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ON SECOND ORDER DIFFERENTIAL INCLUSIONS

WITH PERIODIC BOUNDARY CONDITIONS

M. BENCHOHRA and S. K. NTOUYAS

Abstract. In this paper a fixed point theorem for condensing maps combined

with upper and lower solutions are used to investigate the existence of solutions for
second order differential inclusions with periodic boundary conditions.

1. Introduction

This note is concerned with the existence of solutions for the periodic multival-
ued problem:

y′′(t) ∈ F (t, y(t)), for a.e. t ∈ J = [0, T ](1.1)

y(0) = y(T ), y′(0) = y′(T )(1.2)

where F : J × R −→ 2R is a compact and convex multivalued map.
The method of upper and lower solutions has been successfully applied to study

the existence of multiple solutions for initial and boundary value problems of the
first and second order.

This method has been used only in the context of single-valued differential
equations. We refer to the books of Bernfeld-Lakshmikantham [BeLa], Heikkila-
Lakshmikantham [HeLa], Ladde-Lakshmikantham-Vatsala [LaLaVa], to the the-
sis of De Coster [Dec], to the papers of Carl-Heikkila-Kumpulainen [CaHeKu],
Cabada [Cab], Frigon [Fri], Frigon-O’Regan [FrOr], Heikkila-Cabada [HeCa],
Lakshmikantham-Leela [LaLe], Nieto [Nie], [Nie1], Nkashama [Nka] and the
references therein.

First order differential inclusions with periodic boundary conditions was studied
by the authors in [BeNt]. Here we extend the results of [BeNt] to second order
differential inclusions with periodic boundary conditions. Our approach is based
on the existence of upper and lower solutions and on a fixed point theorem for
condensing maps due to Martelli [Mar].
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2. Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis
that we will use in the sequel.

AC(J, R) is the space of all absolutely continuous functions y : J −→ R.
W 2,1(J, R) denotes the Banach space of functions y : J −→ R whose first de-

rivative are absolutely continuous and whose second derivative y′′ (which exists
almost everywhere) is an element of L1(J, R) with the norm

‖y‖W 2,1 = ‖y‖L1 + ‖y′‖L1 + ‖y′′‖L1 for all y ∈ W 2,1(J, R).

Condition
y ≤ ȳ if and only if y(t) ≤ ȳ(t) for all t ∈ J

defines a partial ordering in W 2,1(J, R). If α, β ∈ W 2,1(J, R) and α ≤ β, we denote

[α, β] = {y ∈ W 2,1(J, R) : α ≤ y ≤ β}.

Let (X, ‖.‖) be a normed space. A multivalued map G : X −→ 2X is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for all bounded subsets B of X (i.e.
sup
x∈B

{sup{‖y‖ : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on X

if for each x0 ∈ X the set G(x0) is a nonempty, closed subset of X, and if for each
open set N of X containing G(x0), there exists an open neighbourhood M of x0

such that G(M) ⊆ N.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊂ X.

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn −→ x∗, yn −→ y∗,
yn ∈ Gxn imply y∗ ∈ Gx∗).

G has a fixed point if there is x ∈ X such that x ∈ Gx.
In the following CC(X) denotes the set of all nonempty compact and convex

subsets of X.
An upper semi-continuous map G : X −→ 2X is said to be condensing [Mar]

if for any bounded subset B ⊆ X, we have α(G(B)) < α(B), where α denotes
the Kuratowski measure of noncompacteness [BaGo]. We remark that a compact
map is the easiest example of a condensing map. For more details on multivalued
maps see the books of Deimling [Dei] and Hu and Papageorgiou [HuPa].

The multivalued F : J −→ CC(R) is said to be measurable, if for every y ∈ R,
the function t 7−→ d(y, F (t)) = inf{‖y − z‖ : z ∈ F (t)} is measurable.

Definition 1. A multivalued map F : J × R −→ 2R is said to be an
L1-Carathéodory if
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(i) t 7−→ F (t, y) is measurable for each y ∈ R;
(ii) y 7−→ F (t, y) is upper semicontinuous for almost all t ∈ J ;
(iii) For each k > 0, there exists hk ∈ L1(J, R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ hk(t)

for all |y| ≤ k and for almost all t ∈ J .

So let us start by defining what we mean by a solution of problem (1.1)–(1.2).

Definition 2. A function y ∈ W 2,1(J, R) is said to be a solution of
(1.1)–(1.2) if there exists a function v ∈ L1(J, R) such that v(t) ∈ F (t, y(t)) a.e.
on J , y′′(t) = v(t) a.e. on J , y(0) = y(T ) and y′(0) = y′(T ).

The following concept of lower and upper solutions for (1.1)–(1.2) has been
introduced by Halidias and Papageorgiou in [HaPa] for second order multivalued
boundary value problems. It will be the basic tools in the approach that follows.

Definition 3. A function α ∈ W 2,1(J, R) is said to be a lower solution of
(1.1)–(1.2) if there exists v1 ∈ L1(J, R) such that v1(t) ∈ F (t, α(t)) a.e. on J ,
α′′(t) ≥ v1(t) a.e. on J , α(0) = α(T ) and α′(0) ≥ α′(T ).

Similarly a function β ∈ W 2,1(J, R) is said to be an upper solution of (1.1)–(1.2)
if there exists v2 ∈ L1(J, R) such that v2(t) ∈ F (t, β(t)) a.e. on J , β′′(t) ≤ v2(t)
a.e. on J , β(0) = β(T ) and β′(0) ≤ β′(T ).

For the multivalued map F and for each y ∈ C(J, R) we define S1
F,y by

S1
F,y = {v ∈ L1(J, R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

Our main result is based on the following:

Lemma 1 ([LaOp]). Let I be a compact real interval and X be a Banach
space. Let F : I ×X −→ CC(X); (t, y) → F (t, y) measurable with respect to t for
any y ∈ X and u.s.c. with respect to y for almost each t ∈ I and S1

F,y 6= ∅ for any
y ∈ C(I,X) and let Γ be a linear continuous mapping from L1(I,X) to C(I,X),
then the operator

Γ ◦ S1
F : C(I, X) −→ CC(C(I,X)), y 7−→ (Γ ◦ S1

F )(y) := Γ(S1
F,y)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2 ([Mar]). Let G : X −→ CC(X) be a condensing map. If the set

M := {v ∈ X : λv ∈ G(v) for some λ > 1}

is bounded, then G has a fixed point.
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3. Main Result

We are now in a position to state and prove our existence result for the problem
(1.1)–(1.2).

Theorem 1. Suppose F : J×R −→ CC(R) is an L1-Carathéodory multivalued
map. In addition assume that the following condition is satisfied

(H)
there exist α and β in W 2,1(J, R) lower and upper solutions respectively
for the problem (1.1)–(1.2) such that α ≤ β.

Then the problem (1.1)–(1.2) has at least one solution y ∈ W 2,1(J, R) such that

α(t) ≤ y(t) ≤ β(t) for all t ∈ J.

Proof. Transform the problem into a fixed point problem. Consider the follow-
ing modified problem

y′′(t)− y(t) ∈ F1(t, y(t)), a.e. t ∈ J,(3.1)

y(0) = y(T ), y′(0) = y′(T )(3.2)

where F1(t, y) = F (t, (τy)(t))− (τy)(t) and τ : C(J, R) −→ C(J, R) is the trunca-
tion operator defined by

(τy)(t) =


α(t), if y(t) < α(t);

y(t), if α(t) ≤ y ≤ β(t);

β(t)), if β(t) < y(t).

Remark 1. Notice that F1 is an L1-Carathéodory multivalued map with com-
pact convex values and there exists φ ∈ L1(J, R+) such that

‖F1(t, y(t))‖ ≤ φ(t) + max(sup
t∈J

|α(t)|, sup
t∈J

|β(t)|)

for a.e. t ∈ J and all y ∈ C(J, R).

Clearly, a solution to (3.1)–(3.2) is a fixed point of the operator N : C(J, R) −→
2C(J,R) defined by

Ny :=
{

h ∈ C(J, R) : h(t) =
∫ T

0

G(t, s)[v(s)− (τy)(s)] ds : v ∈ S̃1
F,y

}
where G(t, s) is the Green function corresponding to the problem

y′′ − y = g(t), t ∈ J

y(0) = y(T ), y′(0) = y′(T )
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S̃1
F,y = {v ∈ S1

F,τy : v(t) ≤ v1(t) a.e. on A1 and v(t) ≥ v2(t) a.e. on A2},
S1

F,τy = {v ∈ L1(J, R) : v(t) ∈ F (t, (τy)(t)) for a.e. t ∈ J},
A1 = {t ∈ J : y(t) < α(t) ≤ β(t)},
A2 = {t ∈ J : α(t) ≤ β(t) < y(t)}.

Remark 2. (i) For each y ∈ C(J, R) the set S1
F,y is nonempty (see Lasota and

Opial [LaOp]).
(ii) For each y ∈ C(J, R) the set S̃1

F,y is nonempty. Indeed, by (i) there exists
v ∈ S1

F,τy. Set
w = v1χA1 + v2χA2 + vχA3 ,

where
A3 = {t ∈ J : α(t) ≤ y(t) ≤ β(t)}.

Then by decomposability w ∈ S̃1
F,y.

We shall show that N has a fixed point. The proof will be given in several
steps. We first shall show that N is a completely continuous multivalued map,
u.s.c. with convex closed values.

Step 1: Ny is convex for each y ∈ C(J, R).

Indeed, if h, h belong to Ny, then there exist v ∈ S̃1
F,y and v ∈ S̃1

F,y such that

h(t) =
∫ T

0

G(t, s)[v(s)− (τy)(s)] ds, t ∈ J

and

h(t) =
∫ T

0

G(t, s)[v(s)− (τy)(s)] ds, t ∈ J.

Let 0 ≤ k ≤ 1. Then for each t ∈ J we have

[kh + (1− k)h](t) =
∫ T

0

G(t, s)[kv(s) + (1− k)v(s)− (τy)(s)] ds.

Since S̃1
F,y is convex (because F has convex values) then

kh + (1− k)h ∈ Ny.

Step 2: N is completely continuous.

Let Br := {y ∈ C(J, R) : ‖y‖∞ = sup{|y(t)| : t ∈ J} ≤ r} be a bounded set in
C(J, R) and y ∈ Br, then for each h ∈ Ny there exists v ∈ S̃1

F,y such that

h(t) =
∫ T

0

G(t, s)[v(s)− (τy)(s)] ds, t ∈ J.
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Thus for each t ∈ J we get

|h(t)| ≤
∫ T

0

|G(t, s)|[|v(s)|+ |(τy)(s)|] ds

≤ max
(t,s)∈J×J

|G(t, s)|[‖φR‖L1 + T max(r, sup
t∈J

|α(t)|, sup
t∈J

|β(t)|)] = K.

Furthermore

|h′(t)| ≤
∫ T

0

|G′
t(t, s)|[|v(s)|+ |(τy)(s)|] ds

≤ max
(t,s)∈J×J

|G′
t(t, s)|[‖φR‖L1 + T max(r, sup

t∈J
|α(t)|, sup

t∈J
|β(t)|)] = K1.

We note that G(t, s) and G′
t(t, s) are continuous on J ×J . Thus N maps bounded

set of C(J, R) into uniformly bounded and equicontinuous set of C(J, R).

Step 3: N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ S̃F,yn

such that

hn(t) =
∫ T

0

G(t, s)[vn(s)− (τyn)(s)] ds, t ∈ J.

We must prove that there exists v∗ ∈ S̃F,y∗ such that

h∗(t) =
∫ T

0

G(t, s)[v∗(s)− (τy∗)(s)] ds, t ∈ J.

Since yn → y∗, hn → h∗ and τ is a continuous function we have that∥∥∥(
hn +

∫ T

0

G(t, s)(τyn)(s) ds
)
−

(
h∗ +

∫ T

0

G(t, s)(τy∗)(s) ds
)∥∥∥

∞
−→ 0,

as n −→∞.
Now, we consider the linear continuous operator

Γ: L1(J, R) −→ C(J, R)

v 7−→ Γ(v)(t) =
∫ T

0

G(t, s)v(s) ds.

From Lemma 1, it follows that Γ ◦ S̃F is a closed graph operator.
Moreover, we have that(

hn(t) +
∫ T

0

G(t, s)(τyn)(s) ds
)
∈ Γ(S̃F,yn).
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Since yn −→ y∗, it follows from Lemma 1 that

h∗(t) +
∫ T

0

G(t, s)(τy∗)(s) ds =
∫ t

0

G(t, s)v∗(s) ds

for some v∗ ∈ S̃F,y∗ .
Therefore N is a completely continuous multivalued map, u.s.c. with convex

closed values.

Step 4: Now, we are going to show that the set

M := {y ∈ C(J, R) : λy ∈ N(y) for some λ > 1}

is bounded.

Let λy ∈ N(y), λ > 1. Then there exists v ∈ S̃1
F,y such that

y(t) = λ−1

∫ T

0

G(t, s)[v(s)− (τy)(s)] ds, t ∈ J.

Thus

|y(t)| ≤ |G(t, s)|
∫ T

0

[|v(s)|+ |(τy)(s)|] ds, t ∈ J.

Thus we obtain

‖y‖∞ ≤ |G(t, s)|[‖φ‖L1 + T max(sup
t∈J

|α(t)|, sup
t∈J

|β(t)|)].

This shows that M is bounded. Hence, Lemma 2 applies and N has a fixed point
which is a solution to problem (3.1)–(3.2).

Step 5: We shall show that the solution y of (3.1)–(3.2) satisfies

α(t) ≤ y(t) ≤ β(t) for all t ∈ J.

Let y be a solution to (3.1)–(3.2). We prove that

α(t) ≤ y(t) for all t ∈ J.

Assume that y − α attains a negative minimum on J at t0, that is

(y − α)(t0) = min{y(t)− α(t) : t ∈ J} < 0.

We shall distinguish the following cases.

Case 1. t0 ∈ (0, T ).
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Then there exists t∗0 ∈ (t0, T ) such that

y(t)− α(t) < 0 for all t ∈ (t0, t∗0).

By the definition of τ there exists v ∈ L1(J, R) with v(t) ≤ v1(t) a.e. on (t0, t∗0)
and v(t) ∈ F (t, α(t)) a.e. on (t0, t∗0).

Since y′(t0)− α′(t0) = 0 and using the fact that α is a lower solution to (1.1)–
(1.2) we obtain that for t ∈ (t0, t∗0)

y′(t)− α′(t) =
∫ t

t0

(y′′(s)− α′′(s)) ds

≤
∫ t

t0

[v(s) + y(s)− α(s)− v1(s)] ds

< 0.

This proves that y(t0)−α(t0) is not a minimum of y−α which is a contradiction.

Case 2. min{y(t)− α(t) : t ∈ J} = y(0)− α(0) = y(T )− α(T ) < 0.
Then we obtain

y′(0)− α′(0) ≥ 0 ≥ y′(T )− α′(T )

and from the definition of a lower solution

y′(0)− α′(0) ≤ y′(T )− α′(T ).

Hence, y′(0)− α′(0) = 0 and for t > 0 small

y′(t)− α′(t) =
∫ t

0

(y′′(s)− α′′(s)) ds

≤
∫ t

0

[v(s) + y(s)− α(s)− v1(s)] ds

< 0

which is a contradiction.
Analogously, we can prove that

y(t) ≤ β(t) for all t ∈ J.

This shows that the problem (3.1)–(3.2) has a solution in the interval [α, β]. Since

τ(y) = y for all y ∈ [α, β],

then y is a solution to (1.1)–(1.2). �
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