a \alpha^{-1}$ as in (6). Thus

$$
\mathbf{P}\left\{d_{1} \leq\|S(\bar{a})\| \leq d_{2}\right\} \geq 1-2 \exp \left(-d_{3} n\right)
$$

where $d_{1}=\frac{1}{8 \sqrt{2}} \delta \alpha_{1}, d_{2}=\frac{3}{2} \sqrt{2} \sqrt{a} \alpha^{-1}$, and $d_{3}=c_{4}\left(\alpha \alpha_{1} \delta / \sqrt{a}\right)^{2}=c_{4} t^{-2}$.
The preceding observations hold for fixed \bar{a}. Now let \bar{a} run over a θ-net \mathcal{N} in $S\left(l_{2}^{k}\right),|\mathcal{N}| \leq \exp (k \log 3 / \theta)$, where $\theta=d_{1} / 3 d_{2}$ (there is such a net, cf. M-S, 2.6]. Then

$$
\mathbf{P}\left\{\forall \bar{a} \in \mathcal{N}, \quad d_{1} \leq\|S(\bar{a})\| \leq d_{2}\right\} \geq 1-2 \exp \left(k \log 3 / \theta-d_{3} n\right)
$$

We conclude by Lemma 3.4,

$$
\mathbf{P}\left\{\forall \bar{a} \in S\left(l_{2}^{k}\right), \quad d_{1} / 2 \leq\|S(\bar{a})\| \leq 3 d_{2} / 2\right\} \geq 1-2 \exp \left(k \log 3 / \theta-d_{3} n\right)
$$

If c was chosen small enough, then $k \log 3 / \theta \leq \frac{1}{2} d_{3} n$.
It remains to note that $d_{2} / d_{1}=c_{5} s$, and the required $\left(c_{1} s\right)$-equivalence to the euclidean basis follows.

References

[A-S] Alon N. and Spencer J., The probabilistic method, Wiley-Interscience, 1992.
[B-S] Beck J. and Sos V. T., Discrepancy theory, Handbook of combinatorics, North-Holland, 1995, pp. 1405-1446.
[Ch] Chernoff H., A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. 23 (1952), 493-509.
[E] Elton J., Sign-embeddings of l_{1}^{n}, Trans. AMS 279 (1983), 113-124.
[F-J-S] Figiel T., Johnson W. B. and Schechtman G., Random sign embeddings from $l_{r}^{n}, 2<r, \infty$, Proc. AMS 102 (1988), 102-106.
[Le-Ta] Ledoux M. and Talagrand M., Probability in Banach spaces, Springer, 1991.
[L] Loève M., Probability theory I, 4th ed., Springer, 1977.
[M-S] Milman V. and Schechtman G., Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200 (1986), Springer.
[P] Petrov V. V., Sums of independent random variables, Springer, 1975.
[Sch1] Schechtman G., Random embeddings of euclidean spaces in sequence spaces, Israel J. Math. 40 (1981), 187-192.
[Sp] Spencer J., Six standard deviations suffice, Trans. AMS 289 (1985), 679-706.
[Sz] Szarek S., On the best constant in the Khinchine inequality, Studia Math. 58 (1976), 197-208.
[Yu] Yurinski V., Sums and Gaussian vectors, Lecture Notes in Math. 1617 (1995), Springer.
R. Vershynin, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

