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A HALF–COMMUTATIVE IP ROTH THEOREM

R. McCUTCHEON

1. Introduction

In 1985 H. Furstenberg and Y. Katznelson gave a powerful ergodic-theoretic
multiple recurrence theorem for commuting IP-systems of measure preserving
transformations. (Let F = {A : A ⊂ N, 0 < |A| < ∞}. An IP-system is
a sequence (Tα)α∈F in an abelian semigroup satisfying Tα∪β = TαTβ whenever
α ∩ β = ∅.) Their result follows.

Theorem A ([FK2]). Let
(
(T (i)
α )α∈F

)k
i=1

be IP-systems contained in a abelian
group of measure preserving transformations of a probability space (X,A, µ). Then
for all A ∈ A with µ(A) > 0 there exists α ∈ F such that µ

(
A ∩

⋂k
i=1(T (i)

α )−1A
)

> 0.

This result strengthens a previous theorem, again due to Furstenberg and
Katznelson ([FK1]), stating that for commuting measure preserving transforma-
tions T1, . . . , Tk of a probability space (X,A, µ) and A ∈ A with µ(A) > 0 there
exists n > 0 such that µ

(
A∩

⋂k
i=1 T

−n
i A

)
> 0. The case of [FK1] in which each Ti

is a power of the same transformation T was proved by Furstenberg in 1977 ([F]),
and is equivalent to Szemerédi’s theorem ([Sz]) on existence of arithmetic progres-
sions in positive density subsets of N. (In particular, Theorem A provides that
n may be chosen from any IP-system in N.) For this reason, Furstenberg and
Katznelson refer to Theorem A as an “IP Szemerédi theorem”. The special case
k = 2 of Theorem A might therefore be called an “IP Roth theorem”, for it may be
used to infer the case of Szemerédi’s theorem dealing with three-term arithmetic
progressions, which is due to K. Roth ([R]).

Our goal here is to remove some of the commutativity restrictions on Theo-
rem A in the special case k = 2 (hence the title of the paper). There are at least
two reasonable choices for the definition of “IP-system” (Tα)α∈F in a non-abelian
semigroup. We may require either Tα∪β = TαTβ or Tα∪β = TβTα for α, β ∈ F
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with maxα < minβ. We adopt the former condition, calling systems satisfying
the latter condition reversed IP-systems. The typical manner for constructing
an IP-system (Tα)α∈F is to choose “generators” (Si)∞i=1 and put Tα =

∏
i∈α Si,

where the product is taken with increasing indices (eg. T{1,4,5} = S1S4S5). Taking
products with decreasing indices yields a reversed IP-system.

We consider two IP-systems (Tα)α∈F and (Sα)α∈F of measure preserving trans-
formations of a probability space (X,A, µ) which commute with each other in the
sense that TαSβ = SβTα for all α, β ∈ F , and such that (Sα)α∈F is itself commu-
tative; namely SαSβ = SβSα for all α, β ∈ F . The conclusion we obtain is that if
µ(A) > 0 then there exists α ∈ F such that µ

(
A ∩ T−1

α A ∩ (TαSα)−1A
)
> 0. In

other words, we have succeeded in removing the commutativity restriction on one
of the IP-systems in the k = 2 case of Theorem A. The method of proof is a natu-
ral outgrowth of the methods of Furstenberg and Katznelson. After a preparatory
section (Section 2), we present the result and its proof in Section 3.

Section 4 is devoted to two combinatorial corollaries, one for sets of positive den-
sity in amenable semigroups (Theorem 4.2) and one for partition Ramsey theory
(Corollary 4.5). Also included in this section is a topological recurrence theorem.

2. Preliminaries

In this section we will give definitions and formulate preliminary results and
combinatorial tools needed for the proof of our main theorem, Theorem 3.1. Recall
that F denotes the family of non-empty finite subsets of N.

Definition 2.1. (a) Suppose that α, β ∈ F have the property that every mem-
ber of α is less than every member of β, that is, x ∈ α and y ∈ β implies that
x < y. In this case we shall say that α precedes β and write α < β.

(b) Given a sequence (αi)i∈N ⊂ F such that α1 < α2 < α3 < . . . , we denote
the set of all unions of finitely many elements of the sequence by FU(α1, α2, . . . ).
We also let FU∅(α1, α2, . . . ) = FU(α1, α2, . . . ) ∪ {∅}. Both FU(α1, α2, . . . ) and
FU∅(α1, α2, . . . ) are called IP-rings, and are usually denoted by symbols such as
F (1), F (2), etc. If F (1) and F (2) are IP-rings and F (2) ⊂ F (1) then F (2) is said to
be a subring of F (1).

(c) Suppose that (xα)α∈F is a sequence indexed by F (called an F-sequence)
in a topological space X, x ∈ X and F (1) = FU(α1, α2, . . . ) is an IP-ring. Suppose
that for every neighborhood U of x there exists β ∈ F having the property that for
every α ∈ F (1) with β < α we have xα ∈ U . Then we shall say that the sequence
(xα) converges to x along F (1), and we shall write

IP-lim
α∈F(1)

xα = x.
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(d) An F-sequence (xα)α∈F in a semigroup is called an IP-system (respectively
reversed IP-system) if xα∪β = xαxβ (respectively xα∪β = xβxα) for all α, β ∈ F
with α < β.

A fundamental combinatorial tool useful when dealing with IP-convergence is
Hindman’s Theorem:

Theorem 2.2 ([H]). Suppose r ∈ N and
⋃r
i=1 Ci = F (1) is a partition of an IP-

ring into r cells. Then some cell of the partition contains an IP-ring F (2) ⊂ F (1).

Given an IP-ring F (1) = FU(α1, α2, . . . ), the correspondence β ↔
⋃
i∈β αi is a

bijection between F and F (1) which preserves unions and the partial order relation
<. Hence IP-rings themselves have the structure of F . It follows that given any F-
sequence (xα)α∈F and an IP-ring F (1), the sequence (xα)α∈F(1) has the character
of an F-sequence. Therefore, we may refer to the restriction of an F-sequence to
an IP-ring as an F-sequence as well.

If F (2) is a subring of F (1) then the restriction of a given F-sequence to F (2)

is called a subsequence of the restriction the F-sequence to F (1). As is the
case with ordinary sequences, any F-sequence in a compact metric space has a
convergent subsequence. The following generalization of this fact may be proved
using Hindman’s Theorem and a standard diagonalization argument.

Corollary 2.3 ([FK2, Theorem 1.5]). Suppose that, for all n ∈ N, (x(n)
α )α∈F

is an F-sequence in a compact metric space Xn. Then for any IP-ring F (1) there
exists a subring F (2) such that

IP-lim
α∈F(2)

x(n)
α = zn

exists for each n ∈ N.

Any IP-system or reversed IP-system (Uα)α∈F of isometries on a separable
Hilbert space H is of course also an F-sequence. Since the unit ball of H is
compact and metrizable in the weak topology, one may show as a consequence of
Corollary 2.3 that along some subring F (1),

(2.1) IP-lim
α∈F(1)

Uαf = Pf

exists weakly for all f ∈ H. (One need only show that the limit exists for all f in
a countable dense subset of H.) The content of the following proposition is that
the operator P of (2.1) is an orthogonal projection.

Proposition 2.4. Suppose that (Uα)α∈F is an IP-system or reversed IP-system
of isometries on a separable Hilbert space H and F (1) is an IP-ring such that

IP-lim
α∈F(1)

Uαf = Pf
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exists weakly for all f ∈ H. Then P is an orthogonal projection onto a closed
subspace of H.

Proof. We will prove the assertion in the case that (Uα) is a reversed IP-
system. (The IP-system case is actually somewhat easier.) That P is linear is
easily checked, and furthermore it is easily established that

∥∥P∥∥ ≤ 1. These facts
imply that if P 2 = P then P must be an orthogonal projection. Therefore we
must only show that P is idempotent.

Let ρ be a metric for the weak topology on the closed unit ball of H, let f ∈ H
with ‖f‖ < 1 and let ε > 0 be arbitrary. We begin with the observation that P
is weakly continuous. Therefore we may choose α0 ∈ F having the property that
for every α > α0 we have

(2.2) ρ(Uαf, Pf) <
ε

3

and ρ(PUαf, P 2f) < ε
3 .

Suppose now that α, β ∈ F (1) with β > α > α0. Then (α ∪ β) > α0, hence

(2.3) ρ(UβUαf, Pf) = ρ(Uα∪βf, Pf) <
ε

3
.

Fixing α > α0, there exists β > α far enough out that

(2.4) ρ(UβUαf, PUαf) <
ε

3
.

It follows from (2.2), (2.3) and (2.4) that

ρ(Pf, P 2f) ≤ ρ(Pf, UβUαf)+ρ(UβUαf, PUαf)+ρ(PUαf, P 2f) <
ε

3
+
ε

3
+
ε

3
= ε.

Since ε was arbitrary, P 2f = Pf . Since f was arbitrary, P 2 = P . �

Another combinatorial tool we’ll use is the following corollary of Hindman’s
theorem. In order to formulate it, we adopt the following notation: if n ∈ N and
F (1) is an IP ring, let(

F (1)
)n
<

=
{

(α1, . . . , αn) : α1, . . . , αn ∈ F (1), α1 < α2 < · · · < αn
}
.

Theorem 2.5 ([M], [T]). Suppose that F (1) is an IP-ring, n, r ∈ N, and
that

(
F (1)

)n
<

=
⋃r
i=1 Ci is an r-cell partition of

(
F (1)

)n
<

. Then there exists j,
1 ≤ j ≤ r, and an IP-ring F (2) ⊂ F (1) such that

(
F (2)

)n
<
⊂ Cj.

The following is a standard trick for showing convergence of F-sequences in a
Hilbert space.
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Proposition 2.6 ([FK2, Lemma 5.3]). Suppose that {xα}α∈F is a bounded
F-sequence of vectors in a Hilbert space H and that F (1) is an IP-ring. If

IP-lim
β∈F(1)

IP-lim
α∈F(1)

〈
xα, xα∪β

〉
= 0

then for some IP-subring F (2) ⊂ F (1), IP-lim
α∈F(2)

xα = 0 in the weak topology.

The following fact follows from [FK3, Lemma 3.1]. We include a proof for
completeness.

Theorem 2.7. Suppose that (X,A, µ) is a probability space. A closed subspace
E ⊂ L2(X,A, µ) has the form E = L2(X,B, µ) for a sub-σ-algebra B ⊂ A if and
only if E has a dense subset E0 of bounded functions containing the constants and
having the property that if f, g ∈ E0 then {fg, f + g} ⊂ E0.

Proof. One direction is obvious. Given E = L2(X,B, µ), simply let E0 consist
of those members of E that are bounded. E0 is clearly dense in E and has the
required properties.

For the converse, let E0 be as stated in the theorem. Let a, b ∈ R and let
g ∈ E0. Let B = {x : g(x) ∈ (a, b)}. We claim that 1B ∈ E0. Indeed, replacing g
by g

N , where N is sufficiently large, we may assume without loss of generality that
sup |g| < 1 and −1 < a < b < 1. Let ε > 0 be arbitrary and choose δ > 0 such
that µ(B′4B) < ε, where B′ = {x : g(x) ∈ (a + δ, b − δ)}. By the Weierstrass
approximation theorem, choose now a polynomial p(t) with p([−1, 1]) ⊂ [0, 1],
p(t) > 1−ε for t ∈ (a+δ, b−δ), and p(t) < ε for t ∈ [−1, a]∪ [b, 1]. Then p◦g ∈ E0

with ||p ◦ g − 1B || < 2ε.
Let B0 be the algebra of sets generated by sets of the form {x : g(x) ∈ (a, b)},

where g ∈ E0 and a, b ∈ R. Since E0 is closed under products (to approximate
intersection) and sums (to approximate union), 1B ∈ E0 for all B ∈ B0. Since E0

is closed under products and contains the constants (and is therefore closed under
finite linear combinations), E0 contains all simple functions

∑n
i=1 1Bi , where the

Bi’s come from B0.
Let B = {B ∈ A : ∃(Bi)∞i=1 ⊂ B0 with µ(B4Bi) → 0}. One easily checks

that B is a σ-algebra containing B0. Therefore E0 contains all simple functions∑n
i=1 1Bi , where the Bi’s come from B. This implies that L2(X,B, µ) ⊂ E0. On

the other hand all the members of E0 are clearly B-measurable by construction.
It follows that E0 ⊂ L2(X,B, µ) and since L2(X,B, µ) is closed, E0 ⊂ L2(X,B, µ),
so that E = E0 = L2(X,B, µ). �

The following routine lemma is needed. If α1, . . . , αn are sets let FU{α1, . . . ,

αn} =
{⋃

i∈β αi : ∅ 6= β ⊂ {1, . . . , n}
}

and put FU∅{α1, . . . , αn} = FU{α1, . . . ,

αn} ∪ {∅}.
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Lemma 2.8. Suppose that {Tα}α∈F is an IP-system of measure preserving
transformations of a probability space (X,B, µ). Let n ∈ N and ξ > 0. For any
A ∈ B with µ(A) > ξ there exists an IP-ring G such that for every (α1, . . . , αn) ∈
(G)n< we have

µ

( ⋂
α∈FU∅{α1,...,αn}

T−1
α A

)
> ξ2n .

Proof. Since we are only concerned with the orbit of a single set A under
countably many transformations, we may assume without loss of generality that
(X,B, µ) is separable.

Case 1: n = 1. Letting Uαf(x) = f(Tαx) for f ∈ L2(X,B, µ), {Uα} is a
reversed IP-system of isometries. Let F (1) be an IP-ring having the property that

IP-lim
α∈F(1)

Uαf = Pf

exists for all f ∈ L2(X,B, µ) (see the discussion preceding Proposition 2.4). Ac-
cording to Proposition 2.4, P is an orthogonal projection. Let F (2) ⊂ F (1) be an
IP-ring having one of the following two properties:

(a) For every α ∈ F (2), µ(A ∩ T−1
α A) > ξ2.

(b) For every α ∈ F (2), µ(A ∩ T−1
α A) ≤ ξ2.

This is possible by Theorem 2.2. Let f = 1A. Since P is the orthogonal
projection onto a subspace containing the constants we have

IP-lim
α∈F(2)

µ(A ∩ T−1
α A) = IP-lim

α∈F(2)

∫
fTαf dµ

=
∫
fPf dµ =

∥∥Pf∥∥2 ≥ µ(A)2 > ξ2.

It follows that (b) is an impossibility, hence (a) holds. Letting G = F (2) completes
the proof of Case 1.

Case 2: Suppose the result has been established for n − 1. There exists an
IP-ring F (1) such that for all (α1, . . . , αn−1) ∈ (F (1))n−1

< we have

µ

( ⋂
α∈FU∅{α1,...,αn−1}

T−1
α A

)
> ξ2n−1

.

By Theorem 2.5 we may choose an IP-ring F (2) ⊂ F (1) such that one of the
following two criteria is met:

(a) For all (α1, . . . , αn) ∈ (F (2))n< we have

µ

( ⋂
α∈FU∅{α1,...,αn}

T−1
α A

)
> ξ2n .
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(b) For all (α1, . . . , αn) ∈ (F (2))n< we have

µ

( ⋂
α∈FU∅{α1,...,αn}

T−1
α A

)
≤ ξ2n .

Let (α1, . . . , αn−1) ∈ (F (2))n−1
< and let

B =
⋂

α∈FU∅{α1,...,αn−1}

T−1
α A.

Then µ(B) > ξ2n−1
. Proceeding as in Case 1 we get

IP-lim
α∈F(2)

µ(B ∩ T−1
α B) ≥ µ(B)2 > ξ2n .

In particular for αn far enough out we have

µ

( ⋂
α∈FU∅{α1,...,αn}

T−1
α A

)
> ξ2n .

Therefore (b) is an impossibility and (a) holds. Let G = F (2). �

3. Proof of Main Theorem

Theorem 3.1. Let (X,A, µ) be a probability space, let {Tα}α∈F and {Sα}α∈F
be IP-systems of measure preserving transformations of X such that TαSβ = SβTα
and SαSβ = SβSα for all α, β ∈ F . Then for every A ∈ A with µ(A) > 0 there
exists an IP-ring F (1) with

IP-lim
α∈F(1)

µ(A ∩ T−1
α A ∩ (TαSα)−1A) > 0.

Although Theorem 3.1 is stated for an arbitrary probability space, in the proof
it will be necessary to place some additional restrictions on (X,A, µ). Specifically,
we shall require that (X,A, µ) be a regular space, namely X is compact metric
and µ is a Borel measure. To see that this may be done without loss of generality,
consider the following standard construction.

Under the conditions of Theorem 3.1, let G be the (countable) semigroup gen-
erated by {Tα : α ∈ F} ∪ {Sα : α ∈ F}. If G has an identity, denote it by e. Oth-
erwise, let e be an identity adjoined to G and in either case put X̃ = {0, 1}G∪{e}.
Endowed with the product topology, X̃ is compact and metrizable. Let Ã = {γ ∈
X̃ : γ(e) = 1}. For g1, g2, . . . , gr ∈ G ∪ {e}, and h1, h2, . . . , hr ∈ {0, 1}, define

µ̃
(
{γ ∈ X̃ : γ(gi) = hi, 1 ≤ i ≤ r}

)
= µ

( r⋂
i=1

g−1
i Ai

)
,
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where Ai = A if hi = 1 and Ai = Ac if hi = 0, 1 ≤ i ≤ r. µ̃ is a premeasure on
the algebra of cylinder sets and hence extends uniquely to a measure on the Borel
σ-algebra Ã of X̃, so that (X̃, Ã, µ̃) is a regular space.

For α ∈ F and γ ∈ X, put T̃αγ(g) = γ(gTα) and S̃αγ(g) = γ(gSα). One may
easily check that {T̃α}α∈F and {S̃α}α∈F are IP-systems of µ̃-preserving maps with
S̃αT̃β = T̃βS̃α and S̃αS̃β = S̃βS̃α for all α, β ∈ F .

Finally, note that µ̃(Ã) = µ(A) and for all α ∈ F ,

µ̃
(
Ã ∩ T̃−1

α Ã ∩ (T̃αS̃α)−1Ã
)

= µ̃
(
{γ ∈ X̃ : γ(e) = 1, γ(Tα) = 1, γ(TαSα) = 1}

)
= µ

(
A ∩ T−1

α A ∩ (TαSα)−1A
)
.

This establishes that we may in fact assume without loss of generality that we
deal with regular spaces and hence take advantage of the structure they afford.
For more details on the following discussion, the reader is referred to [F2, Chap-
ter 5], [F1, Section 4] or [FK3, Section 3]. If (X,A, µ) is a regular space and
B ⊂ A is a sub-σ-algebra, there exists a space (Y, B̃, ν) and a measure preserving
transformation π : X → Y such that B = π−1(B̃) (modulo null sets). Y is said to
be a factor of X. Sometimes we abuse notation and say that B is a factor of X,
or use the symbol B in place of B̃.

Moreover, there exists a family of probability measures {µy : y ∈ Y } on X

such that for any f ∈ L1(X,A, µ),
∫
f dµ =

∫
(
∫
f dµy) dν(y) and so that

µy
(
π−1(y)

)
= 1 a.e. If we write E(f |B)(x) =

∫
f dµπ(x) then E(f |B) is the

conditional expectation of f given B, and the map f → E(f |B) is the orthog-
onal projection from L2(X,A, µ) to L2(X,B, µ).

We can use the disintegration of µ over Y to define a measure µ ×B µ on
(X × X,A ⊗ A) as follows:

∫
f(x1, x2)dµ×B µ(x1, x2) =

∫
(
∫
f(x1, x2) dµy ×

µy(x1, x2)) dν(y). One may check that µ×B µ is supported on the set X ×Y X =
{(x1, x2) : π(x1) = π(x2)}, and we sometimes denote this conditional product
space as (X ×Y X,A ⊗B A, µ ×B µ), or by (X̃, B̃, µ̃) for convenience. One may
easily check that if T : X → X is µ-invariant, then T̃ = T × T defined by
T̃ (x1, x2) = (Tx1, Tx2) is µ̃-invariant.

For the remainder of this section, (X,A, µ), {Tα}α∈F , {Sα}α∈F , and A ∈ A
with µ(A) > 0 will be fixed, with (X,A, µ) regular. We take L2(X,A, µ) to consist
of real-valued functions. In particular, since (X,A, µ) is regular, L2(X,A, µ) is
separable and its unit ball is compact and metrizable in the weak topology.

Let F (1) be an IP-ring with the property that

(3.1) IP-lim
α∈F(1)

µ(A ∩ T−1
α A ∩ (TαSα)−1A) = L

exists, with the additional requirement that for all f ∈ L2(X,A, µ),

IP-lim
α∈F(1)

Sαf = Pf
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exists weakly (possible by Corollary 2.3, as one need only assure convergence for
a countable dense set of f ’s in the unit ball). We must show that L > 0.

By Proposition 2.4, P is an orthogonal projection onto a closed subspace E
of L2(X,A, µ). E contains the constants, and since P is idempotent we have
Pf = f if and only if f ∈ E. In other words, Sαf → f weakly along F (1). But∥∥Sαf∥∥ =

∥∥f∥∥, hence Sαf → f strongly as well along F (1). It follows that for any
f ∈ E and any l ∈ R the function fl defined by fl(x) = l if f(x) > l, fl(x) = −l
if f(x) < −l and fl(x) = f(x) if −l < f(x) < l satisfies Sαfl → fl along F (1) and
hence lies in E. It follows that E contains a dense subset consisting of bounded
functions. Moreover, if f, g are bounded functions in E, we have∥∥SαfSαg − fg∥∥ ≤ ∥∥SαfSαg − (Sαf)g

∥∥+
∥∥(Sαf)g − fg

∥∥
≤
∥∥f∥∥∞∥∥Sαg − g∥∥+

∥∥g∥∥∞∥∥Sαf − f∥∥→ 0

along F (1), so that fg ∈ E (and bounded). Moreover f + g is bounded and in E

(this is obvious), so by Theorem 2.7 E = L2(X,B, µ), where B ⊂ A is a σ-algebra,
and thus Pf = E(f |B), that is, P is the orthogonal projection onto L2(X,B, µ).
One may further check that B must be Tα- and Sα-invariant for all α ∈ F . (It is
here, and only here, that we use the fact that SαSβ = SβSα for all α, β ∈ F .)

The factor determined by B will be denoted (Y,B, ν). Note that {Tα}α∈F
and {Sα}α∈F project to measure preserving IP-systems on (Y,B, ν). (X̃, Ã, µ̃)
will denote the conditional product probability space (X ×Y X,A⊗B A, µ×B µ).
{T̃α}α∈F and {S̃α}α∈F will denote the µ̃-measure preserving IP systems on X̃

defined by T̃α(x1, x2) = (Tx1, Tx2) and S̃(x1, x2) = (Sx1, Sx2), respectively.

Remark. Throughout the course of this section we will periodically obtain
IP-subrings of F (1) (using Theorem 2.5, for example) having some desirable prop-
erties. One may check that previous properties observed for F (1) are possessed
by the subring. Therefore, we will simply replace F (1) by its subring and con-
tinue using the name F (1) (for the subring). We may say simply “without loss of
generality, F (1) possesses such-and-such property.”

By Corollary 2.3, without loss of generality for all H ∈ L2(X̃, Ã, µ̃),

IP-lim
α∈F(1)

T̃αH = Q1H

and
IP-lim
α∈F(1)

T̃αS̃αH = Q2H

exist in the weak topology. By Proposition 2.4, Q1 and Q2 are orthogonal projec-
tions.

Definition 3.2. A function f ∈ L∞(X,A, µ) is Tα-almost periodic over B
along F (1) if for every ε > 0 there exists a set D ∈ B with ν(D) < ε and functions
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g1, . . . , gN ∈ L2(X,A, µ) having the property that for every δ > 0 there exists
α0 ∈ F (1) such that for every α ∈ F (1) with α > α0 there is a set E(α) ∈ B with
ν
(
E(α)

)
< δ having the property that for all y ∈ Y \

(
D∪E(α)

)
there exists i(y, α)

with 1 ≤ i(y, α) ≤ N such that
∥∥Tαf − gi(y,α)

∥∥
y
< ε. TαSα-almost periodicity is

similarly defined.

One may easily check that linear combinations of Tα-almost periodic functions
are Tα-almost periodic, as are products. Furthermore the constants are Tα-almost
periodic. By Theorem 2.7, the closure of the set of Tα-almost periodic functions
has the form L2(X,B1, µ) for some σ-algebra B1 ⊂ A.

One easily sees that B ⊂ B1. Similarly, the closure of the set of TαSα-almost
periodic functions has the form L2(X,B2, µ) for some σ-algebra B2 with B ⊂ B2

⊂ A.

For H ∈ L2(X̃, Ã, µ̃), we define an operator H : φ→ H ∗ φ by

(3.2) H ∗ φ(x) =
∫
H(x, x′)φ(x′) dµπ(x)(x′).

For a.e. y ∈ Y , this equation defines a compact (in fact Hilbert-Schmidt) operator
H on L2(X,A, µy). Alternatively, of course, H is an operator on L2(X,A, µ).

Lemma 3.3. (a) If H ∈ L2(X̃, Ã, µ̃) satisfies Q1H = H and φ ∈ L∞(X,A, µ)
then H ∗ φ is Tα-almost periodic over B along F (1).

(b) If H ∈ L2(X̃, Ã, µ̃) satisfies Q2H = H and φ ∈ L∞(X,A, µ) then H ∗ φ is
TαSα-almost periodic over B along F (1).

Proof. We will prove (a). Part (b) is similar. Let α1, α2, . . . be an enumeration
of the atoms which comprise F (1) (that is, F (1) = FU{α1, α2, . . . }). Suppose that
H ∈ L2(X̃, Ã, µ̃) satisfies Q1H = H. Let ε > 0 be arbitrary. For a.e. y ∈ Y , the
operator H defined by (3.2) is a compact operator on L2(X,A, µy), hence there
exists a number M(y) ∈ N such that

{
H ∗ (Tαf) : α ∈ FU∅{α1, . . . , αM(y)}

}
is ε

2 -dense (under the metric ρ(g, h) =
∥∥g − h∥∥

y
) in the set {H ∗ (Tαf) : α ∈ F∅}.

Let M be so large that there exists a set D ∈ B with ν(D) < ε such that M > M(y)
for all y ∈ Y \ D. Now let {g1, . . . , gN} be an enumeration of

{
H ∗ (Tαf) : α ∈

FU∅{α1, . . . , αM}
}

.
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For any y ∈ Y \D and any α ∈ F there exists i(y, α) ∈ N with 1 ≤ i(y, α) ≤M
such that

∥∥H ∗ (Tαφ)− gi(y,α)

∥∥
y
< ε

2 . Letting δ > 0 be arbitrary,

IP-lim
α∈F(1)

∥∥Tα(H ∗ φ)−H ∗ (Tαφ)
∥∥2

= IP-lim
α∈F(1)

∫ ∣∣∣∫ (H(Tαx, Tαx′)−H(x, x′)
)
φ(Tαx′) dµπ(x)(x′)

∣∣∣2 dµ(x)

≤ IP-lim
α∈F(1)

∫ ∫ ∣∣H(Tαx, Tαx′)−H(x, x′)
∣∣2∣∣φ(Tαx′)

∣∣2 dµπ(x)(x′) dµ(x)

≤ IP-lim
α∈F(1)

∥∥T̃αH −H∥∥2

L2(X̃,Ã,µ̃)

∥∥φ∥∥2

∞ = 0.

Therefore, there exists α0 ∈ F (1) having the property that for every α ∈ F (1) with
α > α0,

∥∥Tα(H ∗φ)−H ∗ (Tαφ)
∥∥ is so small that there exists a set E(α) ∈ B with

ν
(
E(α)

)
< δ such that

∥∥Tα(H ∗φ)−H ∗ (Tαφ)
∥∥
y
< ε

2 for all y ∈ Y \E(α). If now

y ∈ Y \
(
D ∪ E(α)

)
, then

∥∥Tα(H ∗ φ)− gi(y,nα)

∥∥
y
< ε. �

Lemma 3.4. (a) If f ∈ L∞(X,A, µ) satisfies E(f |B1) = 0, then

IP-lim
α∈F(1)

∥∥P (fTαf)
∥∥ = 0.

(b) If f ∈ L∞(X,A, µ) satisfies E(f |B2) = 0, then

IP-lim
α∈F(1)

∥∥P (fTαSαf)
∥∥ = 0.

Proof. Again we prove only (a), as (b) is similar. By Lemma 3.3 and the fact
that E(f |B1) = 0, f is orthogonal to H ∗ f for every H ∈ L2(X̃, Ã, µ̃) satisfying
Q1H = H. It follows that the function f ⊗ f(x, x′) = f(x)f(x′) ∈ L2(X̃, Ã, µ̃) is
orthogonal to all H ∈ L2(X̃, Ã, µ̃) which satisfy Q1H = H. To see this, note that∫

f(x)f(x′)H(x, x′) dµ̃(x, x′)

=
∫
f(x)

∫
H(x, x′)f(x′) dµπ(x)(x′) dµ(x)

=
∫
f(x)

(
H ∗ f(x)

)
dµ(x) = 〈H ∗ f, f〉 = 0.

Since Q1(Q1H) = Q2
1H = Q1H, it follows that f ⊗ f is orthogonal to Q1H for all

H ∈ L2(X̃, Ã, µ̃). Hence,

IP-lim
α∈F(1)

∥∥P (fTαf)
∥∥2 = IP-lim

α∈F(1)

∫ ∣∣∣∫ f(x)Tαf(x) dµy(x)
∣∣∣2 dν(y)

= IP-lim
α∈F(2)

∫
f(x)f(x′)Tαf(x)Tαf(x′) dµ̃(x, x′)

=
∫

(f ⊗ f)Q1(f ⊗ f) dµ̃ = 0. �
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Lemma 3.5. If f, g ∈ L∞(X,A, µ) with either E(f |B1) = 0 or E(g|B2) = 0,
then there exists an IP-ring F (2) ⊂ F (1) such that

IP-lim
α∈F(2)

TαfTαSαg = 0

in the weak topology.

Proof. Let xα = TαfTαSαg. Recall that for β > α, Tα∪βf = Tβ(Tαf). There-
fore

IP-lim
α∈F(1)

IP-lim
β∈F(1)

〈xβ , xα∪β〉

= IP-lim
α∈F(1)

IP-lim
β∈F(1)

∫
TβfTβSβgTα∪βfTα∪βSα∪βg dµ

= IP-lim
α∈F(1)

IP-lim
β∈F(1)

∫
TβfTβSβgTβ(Tαf)TβSβ(TαSαg) dµ

= IP-lim
α∈F(1)

IP-lim
β∈F(1)

∫
(fTαf)Sβ(gTαSαg) dµ

= IP-lim
α∈F(1)

∫
P (fTαf)P (gTαSαg) dµ = 0.

The desired conclusion is now a consequence of Proposition 2.6. �

We now proceed to show that L > 0 (see (3.1)). Let f = 1A, f1 = E(f |B1),
and f2 = E(f |B2). Also let h1 = f − f1 and h2 = f − f2. By Lemma 3.5 we may
by passing to a subring assume that

IP-lim
α∈F(1)

Tαf1TαSαh2

= IP-lim
α∈F(1)

Tαh1TαSαf2

= IP-lim
α∈F(1)

Tαh1TαSαh2 = 0

in the weak topology. Then

L = IP-lim
α∈F(1)

µ(A ∩ T−1
α A ∩ (TαSα)−1A)

= IP-lim
α∈F(1)

∫
fTαfTαSαf dµ

= IP-lim
α∈F(1)

∫
fTα(f1 + h1)TαSα(f2 + h2) dµ

= IP-lim
α∈F(1)

∫
fTαf1TαSαf2 dµ.

It is therefore sufficient for the proof of Theorem 3.1 to show that

(3.3) L = IP-lim
α∈F(1)

∫
fTαf1TαSαf2 dµ > 0.
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It is clear from the decomposition of measures that f1(x)f2(x) > 0 for a.e.
x ∈ A. Therefore, there exists some a > 0 and a set A′ ⊂ A with µ(A′) > 0 such
that f1(x)f2(x) > a for all x ∈ A′. Furthermore, there exist numbers b, ξ > 0 and
a set B1 ∈ B with ν(B1) = 3ξ > 0 such that for all y ∈ B1, µy(A′) > b. It follows
that

(3.4)
∫
ff1f2 dµy > ab

for all y ∈ B1.
Let ε = ab

18 . We may approximate f1 arbitrarily closely by a function φ1 which is
Tα-almost periodic over B along F (1). Likewise, we may approximate f2 arbitrarily
closely by a function φ2 which is TαSα-almost periodic over B along F (1). Since
ν(B1) > 3ξ we may therefore fix such φ1 and φ2 so that there exists a set B2 ⊂ B1

with ν(B2) > 2ξ having the property that for all y ∈ B2 we have

(3.5)
∥∥f1 − φ1

∥∥
y
< ε

and

(3.6)
∥∥f2 − φ2

∥∥
y
< ε.

By the definition of almost periodicity, there exists {g1, . . . , gM} ⊂ L2(X,A, µ)
and D ∈ B with ν(D) < ξ such that:

(∗) For every δ > 0 there exists α0 ∈ F (1) having the property that for every
α ∈ F (1) with α > α0 there exists a set E(α) ∈ B with ν(E(α)) < δ such that for
every y ∈ Y \

(
D∪E(α)

)
there exist i(y, α) and j(y, α) with 1 ≤ i(y, α), j(y, α) ≤M

such that ∥∥Tαφ1 − gi(y,α)

∥∥
y
< ε

and ∥∥TαSαφ2 − gj(y,α)

∥∥
y
< ε.

We claim that

L = IP-lim
α∈F(1)

∫
fTαf1TαSαf2 dµ ≥

abξ2N

8(M2 + 1)2
.

If this were not the case, we could, by passing to a subring, assume that for all
α ∈ F (1), ∫

fTαf1TαSαf2 dµ <
abξ2N

8(M2 + 1)2
.
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We will show that this is impossible by producing an α ∈ F (1) for which

(3.7)
∫
fTαf1TαSαf2 dµ >

abξ2N

8(M2 + 1)2
,

whereupon the proof of Theorem 3.1 will have been completed.
Let N = M2 + 1. By setting δ = 1

6ξ
2N 2−2N in (∗) we may, by deleting finitely

many atoms of F (1), assume that for every α ∈ F (1) there exists a set E(α) ∈ B
with ν

(
E(α)

)
< 1

6ξ
2N 2−Nξ having the property that for every y ∈ Y \

(
D∪E(α)

)
there exist i(y, α) and j(y, α) with 1 ≤ i(y, α), j(y, α) ≤M such that

(3.8)
∥∥Tαφ1 − gi(y,α)

∥∥
y
< ε

and

(3.9)
∥∥TαSαφ2 − gj(y,α)

∥∥
y
< ε.

Let B3 = (B2 \ D). Since ν(B2) > 2ξ and ν(D) < ξ, we have ν(B3) > ξ.
According to Theorem 2.8 we may by passing to a subring assume that for every
(α1, . . . , αN ) ∈ (F (1))N< we have

ν

( ⋂
α∈FU∅{α1,...,αN}

T−1
α B3

)
> ξ2N .

Furthermore, since B3 ∈ B we have

IP-lim
α∈F(1)

ν(TαB34TαSαB3) = IP-lim
α∈F(1)

ν(B34SαB3) = 0.

Therefore we may in fact assume that for all (α1, . . . , αN ) ∈ (F (1))N< we have

(3.10) ν

( ⋂
α∈FU∅{α1,...,αN}

(
T−1
α B3 ∩ (TαSα)−1B3

))
> ξ2N .

Let δ > 0 be small (how small we shall say shortly). We claim that by passing
to a subring we may assume that for all (α, β) ∈ (F (1))2

< we have

(3.11)
∫ ∣∣∣∣∥∥f2 − TαSαf2

∥∥
Tβy
−
∥∥f2 − TαSαf2

∥∥
TβSβy

∣∣∣∣2dν(y) < δ.

If this were not the case, then by the Theorem 2.6 we could by passing to a
subring assume that

(3.12)
∫ ∣∣∣∣∥∥f2 − TαSαf2

∥∥
Tβy
−
∥∥f2 − TαSαf2

∥∥
TβSβy

∣∣∣∣2dν(y) ≥ δ
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for all (α, β) ∈ (F (1))2
<. However, recall that

IP-lim
β∈F(1)

∥∥Tβh− TβSβh∥∥ = IP-lim
β∈F(1)

∥∥h− Sβh∥∥ = 0

for all h ∈ L2(X,B, µ). It follows that for any α ∈ F (1) we have

IP-lim
β∈F(1)

∫ ∣∣∣∣∥∥f2 − TαSαf2

∥∥
Tβy
−
∥∥f2 − TαSαf2

∥∥
TβSβy

∣∣∣∣2dν(y) = 0,

a contradiction to (3.12). This establishes that we may assume that (3.11) holds
for all (α, β) ∈ (F (1))2

<.
Recall that δ was chosen small. It is chosen small enough that (3.11) implies

that for all (α, β) ∈ (F (1))2
< there exists a set C(α, β) ∈ B with ν

(
C(α, β)

)
< ξ2N

4N2

such that for all y ∈ Y \ C(α, β) we have

(3.13)
∣∣∣∣∥∥f2 − TαSαf2

∥∥
Tβy
−
∥∥f2 − TαSαf2

∥∥
TβSβy

∣∣∣∣ < ε.

We now fix some N -tuple (α1, . . . , αN ) ∈
(
F (1)

)N
<

. Let

B4 = B3 \
( ⋃
α∈FU∅{α1,...,αN}

E(α)
)
.

We now put

B5 =
(( ⋂

β∈FU∅{α1,...,αN}

(
T−1
β B3 ∩ (TβSβ)−1B3

)))
\
( ⋃
α,β∈FU∅{α1,...,αN}

(
E(α) ∪ T−1

β E(α) ∪ (TβSβ)−1E(α)
)
.

Then

(i) ν(B5) > 1
2ξ

2N .
(ii) For any y ∈ B4, (3.4), (3.5), (3.6), (3.8) and (3.9) hold.
(iii) For any y ∈ B5 and any β ∈ FU∅{α1, . . . , αN} we have Tβy ∈ B4 and

TβSβy ∈ B4.

Since N = M2 + 1, for any y ∈ B5 there exist l(y) and m(y) with 1 ≤ l(y) <
m(y) ≤ N such that

(3.14) i
(
y, (αl(y) ∪ · · · ∪ αN )

)
= i
(
y, (αm(y) ∪ · · · ∪ αN )

)
and

(3.15) j
(
y, (αl(y) ∪ · · · ∪ αN )

)
= j
(
y, (αm(y) ∪ · · · ∪ αN )

)
.
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There are less than N2 possibilities for the pair
(
l(y),m(y)

)
. Therefore, since

ν(B5) > 1
2ξ

2N , we may choose l and m with 1 ≤ l < m ≤ N and a set B6 ⊂ B5

with ν(B6) > ξ2N

2N2 on which l(y) = l and m(y) = m are constant. Let α =

(αl ∪ · · · ∪ αm−1) and let β = (αm ∪ · · · ∪ αN ). Then α < β, so (α, β) ∈
(
F (1)

)2
<

.
Let y ∈ B6. (3.14) says that i(y, α ∪ β) = i(y, β). Since B6 ⊂ Y \

(
D ∪ E(β) ∪

E(α ∪ β)
)

we have by (3.8) that∥∥φ1 − Tαφ1

∥∥
Tβy

=
∥∥Tβφ1 − Tβ(Tαφ1)

∥∥
y

(3.16)

=
∥∥Tβφ1 − Tα∪βφ1

∥∥
y

≤
∥∥Tβφ1 − gi(y,β)

∥∥
y

+
∥∥Tα∪βφ1 − gi(y,β)

∥∥
y

=
∥∥Tβφ1 − gi(y,β)

∥∥
y

+
∥∥Tα∪βφ1 − gi(y,α∪β)

∥∥
y

< 2ε.

Also, since Tβy ∈ B3, we have ∥∥φ1 − f1

∥∥
Tβy

< ε.

On the other hand, since Tα∪βy ∈ B3 we have

(3.17)
∥∥Tαf1 − Tαφ1

∥∥
Tβy

=
∥∥f1 − φ1

∥∥
Tα∪βy

< ε.

(3.16), (3.17) and (3.18) give

(3.18)
∥∥f1−Tαf1

∥∥
Tβy
≤
∥∥f1−φ1

∥∥
Tβy

+
∥∥φ1−Tαφ1

∥∥
Tβy

+
∥∥Tαφ1−Tαf1

∥∥
Tβy

< 4ε.

In a completely analogous fashion we may show as well that

(3.19)
∥∥f2 − TαSαf2

∥∥
TβSβy

< 4ε.

Recall that since (α, β) ∈
(
F (1)

)2
<

there exists a set C(α, β) ∈ B with ν
(
C(α, β)

)
< ξ2N

4N2 such that for all z ∈ Y \ C(α, β) we have

(3.20)
∣∣∣∣∥∥f2 − TαSαf2

∥∥
Tβz
−
∥∥f2 − TαSαf2

∥∥
TβSβz

∣∣∣∣ < ε.

Let B7 = B6 \ C(α, β). Then ν(B7) > ξ2N

4N2 . Suppose now that y ∈ B7, (3.20)
and (3.21) combine to give

(3.21)
∥∥f2 − TαSαf2

∥∥
Tβy

< 5ε.
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Since y ∈ B5, Tβy ∈ B4 ⊂ B1. It follows by (3.4) that∫
ff1f2 dµTβy > ab.

Now from (3.19) and (3.22), together with the fact that the functions f , f1 and
f2 have ranges in [0, 1], we get that∫

fTαf1TαSαf2 dµTβy >
ab

2
.

This holds for all y ∈ B7. It follows that∫
fTαf1TαSαf2 dµ >

abξ2N

8(M2 + 1)2
.

This is (3.7). In light of previous comments, this completes the proof of Theo-
rem 3.1. �

4. Combinatorial Consequences

This section contains a few combinatorial consequences of Theorem 3.1. They
are new, and indeed unusual enough not to have any direct predecessors in the lit-
erature. The reader may wish to compare them to the results of [BH] and [BMZ].

Recall that a semigroup S is left amenable if there exists a left invariant mean
m on l∞(S). Namely, m ∈ l∞(S)∗ with m(1) = 1 and m(f) ≥ 0 if f(s) ≥ 0 for all
s ∈ S, and with m(sf) = m(f) for all s ∈ S and f ∈ l∞(S), where sf(t) = f(st).
If S is a semigroup, a subset A ⊂ S is said to be left syndetic if there exists a
finite set H ⊂ S such that

⋃
h∈H h

−1A = S, where h−1A = {s ∈ S : hs ∈ A}.
Suppose that S is a countable, left amenable semigroup with identity and let

Ω = {0, 1}S . Ω is a compact metrizable space under the product topology. An
S-action {Tg} may be defined on Ω as follows: for ξ ∈ Ω, let (Tgξ)(h) = ξ(hg).
The following proposition follows Furstenberg.

Proposition 4.1. Let S be a countable left amenable semigroup with identity
e and let m be a left invariant mean. Let X = {Th1E : h ∈ S} and put A = {η ∈
X : η(e) = 1}. For any E ⊂ G there exists a {Th}-invariant probability measure
µ on X such that µ(A) = m(E).

Proof. Let A be the algebra of sets generated by {T−1
g A : g ∈ S}. If g1, g2, . . . ,

gk ∈ S and A1, A2, . . . , Ak ∈ {A,Ac}, put µ(T−1
g1
A1 ∩ · · · ∩ T−1

gk
Ak) = m(g−1

1 E1 ∩
· · · ∩ g−1

k Ek), where Ei = E if Ai = A and Ei = Ec if Ai = Ac. One easily
checks that µ extends to an additive, {Tg}-invariant set-function on A which, by
compactness of X and the fact that members of A are open, is a pre-measure.
Hence µ extends to a measure on the Borel σ-algebra, and plainly µ(A) = m(E).�
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Let G and H be left amenable semigroups with identities e and e′, respectively.
G ×H is left amenable as well, and any G ×H-action {U(g,h) : (g, h) ∈ G ×H}
has the form U(g,h) = TgSh, where Tg = U(g,e′) and Sg = U(e,g). If H is abelian,
we can apply Theorem 3.1 to obtain the following density combinatorial result, a
“half commutative IP Roth theorem for amenable semigroups”.

Theorem 4.2. Suppose that G is a countable, left amenable semigroup, H is
a countable abelian semigroup, and E ⊂ G × H has positive upper density. Let
(gα)α∈F ⊂ G be an IP-system and let (hα)α∈F ⊂ H be an IP-system. There exists
a ∈ G, b ∈ H, and α ∈ F such that {(a, b), (gαa, b), (gαa, hαb)} ⊂ E.

Proof. Let G′ = G ∪ {e} and let H ′ = H ∪ {e′}, where e and e′ are identities.
Let Ω = {0, 1}G′×H′ , and define a G′ ×H ′-action {U(g,h)} on Ω by (U(g,h)ξ

)
(a, b)

= ξ(ag, bh). Let ξ = 1E ∈ Ω and let X = {U(g,h)ξ : g, h ∈ G}. Put A = {η ∈
X : η(e, e′) = 1}. According to Theorem 4.1 there exists a {U(g,h)}-invariant
measure µ on X with µ(A) > 0. Let Tα = U(gα,e′) and Sα = U(e,hα), α ∈ F .
Then {Tα} is an IP-system and {Sα} is a commutative IP-system of measure
preserving transformations on X. By Theorem 3.1 there exists α ∈ F such that
µ(A ∩ T−1

α A ∩ (TαSα)−1A) > 0. Choose η ∈ A ∩ T−1
α A ∩ (TαSα)−1A. Since A

is open and η ∈ {TgShξ : (g, h) ∈ G×H}, there exists (a, b) ∈ G ×H such that
TaSβξ ∈

(
A ∩ T−1

α A ∩ (TαSα)−1A
)
. Therefore

ξ(a, b) = ξ(gαa, b) = ξ(gαa, hαb) = 1.

In other words, {(a, b), (gαa, b), (gαa, hαb)} ⊂ E. �

Remark. In the above theorem, it is not absolutely necessary that H be
abelian. It is enough to have H left amenable, and that the IP-system (hα) be
contained in an abelian subgroup H0 of H. The conclusion in this case is mildly
stronger because a positive density subset E ⊂ G×H need not intersect G×H0.
For example, if H is the (amenable) group of finite permutations of N, then a
subgroup of H is abelian if and only if it is generated by disjoint cycles, and all
such subgroups have zero upper density. Similar observations apply to the results
to follow, but we shall content ourselves with assuming H to be abelian as the
statements are then more natural and the difference is minor.

In the event that G is a group, we can modify Theorem 4.2 such as to give the
result a somewhat more natural look.

Corollary 4.3. Suppose that G is a countable amenable group, H is a countable
abelian semigroup, and E ⊂ G×H has positive upper density. Let (gα)α∈F ⊂ G be
a reversed IP-system and let (hα)α∈F ⊂ H be an IP-system. There exists a ∈ G,
b ∈ H, and α ∈ F such that {(a, b), (gαa, b), (a, hαb)} ⊂ E.

Proof. Note that (g−1
α )α∈F is an IP-system. Hence by Theorem 4.2 there exists

(c, b) ∈ G × H and α ∈ F such that (c, b), (g−1
α c, b), (g−1

α c, hαb)} ⊂ E. Let a =
g−1
α c. �
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Our next result is a “one-third commutative” topological multiple recurrence
theorem.

Theorem 4.4. Let J be an arbitrary countable group, let G be a countable
left amenable semigroup, let H be a countable abelian semigroup, let (X, ρ) be a
compact metric space, and let {Tg}, {Rg}, and {Sg} be actions of G, J , and H

respectively by homeomorphisms of X, such that TgRj = RjTg, RjSh = ShRj, and
TgSh = ShTg for all g ∈ G, j ∈ J , and h ∈ H. Let (gα)α∈F ⊂ G and (jα)α∈F ⊂ J
be IP-systems, and let (hα)α∈F ⊂ H be an IP-system. Then for every ε > 0
there exists α ∈ F and x ∈ X such that ρ(x,Rjαx) < ε, ρ(x,RjαTgαx) < ε, and
ρ(x,RjαTgαShαx) < ε.

Proof. Passing to a closed subset of X if necessary, we will assume that X is
minimal with respect to the G× J ×H-action {TgRjSh : (g, j, h) ∈ G× J ×H}.
We claim that for every non-empty open set U ⊂ X and every α0 ∈ F there exists
α > α0 and z ∈ X such that {z, Tgαx, TgαShαx} ⊂ U .

To prove the claim, let U ⊂ X be open. Pick x ∈ U and ε > 0 such that
Bε(x) ⊂ U . Let Y ⊂ X be a closed set which is minimal with respect to the
G×H-action {TgSh : (g, h) ∈ G×H}. One may check that

⋃
j∈J RjY is {Rj}-,

{Tg}-, and {Sh}-invariant, and is therefore equal to X. It follows that for some
j0 ∈ J , R−1

j0
Bε/2(x)∩Y 6= ∅. Let δ > 0 be so small that if y, y′ ∈ Y with ρ(y, y′) < δ

then ρ(Rj0y,Rj0y
′) < ε

2 . Let U ′ ⊂ R−1
j0
B ε

2
(x) ∩ Y be an open set (open in Y ) of

diameter less that δ. Let y0 ∈ Y . Since the action {TgSh : (g, h) ∈ G × H} is
minimal on Y , the set

E = {(g, h) : TgShy0 ∈ U ′}

is left syndetic in G×H, and therefore we have m(E) > 0 for every left-invariant
mean m on G × H. It follows from Theorem 4.2 that for some α > α0 and
(a, b) ∈ G × H, {(a, b), (gαa, b), (gαa, hαb)} ⊂ E. Set y = TaSby0 ∈ U ′. Then
Tgαy ∈ U ′ and TgαShαy ∈ U ′, so that, letting z = Rj0y, we have z ∈ Bε/2(x),
ρ(z, Tgαz) < ε/2, and ρ(z, TgαShαz) < ε/2. Therefore {z, Tgαz, TgαShαz} ⊂ U .

Let ε > 0 and choose x0 ∈ X arbitrarily. Let U0 be an open set of diameter
less that ε

2 containing x0. According to the claim, there exists α0 ∈ F and y0 ∈ X
such that {y0, Tgα0

y0, Tgα0
Shα0

y0} ⊂ U0. Put x1 = R−1
jα0
y0 and let U1 be an open

set of diameter less that ε
2 containing x1 having the property that for every x ∈ U1

we have {Rjα0
x, Tjα0

Tgα0
x,Rjα0

Tgα0
Shα0

x} ⊂ U0.
Suppose now that we have chosen open sets of diameter less that ε

2 U0, U1, . . . ,

Ut containing points x0, x1, . . . , xt, and α0, α1, . . . , αt−1 ∈ F , with α0 < α1 <

· · · < αt−1, such that whenever 0 ≤ m < n ≤ t we have {Rjm,nx,Rjm,nTgm,nx,
Rjm,nTgm,nShm,nx} ⊂ Ui for all x ∈ Uj , where here jm,n = jαm∪αm+1∪···∪αn−1 (and
similarly for gm,n and hm,n). By the previous clain there exists αt > αt−1 and
yt ∈ Ut with {yt, Tgαt yt, TgαtShαt yt} ⊂ Ut. Let xt+1 = R−1

jαt
yt and let Ut+1 be an

open set of diameter less that ε
2 containing xt+1 and having the property that for
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all x ∈ Ut+1 we have {Rjαtx,RjαtTgαtx,RjαtTgαtShαtx} ⊂ Ut. It follows that for
0 ≤ i < t and x ∈ Ut+1,

{Rhi,t+1x,Rhi,t+1Shi,t+1x,Rhi,t+1Shi,t+1Thi,t+1x} ⊂ Ui.

Continue until for some m < n, ρ(xm, xn) < ε
2 . Then

ρ(xn, Rjm,nxn) < ε, ρ(xn, Rjm,nTgm,nxn) < ε, and ρ(xn, Rji,jTgi,jShi,jxn) < ε.

Letting x = xn and α = αm ∪ αm+1 ∪ · · · ∪ αn−1 finishes the proof. �

Van der Waerden’s theorem ([vdW]; see also [F2]) states that for any finite
coloring of N, at least one cell contains arbitrarily long arithmetic progressions.
The following theorem can be viewed as an exotic version of this result.

Corollary 4.5. Let J be an arbitrary countable group, let G be a countable left
amenable semigroup, and let H be a countable abelian semigroup. Let (gα)α∈F ⊂ G
and (jα)α∈F ⊂ J be IP-systems, and let (hα)α∈F ⊂ H be an IP-system. Then for
any finite partition J × G ×H =

⋃r
i=1 Ci, there exists t, with 1 ≤ t ≤ r, α ∈ F ,

and (a, b, c) ∈ J×G×H such that {(a, b, c), (jαa, b, c), (jαa, gαb, c), (jαa, gαb, hαc)}
⊂ Ct.

Proof. Let e be an identity for J , let e′ be an identity for G, and let e′′ be
an identity for H (e′ and e′′ are supplied, if necessary). Put G′ = G ∪ {e′} and
H ′ = H ∪ {e′′}. Let Ω = {1, 2, . . . , r}J×G′×H′ . We may choose a metric ρ on Ω
generating the product topology such that for γ, η ∈ Ω, ρ(γ, η) < 1 if and only
if γ(e, e′, e′′) = η(e, e′, e′′). Commuting G-actions of homeomorphisms {Rg}, {Sg}
and {Tg} can be defined on Ω by Rgγ(a, b, c) = γ(ag, b, c), Sgγ(a, b, c) = γ(a, bg, c),
and Tgγ(a, b, c) = γ(a, b, cg). Let ξ be the element of Ω defined by ξ(j, g, h) = i

when (j, g, h) ∈ Ci. Let X = {RjTg§hxi : (j, g, h) ∈ J ×G×H}. By Theorem 4.4
there exists x ∈ X and and α ∈ F such that ρ(x,Rjαx) < ε, ρ(x,RjαTgαx) < ε,
and ρ(x,RjαTgαShαx) < ε.

There exist a, b, c ∈ G such that y = RaTbScξ is close enough to x that
ρ(y,Rjαy) < 1, ρ(y,RjαTgαy) < 1, and ρ(y,RjαTgαShαy) < 1. It follows that
ξ(a, b, c) = ξ(jαa, b, c) = ξ(jαa, gαb, c) = ξ(jαa, gαb, hαc). In other words,

{(a, b, c), (jαa, b, c), (jαa, gαb, c), (jαa, gαb, hαc)} ⊂ Ci,

where i = ξ(a, b, c). �

Other versions of Corollary 4.5 are possible. Taking (jα)α∈F to be a reversed
IP-system, for example, yields a monochromatic configuration of the form

{(a, b, c), (jαa, b, c), (a, gαb, c), (a, gαb, hαc)}.

Taking G to be an amenable group and assuming that both (jα)α∈F and (gα)α∈F
are reversed IP-systems yields a configuration of the form

{(a, b, c), (jαa, gαb, c), (a, gαb, c), (a, b, hαc)}.
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