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ON UNIFORM EXPONENTIAL STABILITY OF PERIODIC

EVOLUTION OPERATORS IN BANACH SPACES

M. MEGAN, L. SASU and B. SASU

Abstract. The aim of this paper is to obtain some discrete-time characteriza-
tions for the uniform exponential stability of periodic evolution operators in Ba-
nach spaces. We shall also obtain a discrete-time variant for Neerven’s theorem

using Banach sequence spaces and a new proof for Neerven’s theorem.

1. Introduction

Let X be a real or a complex Banach space. The norm on X and on the space
B(X) of all bounded linear operators on X will be denoted by || · ||.

Definition 1.1. A familly Φ = {Φ(t, s)}t≥s≥0 of bounded linear operators is
called an evolution operator if the following properties are satisfied:

e1) Φ(t, t) = I, the identity operator on X;
e2) Φ(t, s)Φ(s, t0) = Φ(t, t0), for all t ≥ s ≥ t0 ≥ 0;
e3) for all x ∈ X the function Φ(t, ·)x is continuous on [0, t] and the function

Φ(·, t0)x is continuous on [t0,∞);
e4) there exist M ≥ 1, ω > 0 such that

||Φ(t, s)|| ≤Meω(t−s), ∀t ≥ s ≥ 0.

Definition 1.2. An evolution operator Φ = {Φ(t, s)}t≥s≥0 is said to be

i) uniformly exponentially stable (and we denote by u.e.s.) if there are
N ≥ 1 and ν > 0 such that

||Φ(t, s)|| ≤ Ne−ν(t−s), ∀t ≥ s ≥ 0;

ii) periodic if there exists τ > 0 such that

Φ(t+ τ, s+ τ) = Φ(t, s), ∀t ≥ s ≥ 0.
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Remark 1.1. If T = {T (t)}t≥0 is a C0-semigroup on the Banach space X then
Φ = {Φ(t, s)}t≥s≥0 defined by

Φ(t, s) = T (t− s), ∀t ≥ s ≥ 0

is easily checked to be a τ -periodic evolution operator, for all τ > 0.

In stability theory of C0-semigroups in Banach spaces a notable result is given
by:

Theorem 1.1 (Neerven). Let X be a complex Banach space and let T be a
C0-semigroup on X. If E is a Banach function space over R+ with lim

t→∞
ΨE(t) =

∞ and with the property that for every x ∈ X the map t→ ||T (t)x|| belongs to E
then T is u.e.s.

Nerveen’s proof (see [5]) is valid only for complex Banach spaces. In his proof
Neerven used a lemma which is not valid in real Banach spaces and in [3] he gives
an example which shows this fact.

In this paper we shall give the discrete-time variant of the Neerven’s theorem
but for periodic evolution operators. We shall also obtain neccesary and sufficient
conditions for uniform exponential stability of periodic evolution operators. All
our results are valid in real or complex Banach spaces.

2. Banach Function Spaces

Let (Ω,Σ, µ) be a positive σ-finite measure space. By M(µ) we denote the
linear space of µ-measurable functions f : Ω→ C, identifying the functions which
are equal µ-a.e.

Definition 2.1. A Banach function norm is a function N : M(µ)→ [0,∞]
with the following properties:

n1) N(f) = 0 if and only if f = 0 µ-a.e.;
n2) if |f | ≤ |g|µ-a.e. then N(f) ≤ N(g);
n3) N(af) = |a|N(f), for all scalars a ∈ C and all f with N(f) <∞;
n4) N(f + g) ≤ N(f) +N(g), for all f, g ∈M(µ).

Let E = EN be the set defined by:

E := {f ∈M(µ) : ||f ||E := N(f) <∞}.

It is easily seen that (E, || · ||E) is a normed linear space. If E is complete then
E is called Banach function space over Ω.

Remark 2.1. E is an ideal in M(µ), i.e. if |f | ≤ |g|µ-a.e. and g ∈ E then also
f ∈ E and ||f ||E ≤ ||g||E .
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Remark 2.2. If fn → f in norm in E, then there exists a subsequence (fkn)
converging to f pointwise (see [1]).

Let (Ω,Σ, µ) = (R+,L,m) where L is the σ-algebra of all Lebesgue measurable
sets A ⊂ R+ and m the Lebesgue measure. For a Banach function space over R+

we define

ΨE : R+ → R̄+, ΨE(t) :=
{ ||χ[0,t)||E , if χ[0t) ∈ E
∞, if χ[0,t) /∈ E

where χ[0,t) denotes the characteristic function of [0, t). The function ΨE is called
the fundamental function of the Banach space E.

In what follows we shall denote by B(R+) the set of all Banach function spaces
with the property that lim

t→∞
ΨE(t) =∞.

Let (Ω,Σ, µ) = (N,P(N), µc) where µc is the countable measure and E a
Banach function space over N (in this case E is called Banach sequence space).
We define

ΨE : N∗ → R̄+, ΨE(n) :=
{ ||χ{0,...,n−1}||E , if χ{0,...,n−1} ∈ E
∞, if χ{0,...,n−1} /∈ E

called the fundamental function of E.
In what follows we denote by B(N) the set of all Banach sequence spaces E

with lim
n→∞

ΨE(n) =∞.

Remark 2.3. If E is a Banach function space over R+ and (tn)n an increasing
sequence of real positive numbers with lim

n→∞
tn =∞ we define

SE :=

{
(αn)n :

∞∑
n=0

αnχ[tn,tn+1) ∈ E

}
.

It is easily checked that SE is a Banach sequence space with respect to the norm

||(αn)n||SE :=

∥∥∥∥∥
∞∑
n=0

αnχ[tn,tn+1)

∥∥∥∥∥
E

.

Moreover, we have that E ∈ B(R+) if and only if SE ∈ B(N).

In what follows we shall give some examples of Banach sequence spaces.

Example 2.1. If p ∈ [1,∞) then E = lp with

||s||p =

( ∞∑
n=0

|s(n)|p
) 1
p

has the property that E ∈ B(N).
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Example 2.2. If p ∈ [1,∞) and α = (αn) is a sequence of strict positive real
numbers with

∞∑
n=0

αn =∞

then the space E = lpα of all sequences s : N→ C with the property

∞∑
n=0

αn|s(n)|p <∞

is a Banach sequence space with respect to the norm:

||s||lpα =

( ∞∑
n=0

αn|s(n)|p
) 1
p

.

Because

Ψlpα(n) =

n−1∑
j=0

αj

 1
p

it follows that lpα ∈ B(N).

Example 2.3. If p ∈ [1,∞) and k = (kn) is a sequence of natural numbers
with the following properties:

(i) kn ≥ n, for all n ∈ N;
(ii) lim

n→∞
(kn − n) =∞

then the space Epk of all sequences s : N→ C with the property

||s||Epk = sup
n∈N

 kn∑
j=n

|s(j)|p
 1

p

is a Banach sequence space with Epk ∈ B(N).

3. Preliminary Results

First we will need the following technical lemmas.

Lemma 3.1. Let A be a bounded linear operator on a Banach space X whose
spectral radius r(A) ≥ 1. Then for all ε ∈ (0, 1) and n ∈ N there is x ∈ X with
||x|| = 1 and

||Ajx|| ≥ ε, for all j ∈ {0, . . . , n}.

Proof. Let λ ∈ σ(A) with |λ| = r(A). Then there is (xn)n ⊂ X with ||xn|| = 1
and Axn − λxn → 0.
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Since Ajxn − λjxn → 0, for every j ∈ N, it follows that for all ε ∈ (0, 1) and
n ∈ N there exists n0 ∈ N such that

||Ajxn0 − λjxn0 || < 1− ε, for all j ∈ {0, . . . , n}.

Hence

|λ|j = ||λjxn0 || ≤ ||λjxn0 −Ajxn0 ||+ ||Ajxn0 || < 1− ε+ ||Ajxn0 ||

which implies
||Ajxn0 || > |λ|j − 1 + ε ≥ ε. �

Lemma 3.2. Let E be a Banach sequence space and let (An) be a sequence of
bounded linear operators on X with the property that for every x ∈ X the sequence

sx : N→ R+, sx(n) = ||Anx||

belongs to E. Then there exists M > 0 such that

||sx||E ≤M ||x||, for all x ∈ X.

Proof. Let E(X) be the set of all sequences s : N→ X with ||s|| ∈ E. E(X) is
a Banach space with respect to the norm

|s|E(X) := || ||s|| ||E .

We consider the map S : X → E(X) defined by

S(x)(n) = Anx.

Using the closed graph theorem it is sufficient to show that the linear map S is
closed.

Indeed, if xn → x in X and S(xn)→ s in E(X) then from Remark 2.2 it follows
that there exists a subsequence (xkn) such that S(xkn)→ s pointwise.

Since for every j ∈ N we have

S(xkn)(j) = Ajxkn −→ Ajx = S(x)(j)

it follows that s = S(x), which proves the closedness of S. �
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Lemma 3.3. Let A be a bounded operator on X and E a Banach sequence
space with E ∈ B(N). If there exists a sequence (kn) ⊂ N such that for every
x ∈ X the sequence

sx : N→ R+, sx(n) = ||Aknx||
belongs to E then the spectral radius r(A) < 1.

Proof. Suppose the contrary, i.e. r(A) ≥ 1. Let n ∈ N∗ and

pn = max{k0, k1, . . . , kn}.

From Lemma 3.1. it follows that there exists xn ∈ X with ||xn|| = 1 and

||Ajxn|| >
1
2
, for all j ∈ {0, . . . , pn}.

Hence we have
χ{0,...,n−1} < 2sxn

which implies
ΨE(n) = ||χ{0,...,n−1}||E ≤ 2||sxn ||E ≤ 2M

where M is given by Lemma 3.2.
This fact contradicts the assumption E ∈ B(N). �

Lemma 3.4. Let Φ = {Φ(t, s)}t≥s≥0 be a τ -periodic evolution operator and
V = Φ(τ, 0). Then Φ is u.e.s. if and only if r(V ) < 1.

Proof. For all n ∈ N∗, V n = Φ(nτ, 0). Hence, it follows that if Φ is u.e.s. then
r(V ) < 1.

Conversely, if r(V ) < 1 there exists ν > 0 such that r(V ) < e−ντ and exists
n0 ∈ N∗ with

||V n|| ≤ e−νnτ , ∀n ≥ n0.

For the beginning let us prove that there exists K > 0 with

||Φ(t, 0)|| ≤ Ke−νt, ∀t ≥ 0.

We denote by M1 = sup {||Φ(t, s)|| : t, s ∈ [0, τ ], t ≥ s}. If t = nτ + r with n ∈ N
and r ∈ [0, τ) then

||Φ(t, 0)|| ≤ ||Φ(t, nτ)|| ||Φ(nτ, 0)|| ≤ Ke−νt, ∀t ≥ 0,

where K = max{Mn0
1 en0τν ,M1e

τν}.
Let now t ≥ s ≥ 0, t = nτ + r, s = kτ +u, with n ≥ k and r, u ∈ [0, τ). If n = k

then
||Φ(t, s)|| = ||Φ(r, u)|| ≤M1 ≤M1e

ντe−ν(t−s),

and if n ≥ k + 1 then

||Φ(t, s)|| ≤ ||Φ(t, (k + 1)τ)|| ||Φ((k + 1)τ, s)||
≤ ||Φ(t− (k + 1)τ, 0)|| ||Φ(τ, u)|| ≤M1Ke

ντe−ν(t−s).

It follows that Φ is u.e.s. �
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4. The Main Results

In this section we shall give necessary and sufficient conditions for uniform
exponential stability of periodic evolution operators in Banach spaces.

Our main result is:

Theorem 4.1. Let Φ = {Φ(t, s)}t≥s≥0 be a periodic evolution operator on a
Banach space X. Then the following assertions are equivalent:

i) Φ is u.e.s.;
ii) there are a Banach sequence space E ∈ B(N) and a sequence (tn) ⊂ R+

such that for all x ∈ X the map

sx : N→ R+, sx(n) = ||Φ(tn, 0)x||

belongs to E.

Proof. Necessity. It is sufficient to consider

E = l1 ∈ B, tn = n.

Sufficiency. Since Φ is periodic there is τ > 0 such that

Φ(t+ τ, s+ τ) = Φ(t, s), ∀t ≥ s ≥ 0.

We denote by V = Φ(τ, 0). Let kn = [ tnτ ] + 1, for all n ∈ N.
Since Φ has exponential growth there exist M ≥ 1, ω > 0 such that

||Φ(t, s)|| ≤Meω(t−s), ∀t ≥ s ≥ 0.

Then

||V knx|| = ||Φ(τkn, 0)x|| ≤ ||Φ(τkn, tn)|| ||Φ(tn, 0)x|| ≤Meωτ ||Φ(tn, 0)x||,

for all x ∈ X and n ∈ N.
Since for all x ∈ X, sx belongs to E and E is an ideal we obtain that for every

x ∈ X the map
ux : N→ R+, ux(n) = ||V knx||

belongs to E. Using Lemma 3.3. we obtain that r(V ) < 1 and from Lemma 3.4.
Φ is u.e.s. �

In what follows we are going to apply Theorem 4.1. to certain Banach sequence
spaces.
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Corollary 4.1. Let Φ = {Φ(t, s)}t≥s≥0 be a periodic evolution operator on a
Banach space X. The following assertions are equivalent:

i) Φ is u.e.s.;
ii) there are two sequences of positive real numbers (αn) and (tn) such that:

ii’)
∞∑
n=0

αn =∞;

ii”)
∞∑
n=0

αn||Φ(tn, 0)x||p <∞, for all x ∈ X and p ∈ [1,∞);

iii) there are two sequences of positive real numbers (αn) and (tn) such that:

iii’)
∞∑
n=0

αn =∞;

iii”) there exists p ∈ [1,∞) such that

∞∑
n=0

αn||Φ(tn, 0)x||p <∞, for all x ∈ X.

Proof. (i) ⇒ (ii): It is sufficient to choose αn = 1 and tn = n.
(ii) ⇒ (iii): It is trivial.
(iii) ⇒ (i): Without lost of generality we may assume that αn > 0 for all n ∈ N.

Let lpα be the Banach sequence space considered in Example 2.2. Using the
hypothesis it follows that for every x ∈ X the sequence

sx : N→ R+, sx(n) = ||Φ(tn, 0)x||

defines an element of lpα. Using the Theorem 4.1. it follows that Φ is u.e.s. �

Corollary 4.2. Let (kn) ⊂ N be a sequence such that kn ≥ n for all n ∈ N
and

lim
n→∞

(kn − n) =∞.

Let Φ = {Φ(t, s)}t≥s≥0 be a periodic evolution operator on the Banach space X.
Then Φ is u.e.s. if and only if there are p ∈ [1,∞) and a sequence (tn) ⊂ R+ such
that

sup
n∈N

kn∑
j=n

||Φ(tj , 0)x||p <∞, for all x ∈ X.

Proof. Necessity is trivial (for p = 1 and tn = n).
Sufficiency. It follows by applying Theorem 4.1. for the space Epk defined in
Example 2.3. �

As a consequence of Theorem 4.1. we obtain a generalization for Neerven’s
theorem
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Theorem 4.2. Let Φ = {Φ(t, s)}t≥s≥0 be a periodic evolution operator on the
Banach space X and E a Banach function space with E ∈ B(R+). If for every
x ∈ X the map

fx : R+ → R+, fx(t) = ||Φ(t, 0)x||

belongs to E then Φ is u.e.s.

Proof. Let τ be the period of Φ and

SE =

{
(αn) :

∞∑
n=0

αnχ[nτ,(n+1)τ) ∈ E

}
.

From Remark 2.3. using the hypothesis that E ∈ B(R+) it follows that SE ∈
B(N). Let

sx : N→ R+, sx(n) = ||Φ((n+ 1)τ, 0)x||.

We define

gx : R+ → R+, gx(t) =
∞∑
n=0

sx(n)χ[nτ,(n+1)τ)(t).

For every x ∈ X we have that

gx(t) =
∞∑
n=0

||Φ((n+ 1)τ, 0)x||χ[nτ,(n+1)τ)(t), ∀t ≥ 0.

Let t ∈ R+. There is n ∈ N such that t ∈ [nτ, (n+ 1)τ). It follows that

gx(t) = ||Φ((n+ 1)τ, 0)x|| ≤ ||Φ((n+ 1)τ, t)|| ||Φ(t, 0)x||
= ||Φ(τ, t− nτ)|| ||Φ(t, 0)x|| ≤M2||Φ(t, 0)x||,

where M2 = sup{||Φ(τ, s)|| : s ∈ [0, τ ]}.
Hence

gx(t) ≤M2 fx(t), ∀t ≥ 0.

Since fx ∈ E and E is an ideal we obtain that gx ∈ E. Using the definition of SE
we have that sx ∈ SE .

By applying Theorem 4.1 it follows that Φ is u.e.s.
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